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Power Optimization of Wireless Media Systems
with Space-Time Block Codes

Homayoun Yousefi’zadeh Hamid Jafarkhani Mehran Moshfeghi

Abstract—We present analytical and numerical solutions to the
problem of power control in wireless media systems with multi-
ple antennas. We formulate a set of optimization problems aimed
at minimizing total power consumption of wireless media systems
subject to a given level of QoS and an available bit rate. Our
formulation takes into consideration the power consumption re-
lated to source coding, channel coding, and transmission of mul-
tiple transmit antennas. In our study, we consider Gauss-Markov
and video source models, Rayleigh fading channels along with the
Bernoulli/Gilbert-Elliott loss models, and space-time block codes.

Index Terms— Wireless Media Systems, Power Optimization,
Source/Channel Coding, Multiple Antenna Systems, Space-Time
Block Codes, Bernoulli and Gilbert-Elliott Loss Models, QoS.

I. INTRODUCTION

WIRELESS devices are proliferating at a rapid rate.
Broadband wireless coverage is extensive in many ar-

eas and there has been an exponential growth in the processing
power of embedded processors. The emergence of new wire-
less standards is expected to expedite the delivery of the next
generation portable multimedia services such as disaster relief,
surveillance, and videoconferencing. More frequent and longer
use of portable multimedia services is naturally equivalent to
higher power consumption of mobile devices. Added to this
the fact that the battery life is growing far more slowly than the
processing power in handheld devices, the power consumption
of such devices is required to be kept to a minimum level in
order to extend the lifetime of their limited power resources.
On the contrary, providing the desired level of quality of ser-
vice (QoS) in the presence of the fading effects of multipath
wireless channels necessitates higher consumption of power in
mobile devices. Power optimization is, therefore, very impor-
tant because it extends the lifetime of batteries.

Multiple antenna systems substantially reduce the effect of
multipath fading in the wireless channels through antenna di-
versity. Antenna diversity has been adopted in WCDMA and
CDMA2000 standards. It is also being considered in many cur-
rent wireless standard efforts. A large percentage of next gener-
ation mobile devices such as cellular phones, global positioning
systems (GPS), personal digital assistants (PDA), and laptops
will, therefore, employ multiple antennas. Hence, it is essen-
tial to consider systems using multiple antennas in the study of
wireless media systems. In what follows we provide a review
of the literature work.

In an early work, Lan et al. [12] solved an energy opti-
mization problem subject to QoS constraints for transmitting
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images across the wireless backbone. However, they did not
consider the time-varying characteristics of the wireless chan-
nel in the analysis of channel coding and transmission. Goel
et al. [7] solved another image transmission energy optimiza-
tion problem subject to distortion and rate constraints. While
they appropriately considered hardware specific impacts in their
work, their analysis lacked a consideration of channel coding
and transmission with respect to the time-varying characteris-
tics of the wireless channel. Havinga [8] considered energy
efficiency in channel coding techniques for wireless systems
without considering the energy of source coding and transmis-
sion. Stuhlmuller et al. [16] derived a rate-distortion model
for an H.263 compliant coder based on simulation data. Their
model could also be used for other codecs that rely on hybrid
motion compensation. Appadwedula et al. [4] formulated and
solved an energy optimization problem subject to statistical dis-
tortion and rate constraints for transmitting images over wire-
less channels. The authors considered transmission, source, and
channel coding components in the formulation of the problem.
Ji et al. [11] proposed a generic motion estimation technique
that could well fit into H.263 or MPEG-2 source coding stan-
dards. They used an Unequal Error Protection (UEP) technique
based on the Bernoulli loss model in conjunction with the Reed-
Solomon (RS) channel coding. Focusing on an uplink mobile-
to-base scenario, Lu et al. [13] solved a similar power optimiza-
tion problem subject to the end-to-end distortion of [16] relying
on H.263 source coding and RS channel coding in conjunction
with the Gilbert loss model. Preliminary version of this work
[10] analytically solved a similar problem under the Bernoulli
loss model with an additional rate constraint while deploying
space-time block codes. We point out that although the use of
multiple antennas cannot be ignored as the result of adoption in
the new wireless standards, none of the literature articles cited
above have considered deploying multiple antennas in wireless
systems. Further, neither one of the literature articles has pro-
vided an analysis of complexity when solving their formulated
optimization problem. Considering the real-time nature of the
problem, we argue that providing a low complexity solution to
a power optimization problem is important.

An outline of the remaining parts of the paper follows. In
Section II, we express our motivation and contributions. In
Section III, we provide an analysis of the transmission and the
channel coding components of the underlying wireless system.
In this section, we express the symbol error rate as a function
of the average received signal to noise ratio and the loss model.
In Section IV, we provide an analysis of the source coding and
distortion for the underlying wireless system. Starting from a
simple Gauss-Markov source model, we generalize our analy-
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sis to a video source and obtain associated overall distortions
for each case. In Section V, we formulate and solve our power
optimization problem subject to distortion and rate constraints.
In Section VI, we numerically validate our results. Finally, Sec-
tion VII includes a discussion of concluding remarks and future
work.

II. MOTIVATION AND CONTRIBUTIONS

The theme representing the goal of this paper is to study the
end-to-end problem of multimedia transmission over a wireless
channel with multiple transmit/receive antennas. We address
the tradeoff between the power consumption and the quality of
service in wireless media systems. Our goal is to minimize
the overall power consumption for a given quality of service
and a given bit rate. Fig. 1 illustrates the general model of
a communication system used to transmit multimedia content
across a wireless backbone. We note that the model may use
one or more transmit and/or receive antennas.
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Fig. 1. An illustration of the multiple antenna communication system.

