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Abstract— In this paper, we present an analytical study for the
Gilbert loss model describing temporally correlated loss observed
in the Internet and other communication systems. We obtain
closed-form solutions describing transient and steady-state behav-
ior of the model. Additionally starting from recursive equations
of the Gilbert loss model, we derive closed-form solutions for ar-
rival and loss patterns of the systems governed by the model. We
show that utilizing our model yields to a lower complexity com-
pare to the existing recursive models, attracting special attention
of many different wired and wireless networking applications re-
lying on such a model.

Index Terms—Temporally Correlated Loss, Burst Loss, Markov
Chain, Gilbert Loss Model, Statistical Guarantee of QoS.

I. INTRODUCTION

SINCE the introduction of the so-called Gilbert model [4], it
has been utilized to characterize the loss behavior of both

wired and wireless communication systems. [2], [5], [6], and
[10] are among many examples of the literature work utilizing
the Gilbert loss model and its generalized multi-state models
in wireless channels and networks. The model has also been
in wide spread use in the literature of transport and error cor-
recting computer communication systems. [1], [3], [7], [8], and
[9] are among the examples of communication networks liter-
ature work suggesting utilization of the Gilbert loss model to
capture temporally correlated loss in the Internet. The latter
set of articles have all relied on the Gilbert model to introduce
Forward Error Correction (FEC) techniques within the context
of real-time media applications as well as reliable data trans-
fer over multicast IP networks. Due to lack of an analytical
model, these and many other literature articles have relied on
employing dynamic programming techniques to solve recursive
equations of the Gilbert loss model describing arrival and loss
probabilities of the underlying system at the bit or packet level.
In this article, we provide an analysis yielding to the introduc-
tion of closed-form solutions for the Gilbert loss model. Rely-
ing on the results of our analysis, we also propose a numerical
algorithm with a significantly lower complexity than that of re-
cursive methods to calculate arrival and loss probabilities of the
system. Despite the fact that we refer to packet loss for the most
part of this article, our results are nevertheless valid for bit loss
as well.

An outline of the paper follows. In Section II, we obtain a
closed-form solution for the time series representing state prob-
abilities of the two-state Gilbert model along with the steady-
state values of those time series. In Section III, we start from the

describing recursive equations of the model to reach a closed-
form solution expressing arrival and loss patterns of systems
governed by the model. In this section, we also provide an anal-
ysis of complexity for our resulting method and compare it with
the existing recursive methods. In Section IV, we numerically
verify that the results of our closed-form solution match the re-
sults of the recursive solution. Finally, we conclude the paper
in Section V.

II. THE TWO-STATE GILBERT LOSS MODEL

A. General Description

In this section, we briefly describe the two-state Gilbert loss
model. As pointed out in [7], [9], and other articles, Internet
and many other communication systems loss typically undergo
burst loss representing temporally correlated loss. The Gilbert
model provides an elegant mathematical model to capture the
loss behavior of such systems. It is classified as an irreducible
nonnull recurrent homogeneous discrete-time Markov chain.
The transient and steady-state behavior of the Gilbert model
can, hence, be studied using available time and frequency do-
main tools for such chains. In the Gilbert model, packet loss
is described by a two-state model as illustrated in Fig. 1. The
first state

�
known as the GOOD state represents the receipt of

a packet while the other state � known as the BAD state repre-
sents the loss of a packet. While the GOOD state introduces a
probability ������� of staying in the GOOD state and 	�
����
of transitioning to the BAD state, the BAD state introduces a
probability ��
���� of staying in the BAD state and 	�
���
 of
transitioning to the GOOD state.
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Fig. 1. The two-state Gilbert loss model with the state transition probabilities�������
and
�������

for
�������

and
��� �"!

.

