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Abstract—Router Assisted congestion control Protocols (RAPs) An example of the first category is eXplicit Congestion-coht

appear to be the most efficient solutions to the TCP performace
degradation issue in high Bandwidth Delay Product (BDP) net
works. Global deployment of RAPs such as XCP, VCP, and MPCP
however, has been challenging due to their need for router s
port. In this paper, we propose RAPPEP a framework for de-
ploying RAPs on potential congestion zones such as satedlitinks
that are locally utilizing the architecture of TCP Performance En-
hancement Proxy (PEP). Such a marriage allows for an immedia
deployment of RAPs without the need for global router suppot,
while still being able to take advantage of sophisticated RRs. Be-
yond the deployed congestion zone, RAPPEP is completely trs-
parent to the rest of the network including end nodes and othe
routers. Adapting from two implementations of RAPs and an im
plementation of TCP PEP (PEPSal), we implement and integrat
RAPPEP in the Linux kernel and demonstrate its performance in-
provement compared to PEPSal through emulation studies.
Index Terms— TCP PEP, XCP, VCP, MPCP, Router-Assisted
Congestion Control Protocols, High BDP, Satellite Links.

I. INTRODUCTION

Protocol (XCP) while Variable-structure Congestion-coht
Protocol (VCP) [9] and Multi-Packet Congestion-controbPr
tocol (MPCP) [10] represent examples of the second category

Since feedback needs to be encapsulated in the header of ac-
knowledgment packets, all RAPs require extra bits in th&gac
header. Such requirement in conjunction with the need to re-
ceive support from all intermediate routers introducestarp
tial deployment obstacles for RAPs.

Deviating from these pure end-to-end solutions introduced
above, TCP PEP schemes [12], [13] have emerged to improve
the end-to-end performance of TCP, where large delay, mod-
erate bandwidth links such as satellite links are in use. By
splitting an end-to-end TCP connection to multiple segsent
TCP PEP is able to isolate the satellite portion from the rest
of the network. Such splitting allows for using specially- de
signed congestion control algorithms suitable for saelinks
and thus improving end-to-end performance.

Because of being non-intrusive and immediately deployable

_Over the course of past few years, a wide variety of teclrCP PEP has been widely deployed in today’s satellite net-
niques have been proposed to combat the performance degfgrks and is currently considered to be among industry’stmos

dation of TCP in high BDP networks.

The majority ofcurrent practices. However and as discussed in Section@P, T

these proposals remain as TCP variants that concentratep®p s inefficient in comparison to RAPs due to the integrated

either adaptively tuning the parameters of Additive-lace

nature of TCP congestion controller. In essence, therevi®a t

Multiplicative-Decrease (AIMD) based on sophisticateth-co fo|d rationale for the use of TCP PEP: i) isolation of TCP-

trol algorithms [1], [2], [3], or utilizing novel congestiode-
tection mechanisms [4], [5], [6], [7]- Such techniques pres

unfriendly zone where TCP variants fail to work well, and ii)
utilization of specially designed congestion control aidons

the end-to-end nature of TCP and thus allow for an immedigigthe TCP-unfriendly zone. Intuitively, TCP PEP provides a
deployment. However, since both the efficiency and the fajgeal environment for deploying RAPs locally, which notywnl

ness are controlled by an integrated controller, they diaén
to achieve high utilization and fairness while maintainiog

facilitates the deployment of RAPs but also further impsove
the performance of TCP PEP by utilizing sophisticated RAP

persistent queue lengths and minimizing congestion-ieduccontrol algorithms.

packet drop rates.

In this paper, we propose and implement RAPPEP, a frame

To that end, RAPs [8], [9], [10], [11] are proposed to decoyyqk that deploys RAP algorithms transparently in TCP PEP.
ple fairness control from efficiency. RAPs can achieve hith Uhe transparency comes from the fact that RAPPEP requires

lization, low persistent queue length, insignificant padkes

changes to neither existing TCP PEP architecture, nor the in

rate, and sound fairness. Fundamentally, all RAPs reqllire @,qyction of new TCP options and/or transport protocols in

intermediate routers to monitor network congestion statub

the network stack. Simply put, all RAPs operate exactly &ke

derive appropriate feedback for the sender. Depending®n §anqard TCP variantin RAPPEP. Our paper makes several key
type of feedback information, RAPs can be classified into tWoyntributions with regards to both RAPs and TCP PEP. First, w

general categories: i) protocols that utilize explicitdback
(typically sending rate) and ii) those that rely on load dast

propose a framework that adapts a RAP-based implementation
within TCP PEP architecture. It removes the need for changin