Optimizing power for transmitting multimedia content from
a mobile host requires addressing the consumption tradeoff
among different components of the underlying communication
system. The power consumed in a transmitting mobile device
is for the most part associated with source coding, channel cod-
ing, and transmission. The power of source coding and channel
coding is typically a function of the underlying algorithms. The
transmission power depends on the overall transmission bit rate
and the symbol transmission energy. Intuitively, a higher QoS
and a higher bit rate result in more power consumption. In this
paper, the received signal distortion is used as the metric of
measuring QoS. Signal distortion has two components. The
first component is the distortion caused by source coding com-
pression and decompression. The second component is the dis-
tortion caused by having unrecoverable channel coding errors.
The available bit rate is divided between the source coding in-
formation and the channel coding redundancy assigned for error
recovery.

We independently describe each of the terms involved in the
formulation of our power optimization problem followed by the
formulation of the problem itself. We will then focus on provid-
ing efficient methods of solving our problem and validate our
results.

At the end of this section, we point out specific contribu-
tions of our work. The main contributions of this paper are in
the following areas. First, we propose the use of multiple an-
tenna systems along with space-time block codes in addition to
traditional single antenna systems. Second, we consider three

different channel loss models, namely Bernoulli, Gilbert, and
Gilbert-Elliott models, to properly capture the loss behavior of
different transmission channels. While we rely on closed form
expressions of the loss model in the first two cases, we use a
recursive expression to describe the behavior of the last loss
model. Third relying on the analysis of multiple antenna sys-
tems along with various channel loss models, we formulate a
set of power optimization problems aimed at minimizing the
combined power of source coding, channel coding, and trans-
mission while considering rate and distortion constraints. We
provide analytical solutions to the optimization problems uti-
lizing Bernoulli and Gilbert loss models and a numerical solu-
tion to the optimization problem using the Gilbert-Elliott loss
model.

III. TRANSMISSION AND CHANNEL CODING ANALYSIS

We start our discussion by providing an analysis of the trans-
mission system and the wireless fading channel.

A. Transmission and Fading Channel Analysis

First, we focus on the analysis of the wireless fading channel.
We rely on the so-called Rayleigh model with a fading factor �
to describe the wireless channel. We note that the output signal
of such a channel

���
can be related to its input signal

���
as� ��� � � �	��


(1)

where



indicates the noise signal. Further, we recall that for
a multipath slow fading Rayleigh wireless channel, the per bit
average received signal to noise ratio

� 

�
is expressed as� 
���������� � � �����������
! (2)

where
�

denotes the expectation operator,
� � � has a Rayleigh

distribution, � ���"� is the transmission energy per symbol in-
terval, and


	 
is the one-sided spectral density of the white

Gaussian noise. We note that while the transmission energy per
symbol interval is the same as the transmission symbol energy
in the case of a one transmit antenna system, it is split in half
between the two symbols transmitted at each symbol interval in
the case of a double transmit antenna system. Nevertheless, we
note that Equation (2) can be properly applied to the cases of
both single and double transmit antenna systems. In our discus-
sion below, we consider the fact that the asymptotic behavior of
the symbol error rate for large values of

� 
��
can be described

as # ���"�%$%&!' � 

�)(�*,+ where &	' and &!- represent coding
gain and diversity gain, respectively. Next, assuming a slow
fading Rayleigh channel and utilization of the L-PSK modula-
tion scheme, we calculate closed form expressions describing
the symbol error rate of a multiple transmit multiple receive an-
tenna system. Starting from Equation (9.15) of the work of Si-
mon et al. [15] with the choice of .0/�102 � � 

�4365�7 �98;:<>= and?)@ 8BA�C � 

� = �EDFD�DG� ? < 8BA�C � 

� = � 8IHKJLA � 
�� = ( @ , the
symbol error rate of a single transmit

?
receive antenna system

using maximum ratio combining (MRC) can be calculated as# ���"� � @:!M�N < ( @IO :0P < Q ? 86J 1SRUTWVYX ZF[ N]\^ OVYX Z [`_ C � 
�� =�a <cb`d� @: M N < ( @IO :0P < � VYX Z�[ _VBX Z [e_;f 1SRUTWVYX Z [ N \^ O � < bSd (3)
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We note that Equation (3) holds under the assumption that the
fading is identically distributed with the same fading parameter
and the same

� 

�
for all of the g channels associated with

the transmit and individual receive antennas. Further, we note
that diversity gain is in the order of the product of the transmit
and the receive antennas. Hence, a single transmit

?
receive

antenna system has a diversity gain of order
?

. The closed
form solution to the integral of (3) is expressed as# ����� � < ( @< J @:ih j@ f jik 8�: � �mlon97 ( @qp =srut ( @vxw  zy � vvG{ @| } N @ f j O�~���43x5�7 8 lon97 ( @ p = rut ( @vxw @ r v � w @��I� �N @ f j O � � �"�03 8 l�n�7 ( @ p = � � N v ( � O f @S�(4)

where � � � 

�4365�7 �08;:< = , p � h j@ f j �"�9l :< and � � v �8 [ �� =8 [�� ��� ������ � = } � | � N v ( � O f @�~ . Noting that the number of bits per symbol� is related to the number of signal points in the constellationg as � �����0� � g , the result of Equation (4) for a single trans-
mit single receive antenna system where

? � H
and QPSK

modulation where � �u�
and g ��� is expressed as# ���"� ���}W� H�J }�o: h 1SRUT� f 1SR�T ��: � �)n����]lon97 h 10R�T� f 1SR�T ��� (5)

Similarly, the result of Equation (4) for a single transmit double
receive antenna system where

