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Abstract—We study the problem of connectivity in MIMO fad-
ing ad-hoc networks. Based on a probabilistic analysis of achiev-
able capacity on individual links of a random topology, we intro-
duce a novel connectivity metric for wireless ad-hoc networks. We
assume a pair of nodes are connected if their bi-directional capac-
ity is more than a given threshold. Our metric is more sophisti-
cated compared to previously proposed metrics of connectivity as
it captures the effects of time-varying fading channel, power, and
multiple antennas. Our results show that employing mobile nodes
with multiple antennas enhances the connectivity of fading wire-
less ad-hoc networks.

Index Terms— Wireless Ad-Hoc Networks, Fading Channel,
Connectivity, MIMO, Capacity.

I. I NTRODUCTION

Strong tendency for the deployment of ad-hoc networks has
encountered major challenges due to sometimes conflicting
time-varying fading channel, connectivity, capacity, and power
issues. This paper offers a framework for studying the connec-
tivity phenomenon in Multiple-Input Multiple-Output (MIMO)
fading ad-hoc networks based on the achievable link capacity.

Investigating the connectivity of radio networks goes back
to four decades ago. In his pioneering work, Gilbert [9] stud-
ied the connectivity of infinite random networks relying on the
so-called geometric disk model. In the geometric disk model,
a random topology network is represented by a disk graph in
which two nodes are considered directly connected if their dis-
tance is smaller than a given transmission radius. The work of
Gilbert showed that there exists a minimum number of nodes
within a transmission range above which a random graph is al-
most surely connected. Recently, the connectivity subject has
received much attention due to the deployment of wireless ad-
hoc networks. Some of the recent follow-on studies about the
connectivity of infinite random networks relying on the geo-
metric disk model include the work of Booth et al. [4], Philips
et al. [13], and Quintanilla et al. [14]. In addition, a survey of
the literature reveals a large number of articles in the context of
connectivity of ad-hoc networks with a finite number of mobile
nodes. Some of the related articles in this area include the work
of Cheng et al. [5], Santi et al. [16], Bettstetter [3], and Doussi
et al. [6].

Although an attractive abstract model for studying the con-
nectivity, the geometric disk model is far from the reality of
wireless networks. The main disadvantages of the disk model
have to do with not considering the effects of attenuation, in-
terference, and noise. Gupta et al. [10] proposed the use of
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signal-to-interference-noise-ratio (SINR) as the metric of con-
nectivity in wireless ad-hoc networks. According toSINR
metric, two nodes in a random topology are directly connected
if their minimumSINR is greater than a given threshold. Bac-
celli et al. [2] utilizedSINR model under Poisson assump-
tions in the context of infinite CDMA networks. Relying on the
sameSINR connectivity metric, Dousse et al. [7] showed that
if both node density per unit area andSINR are sufficiently
high, the resulting infinite graph of an ad-hoc network is al-
most surely connected. Interestingly, connectivity in random
networks represented by graphs of mixed short and long edges
can also be related to small world networks [19].

While SINR is a more realistic metric of connectivity com-
pared to the geometric disk model for wireless ad-hoc networks,
it is still not fully capable of capturing the physical connectiv-
ity phenomenon. In reality, a pair of nodes are connected if a
sequence of transmitted symbols from one can be received at
another. In addition, the considerations of time and frequency
can also affect the interpretation of connectivity.

The use of space-time coding techniques in wireless net-
works is of interest because they can substantially reduce the
effects of multipath fading in the wireless channels through an-
tenna diversity. Transmit antenna diversity in the form of space-
time block codes (STBCs) of [1] and [17] has been adopted in
WCDMA and CDMA2000 standards. It is also being consid-
ered in many current wireless standard efforts. Receive antenna
diversity schemes such as Maximum Ratio Combining (MRC)
are already in widespread use in communication systems.

The contributions of our work is in the introduction of a prob-
abilistic connectivity metric for wireless ad-hoc networks. We
rely on an analysis of the time-varying fading wireless network
to define a connectivity metric based on the capacity of MIMO
channels.