(typically the ratio of demand to capacity). We refer to thstfi gi3ngard TCP options and/or introducing new transportoprot
category protocols as XFPs and the second category as LFRgs 55 [14], [15]. To the best of our knowledge, this is thet fir

This work was sponsored in part by a research grant from trenBdCom-
pany.

work on applying RAPs to TCP PEP. Second, this paper reports
on the implementation of an XFP and an LFP algorithm fol-



lowing the proposed framework. While the XFP algorithm utieut of 2n bits of information associated with a congestion level.
lizes XCP, the LFP algorithm adapts MPCP. Most importantiyyhile routers compute and distribute congestion signatita
all RAP algorithms are implemented as standard TCP flavotspackets, end nodes retrieve a congestion level by concate-
in Linux utilizing the Linux TCP pluggable congestion casitr nating a group on ECN bits together from a set of packets.
structure. This allows for the co-existence of RAPs andothBIPCP correctly handles the packet ordering and reacts to net
transport protocols. Third, the paper conducts extensipere work exceptions such as packet loss and out of ordering-deliv
imental studies comparing two RAPPEP implementations wigring. MPCP is already implemented forc {2, 3}.
raw RAPs as well as raw TCP PEP. It is our belief that an ap-As shown in Section IV, VCP does not perform well in satel-
proach such as RAPPEP can improve the appeal of RAPsliby environment and as such we only consider adapting MPCP
offering a transparent and tangible benefit that can sigmiflg algorithm for RAPPEP.
improve efficiency and fairness of TCP congestion contrerov
high BDP links. B. XFPs XCP

The rest of the paper is organized as follows. Section Il
presents the fundamentals of RAPs and TCP PEP. Section Il
presents the implementation approach of the RAPPEP. Expé\i
mental studies are presented in Section IV. Finally, weem‘eso
several conclusions in Section V.

pnlike LFPs, XFPs explicitly provide the sender with the
xt sending rate. Thus, the task of sending rate control is
loaded from the end nodes to the routers. Since all of the
XFPs provided in the literature are essentially variantx©pP,
we focus on XCP and its implementation approach in this
subsection. Initially, an XCP sender encapsulates itseotrr
Il. BACKGROUND OFRAPS AND TCP PEP cwnd, the sender perceive@l'T, and the bandwidth demands

In this section, we briefly review the key concepts of RAP® the packet header. The bandwidth demands of the sender

and TCP PEP. The implementation approach of XCP, VCP, acan be modified by routers according to the congestion status

MPCP are introduced as well. of the network and finally contain the feedback. As a result,
XCP requires the use of multiple bits in the IP header of each
A. LFPs VCP and MPCP packet. An XCP router has two separate controllers: the Effi-

. . . - ciency Controller (EC) and the Fairness Controller (FChstri
Recently, a family of LFPs including but not limited to VCP h : .
e EC computes the aggregate feedback according to the in-
MPCP, and MLCP have emerged. Fundamentally, all LFI3 bu ggreg g !

. S ut traffic rate, the persistent queue length, and the link ca
need to calculate Fhe Load Factc_)r (LF) of a link V_Vh'Ch IS e bacity. Then, the FC allocates the aggregate feedback to in-
resented as quantized feedback in a number of bits. These

. e € jfidual packets in order to achieve fairness. Notably, XCP
tocols mainly differ in two aspects: the number of quantiz
feedback bits; and the way the feedback is generated and d

es Multiplicative-Increase Additive-Increase Muligakive-
X . i . ecrease (MIMD) for efficiency and AIMD for fairness con-
ered. In this subsection, we briefly describe VCP and MPCP ( ) y
VCP regulates thewnd with different congestion control

trol. In [14], XCP is implemented in the Linux kernel with 16

. X Lo its of feedback. XCP is implemented with two components:
policies according to thg level of conglestlon in the networ CP router and XCP end host. While the XCP router is im-
Three Ievels_of congestlonllow-load, high-load, and owlo lemented as two LKMs utilizing LinuxX)disc architecture a
are mapped into two ECN bits of the 1P packe_zt hgader. AVC uilt-in Linux packet queuing and scheduling mechanisre, th
capable router computes the LF of ea_lch of its links and m ctionality of XCP end host is implemented by introducang
each LF to one of the three congestion levels. Upon arriv, :