B. Analysis of the State Probabilities

We start our analysis from the describing equations of the
state probabilities of the Gilbert model. While the analysis of
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this section is standard [11], it is repeated for completeness.
From Fig. 1, one can relate the probabilities of finding the sys-
tem in the GOOD state #%$ & '�	)( and the BAD state *+$ & '�	)( at
instant &,'-	 of the discrete time to their counter parts #%$ &.( and*+$ &.( at instant & . The describing difference equations are given
by #.$ &�'�	/(0�1�2#%$ &.(3'546	�
7�98:*+$ &.(*+$ &;'5	)(<�04=	�
7��8>#.$ &.(?'�� *+$ &.( (1)

Next, we make the observation that at any instant of discrete
time & , the property #%$ &.(@'A*+$ &.(B�DC�E%FG$ &.( holds with C9E%F+$ &.(
indicating the unit step function. The latter observation is true
due to the fact that at any instant of discrete time, the system
is either in the GOOD or the BAD state implying the sum of
two probabilities is one. Taking z-transform from both sides of
the system of equations above, we carry the problem into the
frequency domain as

FH 4 � 4JI?8�
7#.$ K+(L8M�N� � 4JI?8:'546	�
7��8%� 4OIP8FH 4J� 4OIP8Q
R*+$ K+(L8S�T46	U
7�%8 � 4OIP8�'���� 4OIP8 (2)

While
� 4JI?8 and � 4OIP8 in Equation (2)denote the z-transforms of#%$ &.( and *+$ &.( series, #%$ KG( and *+$ K+( indicate the initial values of#%$ &.( and *G$ &.( series respectively. Solving the set of above equa-

tions relying on substitution and partial-fraction expansion, we
obtain

� 4OIP8V� WLW FXE>Y[ZW]\ E>^PE_Y[Z W FXE H Z ' W`\ E@^[E>Y[Zbadc e6fgE W FXE>Y[ZW]\ E>^PE>Y[Z W FhE W ^+i.Y_E%F6Z H Z��4JI?8M� WLW FhE>^+ZW]\ E>^PE_Y[Z W FXE H Z ' W`\ E@^[E>Y[Zbadc e6fgE W FXE>Y[ZW]\ E>^PE>Y[Z W FhE W ^+i.Y_E%F6Z H Z
(3)

Extracting inverse z-transforms from equations of
� 4JI?8 and��4JI?8 yields the following time series for the probabilities of

finding the system in the GOOD state and the BAD state in
terms of state transition probabilities.

#.$ &.( � W FhE_Y[ZW]\ E>^PE_YPZ C E�F $ &.(' W`\ E@^[E>Y[Zbadc e6fdE W FXE>Y[ZW]\ E>^PE_Y[Z 4b��'j�k
N	d8=lmC9E%FG$ &.(
*+$ &.( � W FhE>^+ZW]\ E>^PE_YPZ C:E�Fg$ &.('nW`\ E@^[E>Y[ZJo6c e6fdE W FXE@^gZW]\ E>^PE_YPZ 4L�p'��q
�	g8=l�C E�F $ &.(

(4)

We make note of the fact that Ksrt�R'u�vr0w and hencex ��'N�7
�	 x rD	 implying convergence of the series. We also
note that at instant &R�TK the values of the series #.$ &.( and *G$ &.(
from the above equations match their initial values #%$ KG( and *G$ KG(
respectively.

At the end of this section, we note that steady-state values of
the time series can be derived relying on the Final Value Theo-
rem of the z-transform theory.

#[y6y7�vz`{]| Hh} F 4=	�
jI?8 � 4JI?8k� FXE>Y
\ E@^PE_Y*/y=y7�vz`{`| HX} F 4=	~
�I?8=��4JI?8"� FXE@^
\ E>^PE>Y

(5)

III. CLOSED-FORM ARRIVAL AND LOSS PATTERNS

While a review of the literature work reveals various recur-
sive equations describing the behavior of the communication
systems under the Gilbert loss model, to the best of our knowl-
edge there is no study describing the loss behavior with closed-
form equations. Consistent with the proposed model of [9], it is

observed from Fig. 1 that the recursive equations of the Gilbert
loss model describing the probability of receiving � packets
from C transmitted packets �;4LC��6�38 are given by

�;4JC9���>� � 8����;4JC�
N	��6��
�	[� � 8��'��;4JC�
N	��6��
�	[����8/4=	�
��98�;4JC9���>����8M���;4JC�
N	��6�@� � 8/4=	�
7�%89'��;4JC�
�	[�6�@���,8���;4JC9���?8 ���;4JC9���>� � 8�'��;4JC9���>����8
(6)

where �;4LC��6�@� � 8 and �;4JC9���>����8 are the probabilities of receiv-
ing � packets from C transmitted packets and winding up in the
GOOD state and the BAD state respectively. The describing
initial conditions are given by

�;4L�@��K_� � 8���K�;4L�@�6�@���,8M��K�;4L�@�6�@� � 8V�v�%�Q#%$ KG(?'�4=	�
��98�� W � E%F6Z *+$ K+(�;4L�@��K_���,8<��46	�
���8�� W � E%F6Z #%$ K+(�'�� � *+$ K+(
(7)

where C9�������P	���w����_�/�/��� � , C��T� , and #%$ KG( , *G$ KG( are the prob-
abilities that the system is initially in the GOOD state and the
BAD state respectively.

