Utilizing Neural Networks to Reduce Packet Loss in Self-Similar Teletraffic Patterns
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Abstract— Reducing packet loss and increasing overall effi-
ciency in multiple source queuing systems is one of the most im-
portant issues in the design of traffic control algorithms. On the
other hand, the other important issue in such systems is to pro-
vide every individual source with the ability to take advantage
of a fair portion of the shared available resources such as buffer
space or server bandwidth. In this paper a novel technique for re-
ducing packet loss in a class of queuing systems with self-similar
traffic patterns is introduced. The technique takes advantage of
the modeling power of neural networks to offer a dynamic buffer
management scheme capable of efficiently addressing the trade off
between packet loss and fairness issues.

Index Terms— Perceptron Neural Networks, Teletraffic Mod-
eling, Self-Similarity, Buffer Management, Server Scheduling,
Packet Loss, Dynamic Neural Sharing.

I. INTRODUCTION

Analysis of traffic data from networks and services such as
Ethernet LANSs [14], Variable Bit Rate (VBR) video [3], ISDN
traffic [10], and Common Channel Signaling Network (CCNS)
[4] have all convincingly demonstrated the presence of features
such as long range dependence, slowly decaying variances, and
heavy-tailed distributions. These features are best described
within the context of second-order self-similarity and fractal
theory approach.

Neural networks are a class of nonlinear systems capable of
learning and performing tasks accomplished by other systems.
Their broad range of applications includes speech and signal
processing, pattern recognition, and system modeling. Systems
with neural network building blocks are robust in the sense that
occurrence of small errors in the systems does not interfere with
the proper operation of the system. This characteristic of neural
networks makes them quite suitable for traffic modeling. Con-
sidering this characteristic in [20], we utilized neural networks
in modeling self-similar traffic patterns.

Reducing packet loss in queuing systems is one of the most
important issues in the design of traffic control algorithms.
Reducing packet loss in the queuing systems is equivalent to
improving efficiency and is usually considered as a perfor-
mance evaluation tool. For systems consisting of more than one
source, there is another major issue worth considering known
as fairness. Fairness provides each individual source with the
ability to take advantage of a fair portion of the shared available
resources such as buffer space or server bandwidth. The combi-
nation of buffer management and scheduling algorithms speci-
fies the fairness and the efficiency of a multiple source queuing
system.
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In this study, two different scheduling algorithms are con-
sidered. These are namely Fixed Time Division Multiplexing
(FTDM) and Statistical Time Division Multiplexing (STDM).
While in FTDM each source takes advantage of a fair portion of
the server bandwidth also known as the service rate and there is
no bandwidth sharing, in STDM the unused portion of the band-
width assigned to each source might be used to service packets
generated by other sources. While FTDM is typically used for
ATM switching systems with a number of Virtual Paths, STDM
is typically used in ATM queuing systems with a number of Vir-
tual Channels.

There are a number of different buffer management algo-
rithms studied in the literature as described in [15], [8], [11],
[12], and [7]. These are namely Complete Sharing (CS) with no
enforced capacity allocation mechanism, Complete Partitioning
(CP) with equal partitioning of the available buffer capacity,
and Partial Sharing (PS) with dedicated portions of the buffer
space assigned to each source as well as a common shared por-
tion. A dynamic buffer management algorithm is classified un-
der PS methods with the ability to adjust the buffer size of each
source dynamically. More specifically, a dynamic buffer man-
agement algorithm can address the trade off between fairness
and efficiency by assigning a fair portion of the buffer space to
each source with the ability to adjust the buffer space partitions
according to system conditions.

The algorithm introduced in this paper is, in fact, a dynamic
buffer management algorithm. It is capable of improving the
loss performance of Static Partial Sharing (SPS) [15] while con-
sidering fairness versus loss trade off. The algorithm relies on
the power of neural networks to model traffic patterns of indi-
vidual sources in multiple source queuing systems and dynam-
ically adjust the portion of the buffer space assigned to each
source according to the corresponding traffic generation pat-
tern. Relying on the prediction power of neural networks, the
technique can outperform other threshold algorithms studied in
the literature.