? ���
and QPSK modulation is

expressed as# ���"� � �} J �: � 8 : � �¡l�n�7 ( @G¢ = 8IH � @� f 1SRUT =��3x5�7 8 �,l�n�7 ( @ ¢ = 8 @� N � f 1SRUT O = � (6)

where
¢ �£� 8 � 

� =x¤ 8 �¥� � 

� = � @ P � . We observe that the sym-

bol error rate of a single transmit double receive antenna system
is improved compared to that of a single transmit single receive
antenna system due to the receive diversity gain. Next, we in-
vestigate the symbol error rate for multiple transmit antenna
systems. We consider the space-time block codes (STBCs)
of [1] and [19] as they have been adopted by WCDMA and
CDMA2000 wireless standards. We note that STBCs achieve
the maximum diversity gain. Recalling that the diversity gain is
in the order of the product of the transmit and the receive anten-
nas, we pay attention that a double transmit single receive an-
tenna system achieves the same diversity gain as a single trans-
mit double receive antenna system. Under the assumption of
a fixed total amount of power available at the transmitter, in
each symbol interval the power is split equally between the two
antennas for a double transmit single receive antenna system.
On the contrary, in the case of a single transmit double receive
antenna system only one symbol is transmitted in each symbol
interval and the total energy is allocated to it. Therefore, tak-
ing into consideration the results of [18], the efficiency of the
former scheme suffers a 3 dB loss with respect to that of the lat-
ter scheme from the standpoint of the coding gain. Hence, by
replacing

� 

�
with 1SR�T� in Equation (6), one can obtain the

symbol error rate of a double transmit single receive antenna
system utilizing QPSK modulation as# ���"� � �} J �: � 8 : � �¡l�n�7 ( @ ¢ = 8IH � �} f 1SRUT =��3x5�7 8 �,l�n�7 ( @G¢ = 8 @} f 1SR�T = � (7)

where
¢ �¦� 8 � 

� =x¤ 8 �§� � 

� = � @ P � . Under the same line

of reasoning, one can obtain the symbol error rate of a double
transmit double receive antenna system by replacing

� 

�
with10R�T� in QPSK results of a single transmit quad receive antenna

system as# ���"� �¨�} J @: h 1SRUT} f 1SR�T k 8 : � �¡l�n�7 ( @ ¢ = r �vxw  y � vvG{ @| } f 1SR�T ~ ��4365�7 8 l�n�7 ( @G¢ = r �vxw @ r v � w @ } � � �N } f 1SR�T O � � �"�S3 8 lon�7 ( @G¢ = � � N v ( � O f @`�(8)
where

¢ �©� 8 � 

� =x¤ 8 �ª� � 

� = � @ P � and � � v is the element
located at row « and column ¬ of matrix � defined below.

� �®­¯±°s² ³9°9°0°®°s² � ³�°9°®°´² HFµ0µS¶° °s² · ¶ ³�°®°´² � °0¸9·° ° °´² · H � ³
¹º

We also note that various BPSK results can be obtained sim-
ilarly by setting g � �

in Equation (4). We finish this sec-
tion by noting that the per symbol average signal to noise ra-
tio
� 

� �I�"� is related to the per bit average signal to noise

ratio
� 

�

as
� 

� ���"� � � � 

� . Consequently, for the

choice of normalization factors � � R,»¼ |�½ ¾¿½ [ ~ , the relationship� 

� ���"� � � ���"� holds.

B. Loss and Channel Coder Analysis

Having specified the symbol error rate based on the chan-
nel characteristics, we propose utilizing a Reed-Solomon chan-
nel coder

� � 8YÀÁCoÂ = that converts
Â

information symbols into
an
À

-symbol block as the result of appending
8YÀ)J�Â = parity

symbols. Assuming
� � and

� ' respectively denote source and
channel coding bit rates, we note that utilizing such a channel
coding scheme introduces a channel code rate Ã �ÅÄÆ � TÈÇTÈÇ f TÈÉ .
The scheme also allows for correcting Ê ' �©Ë Æ ( Ä�ÍÌ symbol er-
rors. In order to calculate the error rate of a block utilizing
an
� � 8YÀÁC�Â = coder, we consider the single-state Bernoulli, the

two-state Gilbert [6], and the two-state Gilbert-Elliott [3] error
models. We note that while the first model represents a memo-
ryless channel, the other two represent channels with memory.
It is also important to note that the second model is a special
case of the third model.

The single state Bernoulli model is the simplest model de-
scribing symbol loss in a memoryless channel. In the Bernoulli
model, one assumes that the probabilities of loss among dif-
ferent symbols are temporally independent. Noting the fact that
losing more than Ê ' symbols from

À
transmitted symbols results

in a block loss, the probability of block loss, also known as the
residual symbol error rate, for the Bernoulli model is given byÎ 8YÀÁC Ê ' = � ÆÏ� wGÐ É f @�Ñ À «;Ò # � ���"� 8IHWJ # ���"� = N Æ ( � O (9)

where # ���"� is the symbol error rate.
As pointed out in many research articles, a multipath fad-

ing wireless channel typically undergoes burst loss representing
temporally correlated loss. The two-state Gilbert loss model
provides an elegant mathematical model to capture the loss
behavior of ever-changing channel conditions. In the Gilbert
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model, symbol loss is described by a two-state Markov chain
as described in Fig. 2. The first state & known as the GOOD
state represents the loss of a symbol with probability # * � ° or
no symbol loss at all while the other state Ó known as the BAD
state represents the loss of a symbol with probability #�Ô � H

.
The GOOD state also introduces a probability Õ * �×Ö of stay-
ing in the GOOD state and a probability

H�J Õ * of transition-
ing to the BAD state while the BAD state introduces a proba-
bility Õ,Ô �ÅØ

of staying in the BAD state and a probabilityHÙJ Õ�Ô of transitioning to the GOOD state. The parametersÖ
and

Ø
can be typically measured from the observed loss rate

and burst length. In [20], we study temporally correlated loss
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Fig. 2. The two-state Gilbert loss model with the state transition probabilitiesÚÈÛ	Ü´Ý
and
Ú�Û	Ü´Þ

for
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. The symbol loss probabilities
are specified by â Ý§ßäã and â Þ§ß4Ú .
behavior of IP packet networks employing the two-state Gilbert
loss model. In that article, we show that for the Gilbert loss
model, the closed form expression for the probability of receiv-
ing exactly