The rest of this paper is organized as follows. Section II pro-
vides properties of random variables some that will be used in
our analysis. Section III investigates the problem of connec-
tivity based on the probabilistic concept of capacity in MIMO
channels. In Section IV, we numerically validate our connec-
tivity analysis results. Our findings show that utilizing space-
time coded mobile nodes can improve the connectivity of ad-
hoc networks under our connectivity metric. Finally, Section V
concludes this paper.

II. FUNDAMENTAL PROPERTIES OFRANDOM VARIABLES

In this section, we provide a review of few fundamental prop-
erties of random variables.



We list four fundamental properties of the Probability Den-
sity Functions (PDFs) of random variables as discussed by [12]
and [15].
• Property 1: If x andy are random variables satisfyingy =

g(x), then the PDF ofy satisfiesfy(y) = fx(x1)
g′(x1)

+ · · · +
fx(xq)
g′(xq) wherex1, · · · , xq are the real roots ofy = g(x) and
g′(x) represents the derivative ofg(x).

• Property 2: If the PDF set{fx1(x1), · · · , fxq (xq)} is
associated with the set of independent random variables
{x1, · · · , xq}, then the PDF of their sumz = x1 + · · ·+xq

is calculated asfz(z) = fx1(z) ∗ · · · ∗ fxq
(z) where∗ rep-

resents the convolution operator.
• Property 3: If x, y, andz are random variables satisfy-

ing z = x2 + y2, the PDF of the random variablez is

specified asfz(z) =
∫√z

−√z
1√

z−y2
{fxy(

√
z − y2, y) +

fxy(−
√

z − y2, y)}dy.
• Property 4: Given the individual PDFs ofk Identically

and Independently Distributed (IID) exponential random
variablesx1, · · · , xk, with the common parameterλ the
PDF of their sumz = x1 + · · · + xk is expressed by a
gamma distribution with parameters k andλ as

fz(z) =
zk−1

(k − 1)!
λk e−λz, z > 0 (1)

III. A C APACITY-BASED CONNECTIVITY METRIC

The discussion of this section revolves around defining a
probabilistic metric of connectivity that takes into consideration
the details of time-varying wireless channel and the underly-
ing communication system. Our probabilistic metric is defined
based on an outage capacity analysis for MIMO channels.

Calculating estimates or upper bounds of the capacity in
the case of uncorrelated and correlated Single-Input Single-
Output (SISO) and MIMO channels both with Gaussian and
non-Gaussian noise has been the subject of heavy research in
the past years. The concept of outage capacity was first in-
troduced by Foschini et al. [8]. Outage capacity provides an
elegant description of the achievable rate of a communication
channel. Simply put, it represents a probabilistic measure of
the maximum number of bits per cycle that can be transmitted
for a given probability of error. Foschini et al. [8] also provided
approximations of the capacity of IID MIMO Rayleigh chan-
nels. Telatar [18] provided a treatment of calculating the capac-
ity of correlated MIMO channels with Gaussian noise. Kang
et al. [11] numerically verified that the approximations of ca-
pacity derived in [8] work well under various fading conditions
in the presence of Rayleigh distributed interference, for a wide
range ofSINR, and even when the channel is semi-temporally
correlated.

Our discussion below represents a treatment of the subject
material relying on the cited literature articles above. The anal-
ysis is carried out by working with the input and output signals
of a Rayleigh fading channel.

We consider an ad-hoc topology consisting of a number of
links. Further, we assume a MIMO channel withMi transmit
antennas andNi receive antennas is associated with linki of

the topology. Let us also assume that theNi ×Mj matrix Hij

represents the Rayleigh fading channel between the transmitter
of link j and the receiver of linki. DenotingSi as theMi × 1
signal vector transmitted from linki, the received signal vector
at link i is the followingNi × 1 vector

Ri(t) = Hii(t)Si(t) +
∑

j 6=i

Hij(t)Sj(t) + ni(t) (2)

where the channel matricesHij consist of complex Gaussian
random variable elements. The above equation can be rewritten
as