An outline of the paper follows. In Section II, we briefly
review neural network modeling of teletraffic patterns. In Sec-
tion 111, we discuss the application of our modeling scheme in
packet loss reduction of multiple source queuing systems. We
also compare the performance of our proposed Dynamic Neural
Sharing (DNS) scheme with other buffer management schemes.
Finally, we conclude the paper in Section IV.



Il. SELF-SIMILAR TRAFFIC MODELING
A. Self-Similar Traffic

In [20], we provide an analytical framework for self-
similarity as a statistical property of the time series. Here, we
provide a brief summary of that discussion. Suppose X =
(X¢ :t =0,1,2,...) is a covariance stationary stochastic pro-
cess with mean p, variance o2, and autocorrelation function
R(n), n > 0. Particularly, assume the autocorrelation func-
tion of X has the form

R(n) ~kn=?, as n — 0o (1)

where 0 < B < 1 and the constant k; is a finite positive in-
tegers. For each m = 1,2,3,... let X(™ = (x{™ : n =
1,2, 3, ...) be the covariance stationary time series with corre-
sponding autocorrelation function R("™) obtained from averag-
ing the original series X over the non-overlapping time periods
of size m, i.e., for each m = 1,2,3,... the moving average
X (m) js given by

1

The process X is called exactly second-order self-similar with
the self-similarity parameter H = 1 — (/2 if the corre-
sponding X (™ has the same correlation function as X, i.e.,
RM)(n) = R(n) forallm = 1,2,3,...andn = 1,2,3,....
X is called asymptotically second-order self-similar with self-
similarity parameter H = 1 — 3/2 if R("™) (n) asymptotically
approaches R(n) given by (1), for large m and n. Hence, if
the correlation functions of the aggregated processes X (™) are
the same as the correlation functions of X or approach asymp-
totically the correlation functions of X, then X is called ex-
actly or asymptotically second-order self-similar. Fractal Gaus-
sian Noise (FGN) is a good example of an exactly self-similar
process with self-similarity parameter H, 1/2 < H < 1.
Fractional Arima processes with parameters (p, d, ¢) such that
0 < d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2.

Mathematically, self-similarity manifests itself in a number

of ways.

« The variance of sample mean decreases more slowly than
the reciprocal of the sample size. This is called slowly de-
caying variance property with the meaning var(X (™)) ~
kam(=P) asm — cowith0 < 8 < 1.

« The autocorrelations decay hyperbolically rather than ex-
ponentially fast, implying a non-summable autocorrela-
tion function )~ R(n) = oo. This is called long range
dependence property.

« The spectral density f(.) obeys a power-law near the ori-
gin. This is the concept of 1/f noise with the meaning
FA) =k3d 7asA s oofor0<y<landy=1-0.

The most important feature of self-similar processes is seem-
ingly the fact that their aggregated processes X (") possess
a non-degenerate correlation function as m — oo. This is
completely different from typical packet traffic models previ-
ously considered in the literature, all of which have the property
that their aggregated processes X (™ tend to second order pure
noise, i.e., R(™ — 0 asm — oo.

B. Neural Network Modeling of Self-Similar Traffic

In [20], we utilized the proposed methods of [16], [6], and
[17] to describe how a fixed structure feedforward perceptron
neural network with back propagation learning algorithm can
be used to model aggregated self-similar traffic patterns as an
alternative to stochastic and chaotic systems approaches pro-
posed in [13], [5], [2], and [1]. We note that although the em-
phasis of our work is on self-similar traffic modeling, our pro-
posed neural network modeling approach can nevertheless be
used for any traffic pattern independently of self-similarity. In
what follows we briefly review the neural network modeling
technique of [20] in which an elegant approach capable of cop-
ing with the fractal properties of the aggregated traffic is intro-
duced. The approach provides an attractive solution for traffic
modeling and has the advantage of simplicity compared to the
previously proposed approaches namely stochastic and deter-
ministic chaotic map modeling. The promise of neural network
modeling approach is to replace the analytical difficulties en-
countered in the other modeling approaches with a straightfor-
ward computational algorithm. As opposed to the other model-
ing approaches, neural network modeling does not investigate
identification of appropriate maps neither does it introduce a
parameter describing the fractal nature of traffic. It, hence,
need not cope with the complexity of estimating Hurst parame-
ter and/or fractal dimensions. The proposed neural networking
approach of this article simply takes advantage of using a fixed
structure nonlinear system with a well defined analytical model
that is able to predict a traffic pattern after learning the dynam-
ics of the pattern through the use of information available in
a number of traffic samples. Interestingly and as proposed by
Gomes et al. [9], neural networks can also be utilized as appro-
priate estimators of the Hurst parameter.

