
RAPPEP: A Framework for Deploying Router-Assisted Congestion Control
Protocols at TCP Performance Enhancement Proxy

Xiaolong Li Homayoun Yousefi’zadeh
Center for Pervasive Communications and Computing

University of California, Irvine
[xiaolonl, hyousefi]@uci.edu

Abstract—Router Assisted congestion control Protocols (RAPs)
appear to be the most efficient solutions to the TCP performance
degradation issue in high Bandwidth Delay Product (BDP) net-
works. Global deployment of RAPs such as XCP, VCP, and MPCP
however, has been challenging due to their need for router sup-
port. In this paper, we propose RAPPEP a framework for de-
ploying RAPs on potential congestion zones such as satellite links
that are locally utilizing the architecture of TCP Performance En-
hancement Proxy (PEP). Such a marriage allows for an immediate
deployment of RAPs without the need for global router support,
while still being able to take advantage of sophisticated RAPs. Be-
yond the deployed congestion zone, RAPPEP is completely trans-
parent to the rest of the network including end nodes and other
routers. Adapting from two implementations of RAPs and an im-
plementation of TCP PEP (PEPSal), we implement and integrate
RAPPEP in the Linux kernel and demonstrate its performance im-
provement compared to PEPSal through emulation studies.

Index Terms— TCP PEP, XCP, VCP, MPCP, Router-Assisted
Congestion Control Protocols, High BDP, Satellite Links.

I. I NTRODUCTION

Over the course of past few years, a wide variety of tech-
niques have been proposed to combat the performance degra-
dation of TCP in high BDP networks. The majority of
these proposals remain as TCP variants that concentrate on
either adaptively tuning the parameters of Additive-Increase
Multiplicative-Decrease (AIMD) based on sophisticated con-
trol algorithms [1], [2], [3], or utilizing novel congestion de-
tection mechanisms [4], [5], [6], [7]. Such techniques preserve
the end-to-end nature of TCP and thus allow for an immediate
deployment. However, since both the efficiency and the fair-
ness are controlled by an integrated controller, they oftenfail
to achieve high utilization and fairness while maintaininglow
persistent queue lengths and minimizing congestion-induced
packet drop rates.

To that end, RAPs [8], [9], [10], [11] are proposed to decou-
ple fairness control from efficiency. RAPs can achieve high uti-
lization, low persistent queue length, insignificant packet loss
rate, and sound fairness. Fundamentally, all RAPs require all
intermediate routers to monitor network congestion statusand
derive appropriate feedback for the sender. Depending on the
type of feedback information, RAPs can be classified into two
general categories: i) protocols that utilize explicit feedback
(typically sending rate) and ii) those that rely on load factors
(typically the ratio of demand to capacity). We refer to the first
category protocols as XFPs and the second category as LFPs.

This work was sponsored in part by a research grant from the Boeing Com-
pany.

An example of the first category is eXplicit Congestion-control
Protocol (XCP) while Variable-structure Congestion-control
Protocol (VCP) [9] and Multi-Packet Congestion-control Pro-
tocol (MPCP) [10] represent examples of the second category.

Since feedback needs to be encapsulated in the header of ac-
knowledgment packets, all RAPs require extra bits in the packet
header. Such requirement in conjunction with the need to re-
ceive support from all intermediate routers introduces substan-
tial deployment obstacles for RAPs.

Deviating from these pure end-to-end solutions introduced
above, TCP PEP schemes [12], [13] have emerged to improve
the end-to-end performance of TCP, where large delay, mod-
erate bandwidth links such as satellite links are in use. By
splitting an end-to-end TCP connection to multiple segments,
TCP PEP is able to isolate the satellite portion from the rest
of the network. Such splitting allows for using specially de-
signed congestion control algorithms suitable for satellite links
and thus improving end-to-end performance.