Ri(t) = Hii(t)Si(t) + n
′
i(t) (3)

wheren
′
i(t) =

∑
j 6=i Hij(t)Sj(t) + ni(t). We assume that

the receiver of linki knows the channel matrixHii while the
transmitter of linki only knows its distribution. The quantities
(n

′
i|Hij) can be considered to form a Gaussian random pro-

cess due to the following lines of reasoning. We know that the
codewordsSj should be chosen from a Gaussian distribution
to be capacity achieving. Further,Hij ’s are known at the re-
ceiver. Since the elementsHijSj are linear combinations of
some independent Gaussian random variables, they are them-
selves Gaussian. In addition, anySj or ni term at time slott
is independent from its counter part at other time slots. The
latter is due to the fact that transmitter assigns the codewords
independently at each time slot as the result of not knowing the
channel. Therefore,(n

′
i|Hij) is a Gaussian random process.

The covariance matrix for this resulting noise term is

K = E{n′i.n
′
i

†}
= E{(∑j 6=i HijSj + ni).(

∑
k 6=i HikSk + ni)†}

= E{∑j 6=i HijSjS
†
jH

†
ij}+ σ2

nI
(4)

where, the superscript† indicates the Hermitian operator. Since
we are assuming thatHij coefficients are known at the receiver,

K =
∑

j 6=i

HijE{SjS
†
j}H†

ij+σ2
nI =

∑

j 6=i

HijΦjH
†
ij+σ2

nI (5)

whereI is the identity matrix andΦj indicates the covariance
matrix of the code used in linkj. Then, the mutual information
I betweenSi andRi is derived as1

I(Si;Ri) = log2 det(I + K−1HiiΦiH
†
ii) (6)

To find the capacity, one needs to maximizeI(Si;Ri) sub-
ject to a transmission power constraintTr(Φi) ≤ Pi on link
i whereTr(Φi) andPi denote the trace ofΦi and the trans-
mission power of linki, respectively. Since the receiver knows
the channel, only some statistics are needed to determine the
capacity.

The choice of covariance matrix achieving the capacity in
Equation (6) depends on the realization of the channel matrix.
When the channel is not known at the transmitter, the best strat-
egy is to distribute the input power equally among the transmit
antennas. The latter results in a covariance matrixΦi that is

1The symbolI used to denote mutual information should be distinguished
from the symbolI to denote the identity matrix.



a multiple of the identity matrix. Considering the constraint
Tr(Φi) ≤ Pi, we haveΦi = Pi

Mi
I resulting in the following

capacity determination:

Ci = log2 det
(

I +
Pi

Mi
K−1HiiH

†
ii

)
bits/sec/Hz (7)

In the most general case, the capacity expression of Equation
(7) can be only calculated numerically. For a special case in
which K is a multiple of the identity matrix, we can offer ana-
lytical results. As the central limit theorem suggests, the latter
is not a bad assumption. Using Equation (5) and assuming a
large number of interfering nodes, one can considerK to be a
multiple of the identity matrix. As such, it can be expressed as

K ' [P
(I)

i + P
(n)

i ] I (8)

Therefore, Equation (7) can be rewritten as follows

Ci = log2 det
(

I +
SINRi

Mi
HiiH

†
ii

)
bits/sec/Hz (9)

with SINRi denoting the average signal-to-interference-noise-
ratio. Next, we note that the capacity in Equation (9) is defined
for a fixed realization of the fading channelHii at link i over a
large block length. Every realization of the channel has some
probability attached to it through the statistical model ofHii.
We assume that the matrixHii consists of zero-mean Gaussian
random variables, i.e., each element of the matrix has a fading
envelope described by Rayleigh distribution [12]. As a direct
result of Property 2, we know that the sum ofq zero-mean IID
complex Gaussian random variables with a standard deviation

1√
2λ

is a zero-mean Gaussian random variable with a standard

deviation
√

q
2λ . Since the channel matricesHii are random

in nature, the capacity in Equation (9) can be considered as a
random variable.