The fixed structure, fully connected, feedforward perceptron
neural network utilized for the task of modeling in our study
consists of an input layer with eight neurons, three hidden lay-
ers with twenty neurons in each layer, and an output layer with
one neuron. The number of neurons in each layer reflect our
best practical findings leading to a balance between complex-
ity and accuracy. Fig. 1 illustrates the structure of the neural
network. The sigmoid transfer function defined below

fe)=QQ+e )7 ©)

is utilized to generate the output of each neuron from its com-
bined input. The output of each neuron is connected to the input
of all of the neurons in the layer above after being multiplied
by a weighting function. The specific neural network used for
the task of modeling relies on the so-called back propagation
learning algorithm described in [20], [16] and the references
therein. In a nutshell, the back propagation learning algorithm
(BPA) overcomes the mismatch between the actual and the gen-
erated outputs by adjusting the weightings of interconnections
denoted by Awj;[.] in the opposite direction of the gradient vec-
tor and its momentums in order. BPA minimizes the absolute
error function E defined proportional to the square of the dif-
ference between the neural network output and the real output



as

Awj;[s] = lc.ej[s]{zs[s — 1] + k.e;[s — 1]}
——
(k+1)—th step
+ M(Awji[s]) 4
———
k—th step

In Equation (4) M, wj;[s], lc, E, e;[s], and z;[s — 1] denote the
momentum, the weighting function of the connection between
the i-th neuron in layer (s — 1) and the j-th neuron in layer s,
the learning coefficient, the absolute error function, the relative
error function of the j-th neuron in layer (s), and the present
output state of the i-th neuron in layer (s — 1) respectively. In
the adjustment process, BPA propagates the output layer error
to the preceding layer via the existing connections and repeats
the operation until reaching the input layer. In other words,
output error moves from the output layer -just in the opposite
direction of the movement of original information- one layer at
a time until reaching the input layer.

In a typical iteration of the learning phase, the neural net-
work is provided with samples z[k — 8] through z[k — 1] of the
real traffic pattern. The difference between sample z[k] of the
real traffic pattern and the neural network output is then used to
adjust the weighting functions of the network accordingly. In
the next iteration, sample z[k — 8] of the real traffic pattern is
discarded, samples z[k — 7] through z[k] of the real traffic pat-
tern are used as the new input sample set, and sample z[k + 1]
is used as the new real traffic sample. The neural network con-
tinues processing more information in consecutive iterations of
the learning phase until the absolute error is less than a speci-
fied error bound, e. The learning phase of the perceptron neural
network is directly followed by the recalling phase when the
network output is able to follow the real traffic within the ac-
ceptable error bound, . In each iteration of the recalling phase,
the neural network independently generates the samples by dis-
carding the oldest input sample, shifting the input samples by
one, and using its output as the most recent input sample. It is
important to note that while the training and recalling phases
of our modeling scheme rely on standard feedforward and re-
current feedback methods respectively, other combinations of
training and recalling phases such as utilization of pure recur-
rent schemes are also possible. The same sequence of follow-
ing a learning phase by a recalling phase is repeated when and
if the neural network output difference exceeds the acceptable
error bound, e. The number of samples required for the training
of the neural network depends on the complexity of the traffic
pattern dynamics. The time complexity and the space complex-
ity of the back propagation algorithm are respectively O(IN)
and O(N) where N is the number of weighting functions in the
network and 7 is the number of iterations. Although the com-
plexity is typically better than the complexity of implementing
statistical approaches such as fractional ARIMA processes or
the complexity of calculating fractal dimensions such as corre-
lation dimension, wide variations of I prevent us from making a
strong claim about complexity advantage of the algorithm com-
pare to other algorithms. Nonetheless combining the straight
forward way of implementation with the analysis of complexity,
we claim that the neural network modeling approach provides

an elegant approach for the task of traffic modeling.
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Fig. 1. Fixed structure neural network used for the task of modeling.