Because of being non-intrusive and immediately deployable,
TCP PEP has been widely deployed in today’s satellite net-
works and is currently considered to be among industry’s most
current practices. However and as discussed in Section IV, TCP
PEP is inefficient in comparison to RAPs due to the integrated
nature of TCP congestion controller. In essence, there is a two
fold rationale for the use of TCP PEP: i) isolation of TCP-
unfriendly zone where TCP variants fail to work well, and ii)
utilization of specially designed congestion control algorithms
in the TCP-unfriendly zone. Intuitively, TCP PEP provides an
ideal environment for deploying RAPs locally, which not only
facilitates the deployment of RAPs but also further improves
the performance of TCP PEP by utilizing sophisticated RAP
control algorithms.

In this paper, we propose and implement RAPPEP, a frame
work that deploys RAP algorithms transparently in TCP PEP.
The transparency comes from the fact that RAPPEP requires
changes to neither existing TCP PEP architecture, nor the in-
troduction of new TCP options and/or transport protocols in
the network stack. Simply put, all RAPs operate exactly likea
standard TCP variant in RAPPEP. Our paper makes several key
contributions with regards to both RAPs and TCP PEP. First, we
propose a framework that adapts a RAP-based implementation
within TCP PEP architecture. It removes the need for changing
standard TCP options and/or introducing new transport proto-
cols as [14], [15]. To the best of our knowledge, this is the first
work on applying RAPs to TCP PEP. Second, this paper reports
on the implementation of an XFP and an LFP algorithm fol-

lowing the proposed framework. While the XFP algorithm uti-
lizes XCP, the LFP algorithm adapts MPCP. Most importantly,
all RAP algorithms are implemented as standard TCP flavors
in Linux utilizing the Linux TCP pluggable congestion control
structure. This allows for the co-existence of RAPs and other
transport protocols. Third, the paper conducts extensive exper-
imental studies comparing two RAPPEP implementations with
raw RAPs as well as raw TCP PEP. It is our belief that an ap-
proach such as RAPPEP can improve the appeal of RAPs by
offering a transparent and tangible benefit that can significantly
improve efficiency and fairness of TCP congestion control over
high BDP links.

The rest of the paper is organized as follows. Section II
presents the fundamentals of RAPs and TCP PEP. Section III
presents the implementation approach of the RAPPEP. Experi-
mental studies are presented in Section IV. Finally, we present
several conclusions in Section V.

II. BACKGROUND OFRAPS AND TCP PEP

In this section, we briefly review the key concepts of RAPs
and TCP PEP. The implementation approach of XCP, VCP, and
MPCP are introduced as well.

A. LFPs: VCP and MPCP

Recently, a family of LFPs including but not limited to VCP,
MPCP, and MLCP have emerged. Fundamentally, all LFPs
need to calculate the Load Factor (LF) of a link which is rep-
resented as quantized feedback in a number of bits. These pro-
tocols mainly differ in two aspects: the number of quantized
feedback bits; and the way the feedback is generated and deliv-
ered. In this subsection, we briefly describe VCP and MPCP.

VCP regulates thecwnd with different congestion control
policies according to the level of congestion in the network.
Three levels of congestion low-load, high-load, and overload
are mapped into two ECN bits of the IP packet header. A VCP-
capable router computes the LF of each of its links and maps
each LF to one of the three congestion levels. Upon arrival
of a data packet from a sender, each router examines the con-
gestion level of its upstream link carried in the ECN bits of
the packet and updates ECN bits only if its downstream link is
more congested. Finally, the receiver signals the sender with
the congestion information via acknowledgment (ACK) pack-
ets. Consequently, VCP applies three congestion control poli-
cies: Multiplicative-Increase (MI) in the low-load region, AI
in the high-load region, and MD in the overload region. The
MI region is utilized to eliminate the slow start characteristic of
TCP while AI and MD regions preserve the fairness characteris-
tics of TCP. Since VCP can only provide limited feedback to the
sender, its efficiency and fairness characteristics are negatively
impacted in moderate bandwidth high delay network operation
scenarios.

Multi Packet Congestion control Protocol (MPCP) is devel-
oped to overcome the limitations of VCP. In MPCP, the trans-
mitting side can receive finer-grained congestion information
without requiring the use of any additional bits in the IP header
beyond the two ECN bits. Specifically, a congestion level is car-
ried by a chain ofn packets and each packet provides two bits

out of2n bits of information associated with a congestion level.
While routers compute and distribute congestion signalinginto
n packets, end nodes retrieve a congestion level by concate-
nating a group of2n ECN bits together from a set of packets.
MPCP correctly handles the packet ordering and reacts to net-
work exceptions such as packet loss and out of ordering deliv-
ering. MPCP is already implemented forn ∈ {2, 3}.