According to Singular Value Decomposition (SVD) theorem,
Ci can be calculated in terms of the positive eigenvalues of
HiiH

†
ii as

Ci =
ρ∑

l=1

log2

[
1 +

SINRi

Mi
σl

]
bits/sec/Hz (10)

whereσl’s with l ∈ {1, · · · , ρ} denote the positive eigenval-
ues ofHiiH

†
ii andρ is the rank ofHii. Therefore, the capacity

Ci represents a scalar function of the set of random variables
{σ1, · · · , σρ}. The PDF of capacity can be calculated as de-
scribed below and depending on the values ofMi andNi.

For the case ofMi = Ni = 1, we haveHii = x + jy with
x andy representing zero-mean IID Gaussian random variables
andHii H†

ii = x2 + y2. We utilize Property 3 for the pair of
zero-mean Gaussian random variablesx andy with a standard
deviation of

√
2λ to conclude that the PDF of the scalarHii H†

ii

is described in the form of

fz(z) = λ e−λz (11)

The PDF identified above represents the only positive eigen-
value of the scalar functionHii H†

ii. For the case ofMi = 2

andNi = 1,

Hii H†
ii = [x1 + jy1 x2 + jy2]

[
x1 − jy1

x2 − jy2

]

= (x2
1 + y2

1) + (x2
2 + y2

2)
(12)

wherex1, y1, x2, and y2 represent zero-mean IID Gaussian
random variables. Definingz1 = x2

1 +y2
1 andz2 = x2

2 +y2
2 , the

PDF of the scalar functionHii H†
ii can be derived from Property

4 as
fz(z) = λ2ze−λ2z, z > 0 (13)

Again, the PDF identified above represents the only positive
eigenvalue ofHii H†

ii. For the case ofMi = 1 andNi = 2,

Hii H†
ii =

[
x1 + jy1

x2 + jy2

]
[x1 − jy1 x2 − jy2]

=
[

(x2
1 + y2

1) x1x2 + y1y2 + j(x1y2 − x2y1)
x1x2 + y1y2 − j(x1y2 − x2y1) x2

2 + y2
2)

] (14)

wherex1, y1, x2, andy2 represent zero-mean IID Gaussian ran-
dom variables. Calculating the eigenvalues ofHii H†

ii yields a
zero eigenvalue and a positive eigenvalue of(x2

1 + y2
1) + (x2

2 +
y2
2). The PDF of the random variable associated with the pos-

itive eigenvalue is the same as the one identified by Equation
(13). The results for the case ofMi = 2 andNi = 2 are cal-
culated similar to the case ofMi = 2 andNi = 1 with anHii

matrix consisting of four pairs of complex Gaussian random
variables.

Treating capacity as a random variable with a given PDF pro-
vides us with an opportunity to represent a novel connectivity
metric based on the concept of outage capacity. We introduce
our connectivity metric as

Pr(Ci < Cout) < Pout (15)

wherePr(.), Cout, andPout represent probability, the thresh-
old of connectivity also known as outage capacity, and the out-
age probability, respectively. It differs slightly from that of [18].
According to [18], the outage is defined as

inf
Tr(Qi)≤Mi

Pr(Ci < Cout) < Pout (16)

The main difference between the two definitions is that the latter
may assign zero power to some of the transmit antennas while
the former utilizes all of the antennas. According to our outage
capacity metric matching the former definition, two nodes are
connected if the probability of their outage capacity is less than
a given outage probability.

We remind that the advantage of using the connectivity met-
ric of this section compared to anSINR metric is that the met-
ric of this section can capture the fading characteristics of the
wireless channel as well as the effects of utilizing multiple an-
tennas in the nodes, throughHiiH

†
ii term.

IV. CONNECTIVITY EXPERIMENTS

In this section, we apply our proposed connectivity scheme
to a moderate size random ad-hoc topology. In order to provide
a meaningful basis of comparison, we compare our results for



the same random topology. In our random topology,200 nodes
are distributed on a 2-D domain with an area of1000 square
meters according to a Poisson point process.