Â
symbols from

À
transmitted symbols is given byÕ 8BÀÁCoÂ = � Õ 8BÀÁCoÂqC & = � Õ 8BÀÁCoÂqC Ó = (10)

The probability of receiving exactly
Â

symbols from
À

trans-
mitted symbols and winding up in the GOOD state Õ 8YÀÁCoÂGC & =
is given byÕ 8YÀÁC�ÂqC & = �Ö � Ä ( Æ 86HWJ Ø = 8IH�J Ö = �r Æ ( Ä ( @� w  y Æ ( Ä ( @� { y Ä� f @ { 8 ØåÖ = Æ ( Ä ( @ ( � � 8IH�J Ø = 86H�J Ö = � �� . �I� � Ö � Ä ( Æ ( @ 8IH�J Ø = �r Æ ( Ä� w  �y Æ ( Ä� { y Ä ( @� { 8 ØåÖ = Æ ( Ä ( � � 8IH�J Ø = 8IH�J Ö = � ���æ �I�

(11)
for

ÀÅçèÂ � H
, steady state probability of the GOOD state. �I� � @ (¿é� (�ê0(¿é , and steady state probability of the BAD stateæ �6� � @ (¿ê� (¿êS(sé . Similarly, the probability of receiving exactlyÂ

symbols from
À

transmitted symbols and winding up in the
BAD state Õ 8YÀÁC�ÂqC Ó = is given byÕ 8YÀÁC�ÂqC Ó = �Ö � Ä ( Æ f @ 8IH�J Ö = �r Æ ( Ä ( @� w  y Æ ( Ä ( @� { y Ä � { 8 ØåÖ = Æ ( Ä ( @ ( � � 8IH�J Ø = 8IH�J Ö = � �� . �6� � Ö � Ä ( Æ 8IH�J Ø = 86H�J Ö = �r Æ ( Ä ( @� w  y Æ ( Ä� f @ { y Ä ( @� { 8 ØåÖ = Æ ( Ä ( @ ( � � 8IH�J Ø = 8IH�J Ö = � ���æ �I�

(12)
The initial conditions for Equation (11) and Equation (12) are

expressed below.Õ 8�ÂqC ° C & = � °Õ 8�ÂqC�ÂqC Ó = � °Õ 8�ÂqC�ÂqC & = �ëÖ Ä . �6� � 8IH�J Ø = Ö N Ä ( @6O æ �I�Õ 8�ÂqC ° C Ó = � 8IH�J Ö = Ø N Ä ( @6O . �I� �%Ø Ä æ �I� (13)

While our model is of special interest from the standpoint of
providing an analytical lower-complexity solution to a power
optimization problem such as the one proposed in [13], we take
a step further in this study by utilizing the Gilbert-Elliott loss
model to best describe the loss behavior of a wireless channel.
We note that the two-state Gilbert-Elliott loss model is a gen-
eralization of the two-state Gilbert loss model with non-trivial
symbol loss error probabilities # * and # Ô where # *Eìíì # Ô .
In [9], we provide effective ways of measuring the parameters
of the Gilbert-Elliott loss model. Further, the work of [17] de-
scribes how different methods of capturing memory in analog
communication channels such as Doppler’s shift in Rayleigh
fading or Jake’s fading model can be related to capturing mem-
ory in digital communication channels such as the Gilbert-
Elliott model. For the Gilbert-Elliott loss model, the probability
of receiving exactly

Â
symbols from

À
transmitted symbols is

still described by Equation (10). However, the recursive proba-
bilities of receiving exactly

Â
symbols from

À
transmitted sym-

bols and winding up in the GOOD state and the BAD state are
respectively given byÕ 8YÀÁC�ÂqC & = �# * � Ö Õ 8YÀäJîH9C�ÂqC & = � 86H�J Ø = Õ 8YÀäJîH9C�ÂqC Ó = �8IH�J # * = � Ö Õ 8YÀ±JïH0CoÂÙJïH0C & =� 86H�J Ø = Õ 8YÀäJîH9CoÂÙJîH9C Ó = � (14)

and Õ 8YÀÁC�ÂqC Ó = �# Ô � 8IH�J Ö = Õ 8YÀ±JïH0CoÂqC & = �ðØ Õ 8BÀ±JîH9C�ÂqC Ó = �86H�J # Ô = � 86H�J Ö = Õ 8BÀcJîH9C�Â!JîH9C & =��Ø Õ 8BÀcJîH9C�ÂÙJïH0C Ó = � (15)

for
À4ç�Âcñ ° and the initial conditionsÕ 8 ° C ° C & = � . �I� � @ (¿é� (�ê0(¿éÕ 8 ° C ° C Ó = �òæ �I� � @ (¿ê� (�êS(séÕ 86H9C ° C & = � # * � Ö . �I� � 86H�J Ø = æ �I� �Õ 86H9C ° C Ó = � #;Ô � 86H�J Ö = . �I� �ðØ	æ �6� � (16)

Utilizing Equation (10) along with Equation (14) and Equation
(15) for the Gilbert-Elliott model, the probability of a block loss
is given by Î 8BÀÁC Ê ' = � HäJ ÆÏÄ w Æ ( Ð É Õ 8YÀÁC�Â = (17)

It is also important to note that using the two-state Gilbert-
Elliott model calls for changing Equation (2) in order to dis-
tinguish between the symbol error rates of the GOOD state and
the BAD state. Assuming

�>��� � * � � � denotes the expectation of
the square of the envelope in the GOOD state, the average re-
ceived signal to noise ratio of the GOOD state is expressed as� 
�� * ������� � * � � ��� �I�"�
! (18)
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Similarly, the average received signal to noise ratio of the BAD
state is expressed as� 

� Ô ���>��� � Ô � �"� � �����
! (19)

where
�>��� � * � � � ñíñ ����� � Ô � � � and the other parameters are the

same as in Equation (2).