As shown in Section IV, VCP does not perform well in satel-
lite environment and as such we only consider adapting MPCP
algorithm for RAPPEP.

B. XFPs: XCP

Unlike LFPs, XFPs explicitly provide the sender with the
next sending rate. Thus, the task of sending rate control is
offloaded from the end nodes to the routers. Since all of the
XFPs provided in the literature are essentially variants ofXCP,
we focus on XCP and its implementation approach in this
subsection. Initially, an XCP sender encapsulates its current
cwnd, the sender perceivedRTT , and the bandwidth demands
in the packet header. The bandwidth demands of the sender
can be modified by routers according to the congestion status
of the network and finally contain the feedback. As a result,
XCP requires the use of multiple bits in the IP header of each
packet. An XCP router has two separate controllers: the Effi-
ciency Controller (EC) and the Fairness Controller (FC). First,
the EC computes the aggregate feedback according to the in-
put traffic rate, the persistent queue length, and the link ca-
pacity. Then, the FC allocates the aggregate feedback to in-
dividual packets in order to achieve fairness. Notably, XCP
uses Multiplicative-Increase Additive-Increase Multiplicative-
Decrease (MIMD) for efficiency and AIMD for fairness con-
trol. In [14], XCP is implemented in the Linux kernel with 16
bits of feedback. XCP is implemented with two components:
XCP router and XCP end host. While the XCP router is im-
plemented as two LKMs utilizing LinuxQdisc architecture a
built-in Linux packet queuing and scheduling mechanism, the
functionality of XCP end host is implemented by introducinga
new TCP option.

C. TCP PEP

TCP PEP schemes utilize network agents installed on inter-
mediate nodes of a network path to improve the end-to-end
performance of TCP. Among the PEP solutions, the splitting
approach [13] appears to be the most promising, where a TCP
connection is split into multiple segments. While the distributed
PEP utilizes two PEP agents and splits a connection to three
segments, the integrated PEP only deploys one PEP agent and
splits a connection into two segments. Since we implement
RAPPEP on top of the PEPsal, an integrated PEP implemen-
tation, we focus on the integrated PEP in this subsection. Typ-
ically, a PEP agent sits at the uplink gateway of a satellite link.
The first TCP segment takes advantage of the standard TCP
and is terminated at the PEP agent. The second segment origi-
nates from the PEP agent and is terminated at the end receiver.
Notably, if the same techniques of congestion control are ap-
plied to all three segments, the end-to-end throughput willnot
be improved significantly [13]. Only the performance of the

Fig. 1. An illustration of the RAPPEP framework.

first segment can be improved due to the fact that the sender’s
congestion window can be opened much faster because of the
early ACKs from the proxy. Thus, the PEPsal proposed to use
TCP Hybla [16] with local retransmission [17], selective ACK
[18] only on the segment with the highest delay. As noted ear-
lier, the use of splitting approach allows for using specially de-
signed congestion control algorithms that are suitable forsatel-
lite links.

III. RAPPEP

RAPPEP is a framework that can facilitate the integration of
RAP control algorithms with the PEP architecture. In this pa-
per, we build RAPPEP on top of the PEPSal, which is an open-
source implementation of an integrated PEP. As noted earlier,
a PEP agent has to operate as the terminator and the initiator
of two TCP segments simultaneously while RAP implementa-
tions distribute the control functionality to both routersand end
nodes. In order to apply RAP algorithms to PEP, RAPPEP has
to deal with following challenges:

1) The co-existence of both standard TCP congestion con-
trol algorithms and new RAP algorithms. A TCP PEP
agent has to be able to adjustcwnd using RAP algorithms
for a flow initiated from the agent, while processing data
packets and replying with ACK packets using the stan-
dard TCP algorithm for a flow terminated at the agent.

2) The distribution of RAP functionality. While applying
RAP algorithms, the TCP PEP agent has to function as
both end nodes and routers simultaneously.