Starting from the initial conditions and continuing on with
the assumption that C����"'�I , we use the set of iterative
equations (6) to derive the following lemmas.

Lemma � :4J�38 The closed-form of equation �;4L��'5	����>� � 8 is given by

�;4L��'�	[�6�@� � 8��5���%� E%F 4=	�
��98)46	U
7�%8@#%$ K+('R� � E \ 4=	U
��98)$ �%��'54J��
N	d8)46	�
7��8)4=	~
���8�(P*G$ KG(
(8)4O*)8 The closed-form of equation �;4L��'�	[�6�@���,8 is given by

�;4L��'�	[�6�@���,8��-�%�~46	U
���8>#%$ KG('R�%� E%F 46	�
7��8)4=	~
���8%*+$ K+( (9)

Lemma � :4J�38 The closed-form of equation �;4J�B'�	����U
R	�� � 8 is given by

�;4L��'�	[�6�2
N	�� � 8��� � E@� 4=	�
��98Q4=	�
7��8��  F¡]¢ e�£ F ¡�¤ £ � E�F¡ i9F ¤ 4L�p��8 FhE ¡ $`4=	�
��98Q46	U
7�%8�( ¡�Q#%$ K+( ' �%� E>¥ 4=	~
7�98��  \¡]¢ e £ \ ¡�¤ £ � E \¡�¤ 4L�p��8 \ E ¡ $`4=	�
��98Q46	U
7�%8�( ¡�¦*G$ KG(
(10)

4O*)8 The closed-form of equation �;4L�~'�	�����
R	[����8 is given by

�;4J��'5	����2
�	[���,8��� � E \ 4=	~
���89�  F¡`¢ e £ F ¡§¤ £ � E%F¡"¤ 4J�p�%8 FXE ¡ $`4=	�
��98Q4=	�
7��8�( ¡�Q#.$ K+( ' �%� E@� 46	�
7��8Q4=	�
7�%89�  F¡`¢ e £ \¡ i�F ¤ £ � E \¡"¤ 4J�p�%8 FXE ¡ $]46	�
7��8�4=	�
7��8�( ¡�¦*+$ K+(
(11)
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Lemma ¨ :4O�?8 The closed-form of equation �;4J�m'�w3�6�@� � 8 is given by

�;4J��'�w3���>� � 8���%� E \ 46	�
7�98�4=	�
7�%8��  F¡`¢ e £ F ¡�¤ £ �¡ i�F ¤ 4L�p��8 FhE ¡ $`4=	~
7�98�4=	�
7�%8�( ¡�Q#%$ KG( ' �.� E.� 4=	�
��98��  \¡`¢ e £ \ ¡�¤ £ � E%F¡"¤ 4J�p�%8 \ E ¡ $`4=	�
��98�46	�
���8�( ¡�¦*+$ K+(
(12)

4§*)8 The closed-form of equation �;4L��'�w3���>����8 is given by

�;4L��'�w��6�@���,8���.� E�F 4=	�
7�%89�  F¡]¢ e £ F ¡�¤ £ � ¡=¤ 4L�p��8 FhE ¡ $]46	�
7�98�4=	U
7�%8�( ¡�Q#%$ K+( ' �.� E \ 4=	�
��98Q46	�
���8��  F¡]¢ e £ \¡ i9F ¤ £ � E�F¡�¤ 4L�p��8 FhE ¡ $`4=	~
7�98�4=	�
7�%8�( ¡�¦*+$ KG(
(13)