In the following section, we apply the proposed neural net-
work modeling technique to reduce the packet loss rate of a
shared buffer in a typical multiple source system.

I1l. REDUCING PACKET L0OSS IN MULTIPLE SOURCE
SYSTEMS

Our application test bed relies on a multiple source queu-
ing system as illustrated by Fig. 2. A multiple source queu-
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Fig. 2. The structure of a multiple source queuing system.

ing system consists of a number of sources sharing an available
buffer space. The traffic pattern of each source includes the
packets generated by a number of ON-OFF chaotic maps. An
ON-OFF source model is generating traffic at a peak rate when
it is active and becomes active as soon as the state variable of
the describing chaotic map goes beyond a threshold value. The
source becomes passive as soon as the state variable goes be-
low the threshold value. We utilize double intermittency map
with the following specifications as it generates a self-similar
traffic pattern according to [5]. We select initial conditions in
the range of 2y € [0.1,0.3] along with a fixed threshold value
of d = 0.7 and parameters ¢; = 0.01, e = 0.05, m =5, ¢; =
1.73, co = 267.49 to obtain different traffic patterns for differ-
ent sources. In our experiments, we rely on the same discrete
time scales for both the neural network and the traffic generat-
ing intermittency maps. As an alternative, one may use different
threshold values with fixed initial conditions to achieve varying
traffic patterns.

We view each source and its corresponding buffer as a sepa-
rate FIFO queuing system for different combinations of buffer
management and service scheduling schemes. In our FIFO



model, there is a finite capacity buffer corresponding to each
source storing generated packets before they get transmitted.
The occupancy of each buffer is determined by the flow of the
cells from the corresponding source and the rate at which the
cells are serviced. A queue is identified by its buffer capacity,
and its server capacity. In each queue, the arrival rate is com-
pared with the service rate to determine whether the size of the
queue is increasing or decreasing as well as whether the queue
is losing cells. The model may be considered as the so-called
burst scale queuing component of an ATM queuing system with
a number of Virtual Channels (VCs) with each VVC belonging to
a traffic source as described by [18].

In order to show the performance of the modeling approach
of Section 11.B, four different buffer management scenarios are
compared together in presence of FTDM and STDM scheduling
algorithms. In the first method complete sharing mechanism is
deployed, i.e., there is only one queue for all of the sources.
The second method is a simple implementation of complete
partitioning scheme in presence of FTDM and STDM in which
the capacity of a central buffer is distributed equally among the
sources. The third method is a simple implementation of par-
tial sharing scheme that has three equal portions for the three
sources with an additional shared portion available to all of the
sources. The fourth method is the dynamic assignment of the
buffer space relying on the results obtained from the neural net-
work prediction algorithm, i.e., adjusting dedicated buffer space
of each source according to its packet generation pattern. This
is a generalization of the third method keeping the shared por-
tion size fixed and adjusting the buffer space size of each source
dynamically. The fourth method has a potential to outperform
the other buffer management algorithms as it relies on predicted
future information. It is important to mention that in case of the
last three methods, there is a separate queue for each source
storing the packets generated by that source.

In order to investigate the performance of the method, a triple
source system is used. The traffic patterns of the first, second,
and third source consist of an artificial traffic pattern generated
by 30, 40, and 50 individual double intermittency map packet
generators respectively. The traffic generated by each source is
collected and sent to the corresponding buffer in a round robin
manner. It is specially important to note that there is a differ-
ence among the number of packets generated by each source
as the result of having a different number of ON-OFF packet
generators per source. In order to evaluate the performance of
different methods, the overall as well as per source loss rate
of the system for different choices of buffer size with a fixed
service rate are compared together. The buffer space can be
shared among all of the sources or may be divided into equal
portions for individual source usage. The server bandwidth may
also be used according to FTDM or STDM scheduling mech-
anisms. Fig. 3 and Fig. 4 respectively show total packet
loss and single source packet loss rate versus normalized buffer
size diagram for the triple source queuing system in presence
of FTDM scheduling algorithm. The single source is the source
with the lowest generation rate to compare the fairness of dif-
ferent schemes. Fig. 5 and Fig. 6 show the same measures in
presence of STDM scheduling algorithm. The packetized sim-
ulation results have been obtained from an iterative algorithm
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Fig. 3. Total packet loss probability versus buffer size diagram for the triple
source queuing system using complete partitioning (CP), static partial sharing
(SPS), and dynamic neural sharing (DNS) in presence of FTDM scheduling
algorithm.
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Fig. 4. Single source packet loss rate versus buffer size diagram for the triple
source queuing system using complete partitioning (CP), static partial sharing
(SPS), and dynamic neural sharing (DNS) in presence of FTDM scheduling
algorithm.