IV. SOURCE CODING AND DISTORTION ANALYSIS

In this section, we focus on the source coding and the distor-
tion analysis. In order to validate our model, we first provide an
analysis of distortion utilizing a Gauss-Markov source model
and then continue with an experimental video source model.

A. Analysis of Distortion based on the Gauss-Markov Source
Model

In this subsection, we provide an analysis of the distortion
utilizing the so-called Gauss-Markov model. We note that the
analysis of this section is provided as a proof of concept. In the
next section, we provide an analysis for a more realistic model
using an experimental H.263 video source coding model.

For the source coding analysis of this section, we use a first
order Gauss-Markov source with a variance ó �ô � and a correla-
tion coefficient õ . As described in [5], utilizing such a model
for a transform coder introduces an operational distortion-rate
function in the form ofö Ð ' 8 � � = � p ó �ô � 86H�J õ � =�÷ �Sø÷ � ( � T Ç (20)

where ù is the block length of the transform coder,
p

is a con-
stant depending on the quantizer used for the transform coeffi-
cients, and

� � is defined in the previous section. We note that
the Gauss-Markov model of Equation (20) is reduced to a pure
Gaussian source model by setting õ � ° . Hence, the follow-
ing discussion is also applied to a pure Gaussian source. For
a Gauss-Markov source any symbol associated with an unre-
covered block at the channel coder is best represented by the
Gaussian mean. Such a representation results in an average dis-
tortion of ó �ô � . Consequently, the overall distortion at the de-
coder is calculated by taking the average of block recovery and
block loss distortions multiplied by their associated probabili-
ties. Assuming a block loss probability of

Î 8YÀÁC Ê ' = , the overall
distortion

ö Ð � ÐBú]û is calculated asö Ð � ÐBú]û � ö � � öýü� 86HWJ Î 8YÀÁC Ê ' =6= ö Ð ' � Î 8YÀÁC Ê ' = ó �ô � (21)

Again, we note that the probability of a block loss can be cal-
culated from Equation (9) and (17) in the case of utilizing the
Bernoulli loss model and the Gilbert (or the Gilbert-Elliott) loss
model, respectively.

B. Analysis of Distortion based on An Experimental H.263
Video Source Model

In this subsection, we provide an analysis of distortion uti-
lizing a more realistic H.263 compliant source coder. For the

source coding analysis of this section, we rely on the exper-
imental results of Stuhlmuller et al. [16]. The experimental
distortion model of [16] consists of two components

ö � andöýü
respectively imposed by the source encoder and the channel

noise. The model relies on an INTRA update scheme forcing a
macroblock (MB) to be coded in the INTRA-mode after everyþ JîH

MBs and resulting in a source encoder distortion ofö � 8 ÿWC � � = � � 8Yÿ =� � J ��� 8Yÿ = � ö �S8 ÿ = (22)

where
ÿ � @� is the INTRA rate,

� � is the encoding bit rate inÂ æ����
, and

ö � is the distortion in terms of the mean square error
per source sample. The measurements of [16] also suggest that
the distortion-rate parameters

�
,
�  

, and
ö  

depend linearly on
the percentage of INTRA coded macro blocks

ÿ
as shown by

the following equations.

� � � / �
	 � / ÿ� � �×� � / ��	Ù� � / ÿö � � ö � / ��	 ö � / ÿ (23)

The model parameters
� / ,

	 � / ,
��� / ,

	ý��� / ,
ö � / , and

	 ö � /
characterize the coding of the input video sequence with the
given motion compensated H.263 encoder in baseline mode. It
is important to note that the parameters highly depend on the
spatial detail and the amount of motion in the sequence.

Reference [16] also proposes that the video coder distortion
caused by transmission errors is expressed asö ü 8YÿWC Î = � ó ��  Î 8BÀÁC Ê ' = � ( @Ï ÐYw  H�J4ÿ ÊH ��
 Ê (24)

where leakage



describes the efficiency of loop filtering to re-
move the error and ó ��  describes the sensitivity of the video
decoder to an increase in error rate. In addition, the the proba-
bility of a block loss

Î 8BÀÁC Ê ' = can be calculated as described in
the previous section. The overall distortion

ö Ð � ÐBú�û at the video
decoder is then calculated asö Ð � ÐBú]û � ö � � ö ü (25)

V. POWER OPTIMIZATION

In this section, we focus on power optimization of a mobile
device used in a wireless media system with space-time block
codes. Recalling that the overall power consumed in a mobile
device is associated with source coding, channel coding, and
transmission, we first introduce individual terms expressing the
consumed power of different components. We then proceed
with the formulation of the power optimization problem and
the solution to it.

A. Power Optimization Formulation

The first power consumption component of the underlying
wireless system is the source encoder. We consider the power
consumption of the source encoder in the case of utilizing both
the Gauss-Markov source of Section IV.A and the video source
of Section IV.B.
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We start by considering the power consumption of the Gauss-
Markov source encoder of Section IV.A. Considering the fact
that the encoder rate is the dominant factor of the power con-
sumption of a Gauss-Markov source encoder, we express the
power consumption of such a source encoder as a linear func-
tion of the encoder rate, i.e.,Õ � 8 � � = ��� � 8�� û � �
� û � � � = (26)

where
� û � and

� û � are the linear model constants.
Next, we consider the power consumption of the video

source encoder of Section IV.B. Reference [13] proposes the
following average power consumption model for an H.263
coder Õ � 8 ÿWC � � = ��� Ç���� R����� � 8 ���! � � �#" =� 8 þ JïH = 8 ���! � � �#" � � t%$ = � (27)

where
� � is the weighting factor introduced to allow for the

scaling of the model based on the actual power consumption
of a particular implementation, &(' is the frame rate,


 t Ô is
the number of macroblocks in a frame, and

þ
is described in

Section IV.B. Further � �! � , � " , and � t%$ respectively de-
note the energy consumed by DCT, quantization including the
energy consumed by variable length coding (VLC), and motion
estimation. Assuming� � � & ' 
 t Ô 8 �#�! � � � t%$ =æ � � & ' 
 t Ô � t%$� � � & ' 
 t Ô $*)T Ç (28)