Proof: The proof of all of the lemmas is based on mathematical
induction utilizing recursive equation set (6). In case of Lemma	[©`4O�?8 , we verify that �;4L��'A	����>� � 8 holds assuming induction
assumptions �;4L�@�6��
�	�� � 8 and �;4L�@�6�;
A	����,8 hold. In case
of Lemma 	[©`4§*)8 , we verify that �;4J��'�	����>����8 holds given the
initial conditions �;4J�>���>� � 8 and �;4L�@�6�@���,8 . In case of Lemmaw�©`4O�?8 , we verify that �;4J��'N	����m
�	�� � 8 holds assuming induc-
tion assumptions �;4J�>����
-w�� � 8 and �;4L�@�6��
Nw�����8 hold. In
case of Lemma w3©ª4O*)8 , we verify that �;4J�2'A	[�6�,
5	�����8 holds
given the results of Lemma 	�©ª4J�38 and 	[©`4§*)8 . In case of Lemma�_©`4O�?8 , we verify that �;4L��'-w3���>� � 8 holds assuming induction
assumptions �;4J�¦'�	����¦
�	�� � 8 and �;4L�«'�	[�6�¬
­	�����8 hold. In
case of Lemma ��©ª4O*/8 , we verify that �;4L�¬'7w3���>����8 holds given
the results of the Lemma w3©ª4J�38 and w3©ª4O*)8 . The verification pro-
cess is as follows.

Expanding summation terms of the right hand side of
equation set (8), (9), (10), (11), (12), and (13) while relying on
algebraic properties £L® ¡O¤ ' £m®¡ i9F ¤ � £L® i9F¡ i�F ¤ and £J®e ¤ � £L®® ¤ �¯	 ,we observe that the closed-form expressions for the right hand
side of equation sets (8), (9), (10), (11), (12), and (13) are
reduced to their left hand side counterparts. QED

We now generalize Lemma � for a fixed I as

Lemma °�'�� :4O�?8 The closed-form of equation �;4J�m'�I_���>� � 8 is given by

�;4J��'�I_���>� � 8"��.� E H 46	�
7�98�4=	�
7�%8��  H E%F¡`¢ e"£ H E%F¡ ¤ £ �¡ i9F ¤ 4J�p�%8 H E�FXE ¡ $`4=	�
��98Q4=	�
7��8�( ¡�Q#.$ K+( ' �%� E H E�F 4=	U
��98��  H¡`¢ e £ H ¡§¤ £ � E%F¡"¤ 4J�p�%8 H E ¡ $`4=	�
��98Q46	U
���8�( ¡�¦*+$ K+( I;��	«�3� ��Im'�	
(14)

4O*)8 The closed-form of equation �;4L��'�I>�6�@���,8 is given by

�;4J��'�I_���>����8k��%� E H i9F 46	�
���89�  H E%F¡`¢ e £ H E%F¡ ¤ £ � ¡=¤ 4L�p��8 H E�FXE ¡ $]46	�
7��8Q4=	�
7�%8�( ¡�Q#.$ K+( ' �%� E H 4=	�
��98Q4=	~
���89�  H E%F¡`¢ e £ H¡ i9F ¤ £ � E%F¡�¤ 4L�p��8 H E%FhE ¡ $`4=	�
��98Q46	U
7�%8�( ¡�¦*+$ K+( Ip�±	��3���-I
(15)

Proof: The proof is based on mathematical induction. First,
we verify that �;4L��'±I_���>� � 8 satisfies the following equality
assuming induction assumptions �;4L�;'�I 
�	��6� 
±	[� � 8 and�;4L��'�I�
N	��6��
�	[����8 hold.

�;4L��'�I>�6�@� � 8�� �;4L��'�I�
N	��6��
�	[� � 8@�'��;4J��'�I�
�	[�6�2
N	�����8�46	U
7��8 (16)

Expanding summation terms of the right hand side of Equation
(16) while relying on algebraic properties £ ® ¡O¤ ' £ ®¡ i9F ¤ � £ ® i�F¡ i9F ¤
and £ ®e ¤ � £ ®® ¤ �v	 , we observe that the closed-form expres-
sions for the right hand side of Equation (16) can be reduced to
its left hand side as shown below.