. w TCP option.

of a data packet from a sender, each router examines the con-
gestion level of its upstream link carried in the ECN bits of
the packet and updates ECN bits only if its downstream link fs TCP PEP
more congested. Finally, the receiver signals the sendér wi TCP PEP schemes utilize network agents installed on inter-
the congestion information via acknowledgment (ACK) packnediate nodes of a network path to improve the end-to-end
ets. Consequently, VCP applies three congestion conttol pgerformance of TCP. Among the PEP solutions, the splitting
cies: Multiplicative-Increase (MI) in the low-load regioAl approach [13] appears to be the most promising, where a TCP
in the high-load region, and MD in the overload region. Theonnectionis splitinto multiple segments. While the distted
Ml region is utilized to eliminate the slow start characddd of PEP utilizes two PEP agents and splits a connection to three
TCP while Al and MD regions preserve the fairness charastersegments, the integrated PEP only deploys one PEP agent and
tics of TCP. Since VCP can only provide limited feedback ® thsplits a connection into two segments. Since we implement
sender, its efficiency and fairness characteristics arativefy RAPPEP on top of the PEPsal, an integrated PEP implemen-
impacted in moderate bandwidth high delay network opematitation, we focus on the integrated PEP in this subsectiop: Ty
scenarios. ically, a PEP agent sits at the uplink gateway of a satellite |

Multi Packet Congestion control Protocol (MPCP) is develfhe first TCP segment takes advantage of the standard TCP
oped to overcome the limitations of VCP. In MPCP, the transand is terminated at the PEP agent. The second segment origi-
mitting side can receive finer-grained congestion inforomat nates from the PEP agent and is terminated at the end receiver
without requiring the use of any additional bits in the IPdiera Notably, if the same techniques of congestion control are ap
beyond the two ECN bits. Specifically, a congestion levedis ¢ plied to all three segments, the end-to-end throughputneill
ried by a chain of: packets and each packet provides two bitse improved significantly [13]. Only the performance of the
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Fig. 1. Anillustration of the RAPPEP framework. Fig. 2. An illustration of the experimental environment.

first segment can be improved due to the fact that the senddp§ féedback to the sender. Specifically, in an end-to-eed sc
congestion window can be opened much faster because of #i&'0 the PEP agentis actually an XCP/MPCP router that mon-
early ACKs from the proxy. Thus, the PEPsal proposed to uggrs the congestion status of the satellite link and comptite
TCP Hybla [16] with local retransmission [17], selective kc '€€dback. Notably, as the initiator of the second XCP/MPCP
[18] only on the segment with the highest delay. As noted eaiegment in the PEP scenario, the PEP agent would fynctlon as
lier, the use of splitting approach allows for using speégiae- 2" XCP/MPCP sender. If the PEP agent can function as an
signed congestion control algorithms that are suitabledeel- <CP/MPCP router, the requirement of forwarding the feeétbac
lite links. can be eliminated. More specifically, the agent perceived-fe
back coming from the receiver is the same as what was com-
puted earlier at the agent since the agent isatlg router of
I1l. RAPPEP the connection. Thus, there is no need to encapsulate the nex

RAPPEP is a framework that can facilitate the integration élegdlng rate/ Ifoad f‘::Ct?r |gbthekp‘|acket Ze?dmg_ to the ;ek;:ew
RAP control algorithms with the PEP architecture. In this p&"'¢ €xtractitirom the feedback. Instead, functioning &4 o
per, we build RAPPEP on top of the PEPSal, which is an ope§1Qnder and arouter, the PEP agent can obtain the expeotied fee
source implementation of an integrated PEP. As noted earlil@aCklOC"’“Iy rather thgn rgtnevmg the feedback from an ACK.
a PEP agent has to operate as the terminator and the initigtgr "6Sull: the receiver is completely freed from handig t
of two TCP segments simultaneously while RAP implement gedback and can use any standard TCP variant allowing for
tions distribute the control functionality to both routersd end OMPatibility. Meanwhile, the limitation of the availaityl of

nodes. In order to apply RAP algorithms to PEP, RAPPEP hextra bits in the IP packet header can be removed as well ben-
to deal with following challenges: ’ efiting both XFP and LFP. While LFPs is allowed to use the
' accurate LF for the purpose of control, XFP can use any num-