Before proceeding with the explanation of our numerical re-
sults, we note that we are investigating the connectivity of wire-
less ad-hoc networks accommodating mobile nodes with both
single and double transmit antennas. In the case of a dou-
ble transmit antenna mobile node, we assume that two signals
are transmitted simultaneously from the two transmit antennas
at each time slot. In addition, we assume that the slow fad-
ing wireless channel characterized by a Rayleigh distribution is
quasi-static and flat implying that the path gains are constant
over a frame but vary independently from one frame to another.

The following describes general settings of our experiments.
We assume that each node utilizes a total transmission power
of P = 1W on the combined set of its outgoing links. In the
case of multiple antenna nodes, the total transmission power is
split equally among the antenna paths. The expected value of
the noise power on each path is assumed to be10µW . Depend-
ing on a specific experiment, a pair of nodes are considered to
be immediate neighbors and form a direct linkLi if the prob-
abilistic connectivity metric of (15) holds. We note that link
connectivity may be directional implying that a first node can
transmit to a second node while the second node may not be
able to transmit to the first node. In our experiments, we con-
sider link connectivity exists only if both nodes can transmit
and receive from each other under a connectivity criterion.

For the random topology described above, we consider three
scenarios. In the first scenario to which we refer as the1 × 1
case, the network is only accommodating single antenna mobile
nodes. In the second scenario to which we refer as the HYBRID
case, half of the nodes are randomly selected to be equipped
with double antennas while the other half are equipped with
single antennas. In the third scenario to which we refer as the
2× 2 case, the network is only accommodating double antenna
mobile nodes.

We provide the results of our experiments in the case of prob-
abilistic measure of (15). The illustrations of Fig. 1 show the
connectivity graphs of our connectivity metric for the given ran-
dom topology network. Reviewing the connectivity graphs, we
observe that the connectivity graphs of the topology vary de-
pending on not only the signal-to-interference-noise-ratio but
the capacity. Hence, a pure measurement of the signal strength
such asSIR, SNR, or SINR is not quite capable of describ-
ing the connectivity phenomenon. On the contrary, utilizing
our proposed metric provides a better way of properly captur-
ing the effects of the quantities of interest when investigating
connectivity. A significant observation is that to our expecta-
tion equipping mobile nodes with a higher number of antennas
improves the connectivity results. From the results of the ex-
periments, we can also calculate the percentages of the nodes
belonging to the largest connected cluster of nodes. Utilizing
the connectivity metric of (15), Table I reports the connectivity
results for three different combination of choices ofCout and
Pout with similar other settings. We observe that decreasing
the value ofCout and increasing the value ofPout increases the
size of the largest cluster of the connectivity graph.

We note that the connectivity of an ad-hoc network depends
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Fig. 1. Connectivity graphs of a random topology with connectivity thresholds
of Cout = 1 bit/sec/Hz andPout = 0.02. The figures from the top to the
bottom correspond to single antenna, hybrid, and double antenna mobile nodes.

TABLE I
A COMPARISON OF THE RELATIVE SIZES OF THE LARGEST CONNECTED

CLUSTER UTILIZING OUTAGE CAPACITY CONNECTIVITY METRIC.

Cout = 2 Cout = 1.5 Cout = 1
Pout = 0.01 Pout = 0.01 Pout = 0.02

1× 1 1.5% 2% 7%
HYBRID 12% 31.5% 90.5%

2× 2 90.5% 94% 98%



on the choice of connectivity parameters and the specific topol-
ogy of the network. Additionally based on our results, we antic-
ipate that equipping more mobile nodes with multiple antennas
improves the connectivity of an ad-hoc network for any given
topology and set of parameters.

V. CONCLUSION

We studied the problem of connectivity in fading wireless
ad-hoc networks. We defined a probabilistic metric of connec-
tivity based on the capacity of MIMO channels. We argued
that our connectivity metric is more sophisticated than the pre-
viously proposed connectivity metrics such as signal strength
due to the fact that it captures the time-varying fading, trans-
mission power, and multiple antenna characteristics of wireless
nodes. Our results showed that the use of multiple antenna mo-
bile nodes improves the connectivity of ad-hoc networks.
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