�;4L�m'�I�
N	����2
�	[� � 8@�'��;4L��'�I�
N	����2
N	����,8Q4=	�
��98q��%� E H 46	�
7�98«4=	�
7�%89�  H E%F¡`¢ e £ H E%F¡�¤ $ £ � E%F¡"¤ ' £ � E�F¡ i9F ¤ (4J�p�%8 H E�FXE ¡ $`4=	�
��98Q4=	�
7��8�( ¡�Q#%$ KG( ' �%� E H E�F 4=	�
��98��
£ He ¤ £ � E�Fe ¤ 4L�p��8 H'   H¡`¢ FU£ H ¡�¤ $ £ � E \¡ E%F ¤ ' £ � E \¡�¤ (4L�p��8 H E ¡ $]46	�
7�98�4=	�
7�%8�( ¡�¦*+$ K+(���;4L��'�I>�6�@� � 8 I;�A	��3� �NI�'�w

(17)

Next, we verify that �;4L�7'²I_���>����8 satisfies the following
equality given the expressions of �;4J�j'�I�
³	��6�@� � 8 and�;4L��'�I�
N	��6�@���,8 from Lemma I .

�;4J��'�I_���>����8�� �;4J��'�I�
�	[�6�@� � 8Q46	�
���8'��;4L��'�I�
N	����>����8@� (18)

Expanding summation terms of the right hand side of Equation
(18) while relying on algebraic properties £ ® ¡O¤ ' £ ®¡ i9F ¤ � £ ® i�F¡ i9F ¤
and £O®e ¤ � £L®® ¤ �v	 , we observe that the closed-form expres-
sions for the right hand side of Equation (18) can be reduced to
its left hand side as shown below.

�;4L��'�I�
N	����>� � 8�4=	�
7�%8'��;4L��'�I�
N	����>����8@�²��.� E H i9F 4=	�
7��89�
£ H E%Fe ¤ £ �e ¤ 4L�p��8 H E%F'   H E \¡`¢ F £ � ¡�¤ $ £ H E \¡ E%F ¤ ' £ H E \¡ ¤ (4L�p��8 H E%FhE ¡ $`4=	~
7�98�4=	�
7�%8�( ¡' £ �H E�F ¤ $`4=	U
��98Q46	�
���8�( H E%F�Q#.$ K+( ' �%� E H 46	�
7��8Q4=	�
7�%8��  H E \¡`¢ e"£ � E%F¡�¤ $ £ H E%F¡�¤ ' £ H E%F¡ i9F ¤ (4L�p��8 H E�FXE ¡ $]46	U
��98Q4=	�
7��8�( ¡' £ � E%FH E%F ¤ £ H E%FH E%F ¤ $`4=	�
��98Q46	�
���8�( H E%F�¦*+$ K+(���;4L��'�I>�6�@���,8 Ip��wB�3���-I

(19)
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This concludes the proof. QED

Having proven Lemma IA'�	 , we now state our main
theorem.

Theorem 1:
For ´@�@��I,���[	[��w��������/��� �4O�?8 the closed-form expression for receiving exactly � packets
from �p'�I transmitted packets and winding up in the GOOD
state under the Gilbert loss model is given by Equation (14),
and4§*)8 the closed-form expression for receiving exactly � packets
from ��'TI transmitted packets and winding up in the BAD
state under the Gilbert loss model is given by (15).
Proof: First we note that Theorem 1 is generalizing LemmaI�'A	 by claiming the accuracy of Equation (14) and Equation
(15) for variables � and I rather than a variable � and a fixed
parameter I . The proof, hence, has to investigate two cases and
is based on mathematical induction. In both cases the objective
is to prove that Equation (16) and Equation (18) hold.

The first case considers the proof for a fixed I , showing that
Equation (16) and Equation (18) hold for � assuming they hold
for �m
R	 . We note that the entire proof of this case matches the
proof of Lemma Im'�	 .