1) The co-existence of both standard TCP congestion cqn- . o
trol algorithms and new RAP algorithms. A TCP PE er of bits to store the feedback. Consequently, RAPPEP-is im

agent has to be able to adjustnd using RAP algorithms plemented as a new standard TCP congestion control algorith

L . . utilizing the Linux Pluggable congestion control architee.
for a flow initiated from the agent, while processing data 9 99 9

packets and replying with ACK packets using the stan- _
dard TCP algorithm for a flow terminated at the agent. B- RAPPEP Implementation

2) The distribution of RAP functionality. While applying We implement XCP and MPCP algorithms in RAPPEP as
RAP algorithms, the TCP PEP agent has to function &&€kMs. Specifically, RAPPEP consists of two components:

both end nodes and routers simultaneously. RAPPEP Traffic Monitor (RTM) and RAPPEP Controller (RC).
3) The implementation of a RAP algorithm on top of PEPThe RTM utilizesnet filter to monitor the traffic rate and the
sal. persistent queue length. In contrast to the raw MPCP and XCP

implementations, RTM monitors the outgoing traffic rate in-

. stead of input traffic rate. Note that RTM can serve for both
A. RAPPEP Overview XCP PEP and MPCP PEP. While RTM outputs the spare band-
Fig. 1 illustrates the architecture of the RAPPEP. Note thaidth for XCP PEP, the raw LF is output for MPCP PEP. The
we implement both XCP and MPCP algorithms in RAPPEP, wutput of RTM is stored locally in a shared buffer at the PEP

which we refer as XCP PEP and MPCP PEP, respectively. agent and will not be encapsulated in any packet.

Intuitively, it might appear that one can directly portthe e  The RC component computes the next sending rate based
isting XCP/MPCP implementations to a PEP agent. As showm the output of the RAPPEP traffic monitor and regulates the
in the Fig. 1, XCP/MPCP needs to be deployed at the Rewnd of the agent. While the agent no longer needs to retrieve
ceiver as well. Thus, such approach would fail to work sinabe feedback encapsulated in ACK packets, it still relieshen
the PEP agent, one of the end nodes of the XCP/MPCP c&GK packets to keep the algorithm semantics and the control
nection, would not be able to receive any feedback from thiening. More specifically, upon arrival of an ACK packet, the
Receiver. Consequently, the agent cannot adjustihel due RC component initiates an adjustmentdond and directly
to the absence of intermediate routers that compute ang relses saved RTM output instead of the information in the ACK.
feedback. However, such failure provides an important jgem We note that there will be no congestion-caused loss for a one
for a transparent implementation of RAPPEP because the Rep TCP connection. Hence, RAPPEP treats all losses as wire-
ceiver can be potentially freed from processing and retayitess link effect loss and makes no adjustmenttad.
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Furthermore, since all flows over the second PEP connectiatility [20] on both routers. The one way link delay is set.tif)
traverse the same satellite link, they experience neaglgdime ms. Both side links from an end host to a router operate in full
link delay. Thus, for the control algorithms of both XCP andluplex mode and have a bandwidthloGbps. Five FTP flows
MPCP, there is no need to scale the control parameters for rsttirt from one end host to another end host at random times
erogeneous RTT scenarios, which significantly simplifies tlwith each flow carrying & MB file. FTP servers are set up
implementation. Most importantly and as shown in Secticet both end hosts usings ftpd daemon available in FC5. For
IV, such characteristic can improve the fairness of RAPP¥P KXCP involved experiments, a pair of customized XCP-capable
shieldingRT'T variations among flows. ftp client andvs ftpd are used.