3) The implementation of a RAP algorithm on top of PEP-
sal.

A. RAPPEP Overview

Fig. 1 illustrates the architecture of the RAPPEP. Note that
we implement both XCP and MPCP algorithms in RAPPEP, to
which we refer as XCP PEP and MPCP PEP, respectively.

Intuitively, it might appear that one can directly port the ex-
isting XCP/MPCP implementations to a PEP agent. As shown
in the Fig. 1, XCP/MPCP needs to be deployed at the Re-
ceiver as well. Thus, such approach would fail to work since
the PEP agent, one of the end nodes of the XCP/MPCP con-
nection, would not be able to receive any feedback from the
Receiver. Consequently, the agent cannot adjust thecwnd due
to the absence of intermediate routers that compute and relay
feedback. However, such failure provides an important premise
for a transparent implementation of RAPPEP because the Re-
ceiver can be potentially freed from processing and relaying

Fig. 2. An illustration of the experimental environment.

the feedback to the sender. Specifically, in an end-to-end sce-
nario, the PEP agent is actually an XCP/MPCP router that mon-
itors the congestion status of the satellite link and computes the
feedback. Notably, as the initiator of the second XCP/MPCP
segment in the PEP scenario, the PEP agent would function as
an XCP/MPCP sender. If the PEP agent can function as an
XCP/MPCP router, the requirement of forwarding the feedback
can be eliminated. More specifically, the agent perceived feed-
back coming from the receiver is the same as what was com-
puted earlier at the agent since the agent is theonly router of
the connection. Thus, there is no need to encapsulate the next
sending rate/load factor in the packet sending to the receiver
and extract it from the feedback. Instead, functioning as both a
sender and a router, the PEP agent can obtain the expected feed-
backlocally rather than retrieving the feedback from an ACK.
As a result, the receiver is completely freed from handling the
feedback and can use any standard TCP variant allowing for
compatibility. Meanwhile, the limitation of the availability of
extra bits in the IP packet header can be removed as well ben-
efiting both XFP and LFP. While LFPs is allowed to use the
accurate LF for the purpose of control, XFP can use any num-
ber of bits to store the feedback. Consequently, RAPPEP is im-
plemented as a new standard TCP congestion control algorithm
utilizing the Linux Pluggable congestion control architecture.

B. RAPPEP Implementation

We implement XCP and MPCP algorithms in RAPPEP as
LKMs. Specifically, RAPPEP consists of two components:
RAPPEP Traffic Monitor (RTM) and RAPPEP Controller (RC).
The RTM utilizesnetfilter to monitor the traffic rate and the
persistent queue length. In contrast to the raw MPCP and XCP
implementations, RTM monitors the outgoing traffic rate in-
stead of input traffic rate. Note that RTM can serve for both
XCP PEP and MPCP PEP. While RTM outputs the spare band-
width for XCP PEP, the raw LF is output for MPCP PEP. The
output of RTM is stored locally in a shared buffer at the PEP
agent and will not be encapsulated in any packet.

The RC component computes the next sending rate based
on the output of the RAPPEP traffic monitor and regulates the
cwnd of the agent. While the agent no longer needs to retrieve
the feedback encapsulated in ACK packets, it still relies onthe
ACK packets to keep the algorithm semantics and the control
timing. More specifically, upon arrival of an ACK packet, the
RC component initiates an adjustment tocwnd and directly
uses saved RTM output instead of the information in the ACK.
We note that there will be no congestion-caused loss for a one-
hop TCP connection. Hence, RAPPEP treats all losses as wire-
less link effect loss and makes no adjustment tocwnd.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

U
ti
liz

a
ti
o

n
 (

%
)

Time (s)

XCP
VCP

MPCP
TCP CUBIC

TCP PEP

Fig. 3. A bottleneck utilization comparison of all pro-
tocols without loss.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

U
ti
liz

a
ti
o

n
 (

%
)

Time (s)

XCP
VCP

MPCP
TCP CUBIC

TCP PEP

Fig. 4. A bottleneck utilization comparison of all pro-
tocols with 1% loss.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

U
ti
liz

a
ti
o

n
 (

%
)

Time (s)