with a total number of ten million iterations per choice of buffer
size. Applying a continuous learning algorithm, the fixed struc-
ture neural network has been able to follow the traffic pattern
within the specified error range between 20 and 30 times cover-
ing an average of fifty samples per time. It is worth mentioning
that the performance of different methods are very different as
the result of applying different methods for traffic management
of a heavily utilized system.

It is clearly observed from the figures that for both FTDM
and STDM scheduling algorithm using neural sharing scheme,
the total loss rate compared to complete partitioning scheme
as well as per source loss rate compared to complete shar-
ing and/or static partial sharing schemes are reduced. The re-
sults may be interpreted as the evidence that the neural sharing
scheme has come up with a solution in between the two extreme
cases addressing the trade off between fairness and efficiency.
Comparing the results for static partial sharing and neural dy-
namic sharing show the higher efficiency of the latter method.
This is a significant improvement compare to the other three
schemes.

We close this section by mentioning some of the practical
findings in the implementation of the algorithm. First, we
note that the learning algorithm of the perceptron neural net-
work used for the task of modeling is time consuming because
of the rich dynamics of the traffic pattern that the neural net-
work is trying to learn. Indeed, the neural network needs to
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Fig. 5. Total packet loss rate versus buffer size diagram for the triple source
queuing system using complete partitioning (CP), static partial sharing (SPS),
dynamic neural sharing (DNS), and complete sharing (CS) in presence of
STDM scheduling algorithm.
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Fig. 6. Single source packet loss rate versus buffer size diagram for the triple
source queuing system using complete partitioning (CP), static partial sharing
(SPS), dynamic neural sharing (DNS), and complete sharing (CS) in presence
of STDM scheduling algorithm.

access thousands of samples in each training period. In addi-
tion, all of the convergence results are strongly affected by the
choice of initial conditions. In practice, the initial values of
the neural network parameters play a crucial role in the con-
vergence of the algorithm. As a practical result, setting the ini-
tial values of the weighting functions of the neural network at
w;;(0) = 0.01 V4,7 yields acceptable results. Additionally,
one may set the weighting functions randomly in the order of
0.01 if facing biasing and saturation.

1V. CONCLUSION

In this paper, we studied packet loss reduction in a class of
multiple source queuing systems as an application of neural net-
work modeling of self-similar packet traffic. We modeled self-
similar traffic patterns using a fixed structure perceptron neural
network.

We used a neural-based dynamic buffer management scheme
called dynamic neural sharing to improve the loss performance
of static partial sharing buffer management algorithm while
considering fairness issue. Relying on the prediction power of
neural networks, our neural-based algorithm was able to dy-
namically adjust the buffer allocation of individual sources in
a multiple source system with a central shared or partitioned
buffer.

We also compared the performance of different buffer man-
agement schemes, namely complete sharing, complete parti-

tioning, static partial sharing, and dynamic neural sharing in
presence of different server scheduling algorithms, fixed time
division multiplexing and statistic time division multiplexing,
and concluded that our dynamic neural sharing scheme was able
to offer the best solution considering the trade off between fair-
ness and loss issues.

At the end of this paper, we would like to mention that the
results presented in our current work and previous work of [20]
point to some predictability of traffic that can be viewed as a
source of contradiction with the results presented in [19]. We
point out that besides the difference in the nature of traffic traces
obtained from artificial traffic generators and TCP traffic sim-
ulators, the key difference is that the utilized neural network
of our study represents a time-varying system considering con-
tinuous readjustment of the weighting functions where as the
results of [19] are obtained from a set of stationary models.
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