Finally, we would like to summarize how the RAPPEP is To Optimize the performance of TCP, a Variew of TCP pa-
designed and implemented to addresses the three challeng@seters are fine tuned following TCP performance tuning
presented at the beginning of this section. First, by takittg guides of [21] and [22]. While XCP, VCP, and MPCP parame-
vantage of the Linux pluggable congestion control archite; ters are set as presented in [14], [15], [10], TCP PEP paexset
the RAPPEP Controller is integrated into the existing Linure set as presented in [13]. In the case of PEPs, PEPsal runs
congestion control algorithms, and thus allowing for the cat R1 and R2 with TCP Hybla, XCP PEP, and MPCP PEP al-
existence of both RAP and TCP. Secondly, in RAPPEP, inSte@@ritth, respective|y_ In the experiments, we use batkn
of relaying the feedback information, RAP agent obtains thigk utilization, Average FTP Completion Time (AFCT), and
feedback locally and thus removing the need to implement RABngestion window size as performance metrics. TCP CUBIC
end nodes and routers separately. Finally, the RAPPEP is i@used at end nodes for PEP experiments as it performs best
plemented in same way as other other standard TCP variagigong TCP variants.

i.e. utilizing the Linux pluggable congestion control ateb- g~ 3 shows the bottleneck link utilization for each proto-
ture, which allows for seamlessly integration with the Beps o) ithout introducing packet loss. All RAPs outperformFC
CUBIC and TCP PEP except VCP due to its slow speed of con-
IV. EXPERIMENTAL STUDIES vergence associated with the high delay. The end point ¢f eac

In this section, we present our experimental study conducteurve indicates the moment when the last FTP flow completes,
in a Linux testbed emulating satellite link effects. Fitst per- but notthe AFCT of each protocol since not all flows complete
formance of VCP, XCP, MPCP, TCP CUBIC and TCP PEP a@ the same time. In this experiment, the AFCT of MPCP is
compared verifying the motivation of this paper. Then,zitilg 18 seconds 25% faster than that of TCP PEP. This performance
the implementations of two RAPPEP schemes, namely, X@@p between RAPs and TCP PEP verifies the motivation of this
PEP and MPCP PEP, we show how RAPPEP can further if@per presented earlier. Fig. 4 illustrates that similatepas
prove the performance of TCP PEP. F|g 2 shows our Sin@@ observed when 1% packet loss is introduced. While all pro
bottleneck experimental setup. tocols show oscillatory behavior due to the introductiofoss,

All of the nodes utilize Fedora Core 5 (FC5) distribution of CP PEP demonstrates the worst oscillatory behavior becaus
Linux. For TCP PEP experiments, we use the open-source ifhis unable to distinguish between congestion caused lods a
plementation of PEPsal [13]. A packet loss ratd %fis intro-  link quality caused loss. More importantly, although itealall
duced utilizing the NistNet emulator [19] as presented Bj][1 Protocols a longer time to complete file transfer, their perf
The 10 Mbps bandwidth of the full-duplex bottleneck link be-mance gap increases as well. The AFCT of both MPCP and
tween R1 and R2 is controlled by th&htool interface available XCP are aroun@4 seconds 35% faster than that of TCP PEP.

in FC5. Bottleneck link delays are introduced utilizingtem Fig. 5 compares the bottleneck link utilization of each PEP
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Fig. 9. Anillustration of cwnd dynamics at the FTP server.

PEP measured in terms of bandwidth utilization and fairness
We implemented RAPPEP with an explicit feedback based al-
gorithm (XCP) and a load factor based algorithm (MPCP) using
an open source TCP PEP implementation (PEPsal) available in
the Linux kernel. Through experimental studies, we demon-
strated that RAPPEP represents a highly efficient solutiah t
allows for immediate deployment of newly developed RAPs.
Furthermore, we showed that RAPPEP could achieve good fair-
ness by filtering the impact of floi7"7" variation at the second
TCP segment. Finally, it is our belief that a framework sush a
RAPPEP can improve the appeal of RAPs by offering a trans-

parent and tangible benefit that can significantly imprové®TC

solution. In contrast to 4, all of RAPPEP solutions offer oo
performance especially in terms of their oscillatory bebav
While eventually they achieve comparable utilization asirth
original alternatives, they converge faster because ofrthe
provements presented in Section lII. In the case of MPCP PEPR!
fewer oscillations are observed due to the absence of oegter h
dling and the effects of packet loss on LF. In the case of XCR]
PEP, a faster completion and fewer oscillations are obderv%]
because of simplifying bandwidth allocation, using a fixdd'R  [4]
estimate, and avoiding the involvement of end nodes. Wedavoul
like to note that while XCPPEP takes longer time to finish thaf®!

performance over high BDP networks.
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