XCP PEP
MPCP PEP

TCP PEP

Fig. 5. A bottleneck utilization comparison of three
PEP solutions with 1% loss.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

U
ti
liz

a
ti
o

n
 (

%
)

Time (s)

XCP flow 1
XCP flow 2
XCP flow 3
XCP flow 4
XCP flow 5

Fig. 6. Per-flow bottleneck utilization of XCP.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

U
ti
liz

a
ti
o

n
 (

%
)

Time (s)

XCP PEP flow 1
XCP PEP flow 2
XCP PEP flow 3
XCP PEP flow 4
XCP PEP flow 5

Fig. 7. Per-flow bottleneck utilization of XCP PEP.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

U
ti
liz

a
ti
o

n
 (

%
)

Time (s)

TCP PEP flow 1
TCP PEP flow 2
TCP PEP flow 3
TCP PEP flow 4
TCP PEP flow 5

Fig. 8. Per-flow bottleneck utilization of TCP PEP.

Furthermore, since all flows over the second PEP connection
traverse the same satellite link, they experience nearly the same
link delay. Thus, for the control algorithms of both XCP and
MPCP, there is no need to scale the control parameters for het-
erogeneous RTT scenarios, which significantly simplifies the
implementation. Most importantly and as shown in Section
IV, such characteristic can improve the fairness of RAPPEP by
shieldingRTT variations among flows.

Finally, we would like to summarize how the RAPPEP is
designed and implemented to addresses the three challenges
presented at the beginning of this section. First, by takingad-
vantage of the Linux pluggable congestion control architecture,
the RAPPEP Controller is integrated into the existing Linux
congestion control algorithms, and thus allowing for the co-
existence of both RAP and TCP. Secondly, in RAPPEP, instead
of relaying the feedback information, RAP agent obtains the
feedback locally and thus removing the need to implement RAP
end nodes and routers separately. Finally, the RAPPEP is im-
plemented in same way as other other standard TCP variants,
i.e. utilizing the Linux pluggable congestion control architec-
ture, which allows for seamlessly integration with the Pepsal.

IV. EXPERIMENTAL STUDIES

In this section, we present our experimental study conducted
in a Linux testbed emulating satellite link effects. First the per-
formance of VCP, XCP, MPCP, TCP CUBIC and TCP PEP are
compared verifying the motivation of this paper. Then, utilizing
the implementations of two RAPPEP schemes, namely, XCP
PEP and MPCP PEP, we show how RAPPEP can further im-
prove the performance of TCP PEP. Fig. 2 shows our single
bottleneck experimental setup.

All of the nodes utilize Fedora Core 5 (FC5) distribution of
Linux. For TCP PEP experiments, we use the open-source im-
plementation of PEPsal [13]. A packet loss rate of1% is intro-
duced utilizing the NistNet emulator [19] as presented in [13].
The10 Mbps bandwidth of the full-duplex bottleneck link be-
tween R1 and R2 is controlled by theethtool interface available
in FC5. Bottleneck link delays are introduced utilizingnetem

utility [20] on both routers. The one way link delay is set to400
ms. Both side links from an end host to a router operate in full-
duplex mode and have a bandwidth of1 Gbps. Five FTP flows
start from one end host to another end host at random times
with each flow carrying a5 MB file. FTP servers are set up
at both end hosts usingvsftpd daemon available in FC5. For
XCP involved experiments, a pair of customized XCP-capable
ftp client andvsftpd are used.

To optimize the performance of TCP, a variety of TCP pa-
rameters are fine tuned following TCP performance tuning
guides of [21] and [22]. While XCP, VCP, and MPCP parame-
ters are set as presented in [14], [15], [10], TCP PEP parameters
are set as presented in [13]. In the case of PEPs, PEPsal runs
at R1 and R2 with TCP Hybla, XCP PEP, and MPCP PEP al-
gorithms, respectively. In the experiments, we use bottleneck
link utilization, Average FTP Completion Time (AFCT), and
congestion window size as performance metrics. TCP CUBIC
is used at end nodes for PEP experiments as it performs best
among TCP variants.