Equation (27) can be expressed asÕ � 8 ÿWC � � = ��� � 8�� � J æ � ÿ �+� � � � = (29)

where
� � , æ � , � � are described in terms of the energy consump-

tions of different source coding components,
ÿ

is again the
source coder INTRA rate, and

� � again indicates the source
coding bit rate. The authors of [13] confirm that the mea-
sured power consumptions for encoding the sequences Con-
tainership.qcif, Foreman.qcif, MotherDaughter.qcif, News.qcif,
and SilentVoice.qcif with an H.263 encoder fit the model pa-
rameters of Equation (29) quite accurately. We note that the
consistency of the models of Equation (29) and Equation (26) is
verified by noting that when there is no motion estimation, i.e.,
all of the macro block are coded in INTRA-mode with

ÿ � H
,

Equation (29) is reduced to Equation (26).
The second power consumption component of the underlying

wireless system is the channel coder. Reference [4] models per
bit energy consumption of a Reed-Solomon

� � 8YÀÁC�Â = encoder
as Õ ' 8 � � C � ' = ��� ' À � � � '� 8 � � �L� ' = (30)

where
� ' is a scaling factor and � is the number of bits per

symbol.
Finally, the third power consumption component of the un-

derlying wireless system is the transmitter. The total transmis-
sion power is given byÕ Ð 8 � � C � ' C � ���"� = ��� Ð �K���"�� 8 � � �)� ' = (31)

where
� Ð is a scaling factor that maps the radiated energy into

the actual transmission power of a wireless device. We note
that the relative choice of the parameters

� � , � ' , and
� Ð with re-

spect to each other can identify whether the underlying coding
techniques rely on hardware or software implementation. Us-
ing the existing technologies,

� � is about two orders of magni-
tudes greater than

� ' for both hardware and software implemen-
tations. However,

� � and
� Ð are in the same order of magnitude

for a hardware implementation technique where as the former
is an order of magnitude larger than the latter for a software
implementation technique [13]. While we focus on a hardware
implementation technique in our work, investigating a software
implementation technique is also straightforward.

Having expressed all of the power consumption components
as well as the distortion terms, we now formulate our power
optimization problem subject to distortion and rate constraints
as

, 5�7-�. T Ç . T É . $ Ç0/�1 Õ Ð � ÐBú�û � Õ � � Õ ' � Õ Ð (32)

Subject To:
ö Ð � ÐBú]û � ö � � öåü32 ö  

(33)� Ð � ÐBú�û � � � �E� ' 2 �  
(34)

In the rest of this section, we use the general video source
model of Section IV.B, making note of the fact that the model
of Equation (29) can be reduced to that of Equation (26) by
setting

ÿ � H
and considering

� û � � � � J æ � and
� û � �4� � .

We observe that for a single/multiple transmit/receive antenna
wireless system utilizing the L-PSK modulation scheme, the
objective function and inequality constraints of the above op-
timization problem can be expressed in terms of optimization
variables

ÿ
,
� � , � ' , and � �I�"� as well as some constants. The

following equations illustrate the matter in the case of a double
transmit single receive wireless system, the QPSK modulation
scheme, the H.263 source encoder model of Section IV.B, and
the Bernoulli channel. First, the total power is expressed asÕ Ð � ÐBú�û ��� � 8�� � J æ � ÿ �+� � � � = �� ' Æ TÈÇ6TÈÉ� N T Ç f T É O �5� Ð $ Ç0/�1� 8 � � �L� ' = (35)

Next, the distortion terms are expressed asö � � 687 f�9 6�7:-T Ç ( N T » 7 f�9 T » 7 - O � ö  / �
	 ö  / ÿöåü � ó ��  Î r � ( @ÐYw  @ ( - Ð@ f<; Ð �ó ��  r � ( @ÐYw  @ ( - Ð@ f=; Ðcr ÆÄ wGÐ É f @ y Æ Ä { 8 # �I�"� = Ä 8IH�J # ���"� = Æ ( Ä
(36)

Finally, the symbol error rate term is expressed as# ����� � �} J �: � 8 : � �Llon97 ( @ ¢ = 86H � �} f $ Ç0/�1 =� 365�7 8 �,lon97 ( @ ¢ = 8 @} f $ Ç0/�1 = � (37)

where
¢ ��� ���I�"� ¤ 8 ��� �K���"� = � @ P � . The derivation of the equa-

tions is similar for the L-PSK modulation relying on Equations
(29), (30), (31) along with (22), (23), (2), (4), (9), and (24).

B. Power Optimization Solutions

In this section , we provide a discussion of solving the opti-
mization problem formulated by Equation (32) along with the
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constraint set (33) and (34). Again considering the general form
of Equation (29), we use the video source model of Section IV.B
in the discussion of this section. Further, we consider two sce-
narios.

In the first scenario, we assume that the cost function and the
constraints of the optimization problem can all be expressed in
closed form. Under the assumption of continuous differentia-
bility, this results in introducing analytical solutions. Clearly,
the case of the Bernoulli loss model and the Gilbert model are
covered under this scenario. Relying on the Lagrangian the-
ory, we convert the problem to an optimization problem with-
out constraints. We define the Lagrangian function of Equation
(32) asg & / � Õ � � Õ ' � Õ Ð �> @ 8 ö � � ö ü J ö  = � > � 8 � � �E� ' J �  = (38)

where the parameters > @ and > � are the Lagrange multipliers in
the Lagrangian Equation (38). The unconstrained minimization
problem for ? � � ÿWC � � C � ' C � ���"� � is defined as

, 5�7A@ g & / � , 5�7B@ � Õ � � Õ ' � Õ Ð �> @ 8 ö � � öåü J ö  = � > � 8 � � �E� ' J �K = �
(39)

Conditions of Optimality: Constraint Qualifications

We now investigate the existence of necessary and sufficient
optimality conditions also known as constraint qualifications.
For our unconstrained minimization problem

, 5�7-�. TÈÇ . TÈÉ . $ Ç�/�1 g & / (40)

the constraint qualifications are expressed in terms of Lagrange
multiplier theory [2]. They revolve around conditions un-
der which Lagrange multiplier vectors satisfying the follow-
ing conditions are guaranteed to exist for a local minimum?#C � � ÿ C C � C� C � C' C � C���"� � . The local minimum satisfiesD g & / 8 ? C = � ° (41)

where
D g & / �%��E < * 7EF- C E < * 7E T Ç C E < * 7E T É C E < * 7E $ Ç�/�1 C E < * 7EHG ø C E < * 7EHG [ � .