The second case considers the proof for a fixed � , showing
that Equation (16) and Equation (18) hold for I assuming they
hold for I 
T	 . We note that the closed-form expression for�;4J��'±I�
T	�����
�	�� � 8 and �;4L� '±I 
T	[�6�k
T	�����8 can be
reached considering the proof of the first case above. The
closed-form expression for �;4L�7'µI7
²	����7
D	[� � 8 can be
obtained as the result of replacing � by ��
-	 in Equation (14).
Likewise, the closed-form expression for �;4J��' IQ
�	[�6��
"	�����8
can be obtained as the result of replacing � by �k
u	 in and
Equation (15). We also note that the closed-form expression
for �;4L��'�I�
-	��6�@� � 8 and �;4J��'�I2
-	[�6�@����8 can be reached
considering induction assumption. The closed-form expression
for �;4J��'qI¦
�	��6�@� � 8 can be obtained as the result of replacingI by I�
¶	 in Equation (14). Likewise, the closed-form
expression for �;4L�m'�I�
N	��6�@���,8 can be obtained as the result
of replacing I by I 
u	 in Equation (15). Having explained
the reasoning based on which the closed-form expressions of�;4J�%',I:
;	��6��
;	�� � 8 , �;4J�%',I:
;	��6��
;	�����8 , �;4L��',I�
;	[�6�@� � 8 ,
and �;4L�~'RI>�6��
j	[����8 can be extracted, reaching the left hand
side of Equation (16) and Equation (18) from the right hand
side counterparts is the same way described in Equation (17)
and Equation (19) as a part of the proof of Lemma I�'T	 .
QED

As an important consideration we can accurately replace the
initial values of the time series #%$ K+( and *G$ KG( in Equation (14)
and Equation (15) with their steady-state values # y6y and * y6y
from Equation (5) assuming an arbitrarily far start instant of
time for the Markov chain of Fig. 1.

We end this section by discussing the application of our re-
sults in error correcting systems. For a system undergoing burst
loss, an error correcting system typically requires to rely on a
method of calculating the smallest number of required trans-

mitted packets C in order to guarantee the receipt of at least �
packets with a probability · or better.

Assuming C¸���k'uI , imposing a practical upper bound
of � on the value of I , and utilizing the fact that for an
arbitrary probability model �;4LC��6�38 indicating the probability
of receiving exactly � packets from C transmitted packets, the
probability of receiving at least � packets from C transmitted
packets is given by ¹­4LC��6�38D�  �º¡]¢ � �;4JC9��»�8 , the following
algebraic placement algorithm with a time complexity of ¼ 4L�38
can be used to accomplish the task.

Statistical Guarantee for Packet Arrival Algorithm½-¾.¿gÀ 4OI���	ÂÁ ¿ ��
N	d8Q�
– Calculate �;4L��'TI_���?8­�Ã�;4L��'�I>�6�@� � 8B'T�;4J��'I_���>����8 from Equation (14) and Equation (15).
– If ¹­4L��'�I>�6�38¬�N· Break.
� /* ¾.¿gÀ 4JI��u	ÂÁ ¿ �2
-	d8 */½ Report the number of required packets, C��5��'�I .

Comparing time complexity of the algorithm with that of
a dynamic programming algorithm ¼�4J� \ 8 as proposed in [8],
we observe that our algorithm is a much better performing ap-
proach.

Additionally, we make note of the fact that our proposed
method is of special interest to error correcting systems rely-
ing on an apriori estimate of loss.

IV. NUMERICAL VERIFICATION

In this section, we numerically verify that the results of the
closed-form solutions of 14 and 15 for the number of arrived
packets under the Gilbert model match the results of the recur-
sive solutions of 16 and 18. The simulation results span over
two different ranges of parameter � . While Fig. 2 and Fig. 3
show our simulation results for the range ����$ w3��	dÄ+( , Fig. 4 and
Fig. 5 show the results for the range ���-$ Å�K_�/	dK�K+( . We note
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that the experiment results illustrated above are obtained for
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the choice of parameters �­��K_© Ä[Ä , ����K�© �[Ä , #.$ K+(%�5K_© Ä�Å , and*+$ K+(@��K�© Ö_	 . As observed from the figures, the packet arrival re-
sults of closed-form and iterative solutions exactly match each
other verifying the accuracy of our closed-form solution results.

V. CONCLUSION AND FUTURE WORK

In this paper, we obtained a closed-form solution for the time
series representing state probabilities of the two-state Gilbert
model along with the steady-state values of those time series. In
addition, we obtained closed-form solutions describing packet
arrival and loss patterns of the systems governed by the Gilbert
loss model. Finally, we integrated our results within the con-
text of error correcting communication systems and numeri-
cally verified the accuracy of our results.

We are currently working on generalizing our approach for
multi-state Markov chains and anticipate introducing closed-
form solutions for such chains as the result of our future work.
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