Fig. 3 shows the bottleneck link utilization for each proto-
col without introducing packet loss. All RAPs outperform TCP
CUBIC and TCP PEP except VCP due to its slow speed of con-
vergence associated with the high delay. The end point of each
curve indicates the moment when the last FTP flow completes,
but not the AFCT of each protocol since not all flows complete
at the same time. In this experiment, the AFCT of MPCP is
18 seconds 25% faster than that of TCP PEP. This performance
gap between RAPs and TCP PEP verifies the motivation of this
paper presented earlier. Fig. 4 illustrates that similar patterns
are observed when 1% packet loss is introduced. While all pro-
tocols show oscillatory behavior due to the introduction ofloss,
TCP PEP demonstrates the worst oscillatory behavior because
it is unable to distinguish between congestion caused loss and
link quality caused loss. More importantly, although it takes all
protocols a longer time to complete file transfer, their perfor-
mance gap increases as well. The AFCT of both MPCP and
XCP are around24 seconds 35% faster than that of TCP PEP.

Fig. 5 compares the bottleneck link utilization of each PEP

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2 2.5 3 3.5 4

c
w

n
d

 (
p

a
c
k
e

ts
)

Time (s)

PEP flow1
PEP flow2
PEP flow3
PEP flow4
PEP flow5

Fig. 9. An illustration of cwnd dynamics at the FTP server.

solution. In contrast to 4, all of RAPPEP solutions offer good
performance especially in terms of their oscillatory behavior.
While eventually they achieve comparable utilization as their
original alternatives, they converge faster because of theim-
provements presented in Section III. In the case of MPCP PEP,
fewer oscillations are observed due to the absence of order han-
dling and the effects of packet loss on LF. In the case of XCP
PEP, a faster completion and fewer oscillations are observed
because of simplifying bandwidth allocation, using a fixed RTT
estimate, and avoiding the involvement of end nodes. We would
like to note that while XCPPEP takes longer time to finish than
MPCPPEP, it achieves a better fairness due to the use of a sep-
arate controller.

To better evaluate the fairness of each PEP schemes, we de-
crease the loss rate to 0.1% while varying the delay of each
flow by introducing random delays on the side links range in
the range of[0, 800] ms. Notably, the link delay of the satellite
link remains same. Fig. 6, 7, and 8 compare per flow bot-
tleneck utilization of XCP, XCP PEP, and TCP PEP schemes.
Notably, XCP PEP significantly improves the fairness of flows
in contrast to TCP PEP due to use of a separate controller for
fairness. In contrast to XCP, the use of the PEP hides the impact
of the RTT difference on the first segment and achieves a sig-
nificantly better fairness on the bottleneck link. For the same
reason and while not shown here, MPCP PEP shows similar
fairness improvement.

Finally, it is interesting to show thecwnd dynamics at the
sender while the PEP schemes are applied. As shown in Fig.
9, thecwnd of each flow opens very fast and the transmission
finishes in5 seconds because PEPSal sends ACKs before the
receiver gets the packet. Such behavior shields RAP PEPs from
RTT variations.

It is important to note that the choice of RAP algorithm for
RAPPEP represents a tradeoff. In our experiments, MPCP PEP
demonstrates an efficiency better than that of XCP PEP showing
a shorter AFCT because of its aggressive MI policy, while XCP
PEP outperforms MPCP PEP in terms of fairness because XCP
utilizes a separate controller for fairness control.

V. CONCLUSION

In this paper, we proposed RAPPEP, a framework of deploy-
ing Router-Assisted congestion control Protocol (RAP) at TCP
Performance Enhancing Proxies. We showed that RAPPEP
could circumvent the deployment limitations of RAPs by in-
tegrating RAP congestion control algorithms within TCP PEP
agents while significantly improving the performance of TCP

PEP measured in terms of bandwidth utilization and fairness.
We implemented RAPPEP with an explicit feedback based al-
gorithm (XCP) and a load factor based algorithm (MPCP) using
an open source TCP PEP implementation (PEPsal) available in
the Linux kernel. Through experimental studies, we demon-
strated that RAPPEP represents a highly efficient solution that
allows for immediate deployment of newly developed RAPs.
Furthermore, we showed that RAPPEP could achieve good fair-
ness by filtering the impact of flowRTT variation at the second
TCP segment. Finally, it is our belief that a framework such as
RAPPEP can improve the appeal of RAPs by offering a trans-
parent and tangible benefit that can significantly improve TCP
performance over high BDP networks.