Further, > CÄ ç ° for
Â � H9C �

if associated with an active in-
equality at ? C , i.e.,I > C@ ç ° J «�& ö � � öåü � ö  > C@ � ° J4K Ê�Ls# ÃNMW« � # (42)

and I > C� ç ° J «�& � � �L� ' �u�K > C� � ° J4K Ê�L¿# ÃHM�« � # (43)

Constraint qualifications guarantee the existence of unique La-
grange multipliers for a given local minimum ? C if the active
inequality constraint gradients of (33) and (34) are linearly in-
dependent [2].

We note that the objective function (32) defined over a com-
pact subset of O } is continuously differentiable and the con-
straint gradients of (33) and (34) are linearly independent. Find-
ing the solution to the optimization problem is, therefore, equiv-
alent to finding the solution to the equation set (41) specifying
optimization variables

ÿ
,
� � , � ' , and ������� .

Further, it is important to observe that the formulated prob-
lem of (32) is subject to discrete constraints applied to the
source coding variable

ÿ � @� and the channel coding variableÃ � ÄÆ � TÈÇTÈÇ f TÈÉ . Solving the problem of (32) is, hence, cate-
gorized under discrete constraint optimization problems which
can be solved with the following approach. The approach is
to add extra discrete constraints effectively changing the for-
mulation of the optimization problem from a NonLinear Pro-
gramming (NLP) to a Mixed Integer NonLinear Programming
(MINLP) in which the variables

ÿ
and

� ' can only take on
discrete values. In this approach, one selects the best solution
among the set of solutions to the problems obtained for different
discrete values of the optimization parameters [2].

In the second scenario, we consider the cases in which the
cost function and/or some of the optimization constraints can-
not be expressed in closed form. This is clearly seen in the case
of the Gilbert-Elliott loss model in which the video coder dis-
tortion constraint of (24) cannot be expressed in a closed form.
Considering the fact that constraints (33) and (34) are convex1

, we propose deploying the Sequential Quadratic Programming
(SQP) technique. In SQP the necessary conditions for optimal-
ity are represented by the Karush-Kuhn-Tucker (KKT) condi-
tions described as the collection of Equation (41) and the fol-
lowing relationships.

> C@ 8 ö C� � ö Cü J ö C = � °> C� 8 � C� �)� C' J � C = � °> C@ C > C� ç ° (44)

A variant of the quasi-Newton method can then be used to iter-
atively find the solution to the optimization problem [14]. This
is equivalent to solving a quadratic estimation of the problem in
every iteration.

We end this section by providing an analysis of the com-
plexity for the two scenarios described above. Taking the dis-
crete constraints into consideration and assuming

�
represents

the number of parameter combinations, the time complexity of
solving the problem of (41) for the first scenario is P 8 � b ���9� b =
where

b
indicates the degree of (41). The complexity deter-

mines the overall complexity of the solution considering the
fact that the rest of the calculations are in a lower time complex-
ity order. Similarly, the time complexity of solving the problem
of (41) for the second scenario is P 8�Q � b ���9� b = where

Q
indi-

cates the number of iterations and
b

indicates the degree of the
quadratic estimation. We have observed that an average of ten
and no more than twenty iterations are required for convergence
in the case of the second scenario. The complexity results are,
therefore, quite good compared to other recursive optimization
approaches such as dynamic programming introducing a time
complexity in the order of P 8 � b � = .

VI. NUMERICAL ANALYSIS

In this section, we numerically validate our results. Before
proceeding with the explanation of our numerical results, we
note that we are solving the power optimization problem forR

The function SUTWVYX Û[Z]\#^
defined over the convex set V`_ \�^ is called

convex if a(b Rdc b(e:fgV and
ã�hji%h Ú

the inequality Slk i b Rnm k Ú�ÛYino b(e ophi Slkqb R o m k Ú�Ûrino Slksb(e o holds.
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both single and double transmit antenna wireless systems. In
the case of a double transmit antenna system, we assume that
two signals are transmitted simultaneously from the two trans-
mit antennas at each time slot using STBCs of [1] and [19].
In addition, we assume that the slow fading wireless channel
characterized by a Rayleigh distribution is quasi-static and flat
implying that the path gains are constant over a frame but vary
independently from one frame to another.

Our experiments simulate a wireless environment in which
different uplink, downlink, and mobile-to-mobile transmission
scenarios are possible. However considering the power lim-
itation of mobile nodes, the scenarios of interest are uplink
(mobile-to-base) and mobile-to-mobile transmissions. Assum-
ing a mobile node may contain one or two transmit/receive an-
tennas, we investigate different combinations of one or two
transmit antennas with one or two receive antennas. More
specifically, we consider four transmission scenarios: (1) a sin-
gle transmit single receive (ST/SR) antenna system, (2) a single
transmit double receive (ST/DR) antenna system, (3) a double
transmit single receive (DT/SR)antenna system, and (4) a dou-
ble transmit double receive (DT/DR) antenna system.