REFERENCES

[1] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control
(BIC) for Fast Long-Distance Networks,” inProc. of the IEEE INFO-
COM, 2004.

[2] I. Rhee and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP Vari-
ant,” in Proc. of the PFLDNet’05, Feb. 2005.

[3] S. Floyd, “HighSpeed TCP for Large Congestion Windows,”Aug. 2002.
[4] D. Leith and R. Shorten, “H-TCP: TCP for High-speed and Long-distance

Networks,” inProc. of the PFLDNet’04, Feb. 2004.
[5] T. Kelly, “Scalable TCP: Improving Performance in HighSpeed

Wide Area Networks,” Feb. 2003, available at http://wwwlce.
eng.cam.ac.uk/ctk21/scalable/.

[6] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture, Algo-
rithms, Performance,” inProc. of IEEE INFOCOM, 2004.

[7] S. Bhandarkar, S. Jain, and A. Reddy, “Improving TCP Performance in
High Bandwidth High RTT Links Using Layered Congestion Control,” in
Proc. of the PFLDNet’05, Feb. 2005.

[8] D. Katabi, M. Handley, and C. Rohrs, “Congestion Controlfor High
Bandwidth-Delay Product Networks,” inProc. ACM SIGCOMM, Aug.
2002.

[9] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One More Bit
Is Enough,” inProc. ACM SIGCOMM, 2005, Aug. 2005.

[10] X. Li and H. Yousefi’zadeh, “MPCP: Multi Packet Congestion-control
Protocol,”ACM Computer Communications Review (CCR), vol. 39, no. 5,
pp. 6–11, Oct. 2009.

[11] I. A. Qazi and T. Znati, “On the design of load factor based congestion
control protocols for next-generation networks,” inProc. of the IEEE IN-
FOCOM 2008, Apr. 2008.

[12] A. Bakre and B. R. Badrinath, “I-TCP: indirect TCP for mobile hosts,”
in Proc. of 15th International Conference on Distributed Computing Sys-
tems(ICDCS), Vancouver, BC, May 1995, pp. 136 – 143.

[13] C. Caini, R. Firrincieli, and D. Lacamera, “PEPsal: A Performance En-
hancing Proxy for TCP Satellite Connections,” inIEEE A and E SYS-
TEMS MAGAZINE, Aug. 2007.

[14] Y. Zhang and T. Henderson, “An Implementation and Experimental Study
of the eXplicit Control Protocol (XCP),” inProc. IEEE INFOCOM, 2005,
Mar. 2005.

[15] X. Li and H. Yousefi’zadeh, “An Implementation and Experimental Study
of the Variable-Structure Congestion Control Protocol (VCP),” in Proc. of
the IEEE MILCOM, 2007, Oct. 2007.

[16] C. Caini and R. Firrincieli, “TCP Hybla: a TCP Enhancement for Hetero-
geneous Networks,”International Journal of Satellite Communications
and Networking, vol. 22, no. 5, pp. 547–566, Sept. 2004.

[17] S. Keshav and S. P. Morgan, “SMART Retransmission: Performance with
Overload and Random Losses,” inProc. INFOCOM 1997, Apr. 1997.

[18] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “Selective acknowl-
edgment options,” inRFC-2018, Oct. 1996.

[19] M. Carson and D. Santay, “NIST Net-A Linux-based Network Emulation
Tool,” Computer Communication Review, June 2003.

[20] S. Hemminger, “Network Emulation with NetEm,” inProc. LCA, 2005,
Apr. 2005.

[21] J. Mahdavi, “Enabling high performance data transferson hosts,”tech-
nical note, Pittsburgh Supercomputing Center, Dec. 1997, available at
http://www.psc.edu/networking/perftune.html.

[22] -, “TCP Tuning Guide,” Nov. 2005, distributed Systems Department,
Available at http://dsd.lbl.gov/TCP-tuning/TCP-tuning.html.