When utilizing the Gauss-Markov source of Section IV.A,
we report our results for õ � °s² t indicating a highly correlated
source with a behavior close to a video source and/or a speech
source. Our experiments for the H.263 video source encoder
of Section IV.B span over source coding parameter settings as-
sociated with the sequences Containership.qcif, Foreman.qcif,
MotherDaughter.qcif, News.qcif, and SilentVoice.qcif. How-
ever, we only report the results for Containership.qcif and Fore-
man.qcif. In addition, we select the scaling factors

� � � C � ' C � Ð � as� H9C °´² ° H9CFH � representing transmission systems using hardware
coding implementation.

Despite the fact that our experimentation set up is fairly
close to that of [13], we do not directly compare our results
of utilizing the video source encoder of Section IV.B with the
results reported there. This is because our model relies on
the more general Gilbert-Elliott model rather than the Gilbert
model of [16] and [13]. Furthermore, our model relates the
average received signal to noise ratio to a Rayleigh distri-
bution rather than the distance. We believe that our model
is more suitable for wireless channels due to the considera-
tions of the fading effects. Instead, we compare the results
of utilizing ST/SR, DT/SR, ST/DR, and DT/DR antenna sys-
tems in a Rayleigh fading channel under both Bernoulli and
Gilbert-Elliot loss models. We also note that when the loss
behavior of the channel is characterized by the Gilbert-Elliott
model, we set

�>��� � * � � �K� H ° �>��� � Ô � � � to distinguish between
the GOOD state and the BAD state. In the latter case, the
parameters of the model

� Ö C ØÈ�
are set to

� °s² tut9¸ ¶ · C °´² ¸ ¶ ³ � in-
dicating an average burst length gUÔ � @@ (¿é � ¸ . Set-
ting a block length of

À � �0�9�
symbols for the RS coder

with BPSK and QPSK modulations, we allow the H.263 video
source coding variable

þ
and channel coding variable

Â
to

assume values from the discrete sets
� � C · C ³ C t C�H � CFHFµ´C � ³ C · �;�

and
� � ° C�C ³�° Coµ ° C�¶ ° C ¸0° C t0° C�H °�° CFH�H � C�H �9� C�H · � CFH �S� C"H ³ � C�H�µ � ��v� H;¶ � C�H ¸ � C�H t � C � ° � � , respectively. For a given bit rate

�  
of up

to
� ³ µuw æ��p� indicating the achievable bit rate of the 3G wire-

less standard, we plot the optimal power values obtained for

maximum acceptable distortion measures. We map the distor-
tion measure

ö  
to peak signal to noise ratio Õ � 

� measure

as Õ � 

� � H °!x�K . @  �zy8y [� » when comparing different combina-
tions of transmit and receive antennas together.

Utilizing the Gauss-Markov source of Section IV.A., Fig.
3 plots the optimal values of Õ Ð � ÐBú�û , the total power for the
BPSK modulation scheme versus the peak signal to noise ra-
tio Õ � 

� . We note that Õ � 

� metric is used instead of the
more meaningful distortion metric in order to provide consis-
tency with the plots of the video sequences provided next. The
results have been obtained for normalized values of

p
, ó �ô � ,�>��� � � � � , 
! , and a channel loss characterized by the Bernoulli

model. Fig. 4 plots similar curves for normalized values of
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Bernoulli Channel: Gauss−Markov Sequence: R0=64kbps

ST/SR Antenna BPSK
DT/SR Antenna BPSK
ST/DR Antenna BPSK
DT/DR Antenna BPSK

Fig. 3. BPSK plot of optimal power versus peak signal to noise ratio for
single/double transmit/receive antenna systems. A Gauss-Markov source with
parameter { ß±ãH| } and the Bernoulli loss model have been considered.p
, ó �ô � ,

�>��� � * � � � , 
! , and a channel loss characterized by the
Gilbert-Elliott model.
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Gilbert−Elliott Channel: Gauss−Markov Sequence: R0=64kbps

ST/SR Antenna BPSK
DT/SR Antenna BPSK
ST/DR Antenna BPSK
DT/DR Antenna BPSK

Fig. 4. BPSK plot of optimal power versus peak signal to noise ratio for
single/double transmit/receive antenna systems. A Gauss-Markov source with
parameter { ß±ãH| } and the Gilbert-Elliott loss model have been considered.

Utilizing Containership and Foreman video sequences, Fig.
5 and Fig. 6 respectively plot the optimal values of the total
power for the QPSK modulation scheme versus the peak signal
to noise ratio. The results have been obtained for normalized
values of ó ��  , � ¼ | ½ ¾s½ [ ~R » , and a channel loss characterized by the
Bernoulli model. Fig. 7 and Fig. 8 plot similar curves for

normalized values of
p
, ó �ô � ,

� ¼ |�½ ¾¿½ [ ~R�» , and a channel loss char-
acterized by the Gilbert-Elliott model.
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Bernoulli Channel: Conatinership Video Sequence: R0=128kbps

ST/SR Antenna QPSK
DT/SR Antenna QPSK
ST/DR Antenna QPSK
DT/DR Antenna QPSK

Fig. 5. QPSK plot of optimal power versus peak signal to noise ratio for sin-
gle/double transmit/receive antenna systems. Containership.qcif video source
and the Bernoulli loss model have been considered.
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Bernoulli Channel: Foreman Video Sequence: R0=256kbps
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Fig. 6. QPSK plot of optimal power versus peak signal to noise ratio for
single/double transmit/receive antenna systems. Foreman.qcif video source and
the Bernoulli loss model have been considered.

The most striking observation when comparing the results
of the figures is the fact that the optimal power of a DT/DR
antenna system is consistently lower than that of the rest. In ad-
dition, the optimal power of an ST/SR antenna system is higher
than that of the rest. Comparing the optimal power of an ST/DR
antenna system with that of a DT/SR antenna system, we ob-
serve that the former introduces a lower optimal power. Con-
sidering the fact that the diversity gain is in the order of the
product of the transmit and the receive antennas, both schemes
achieve a diversity gain of order two. However recalling the dis-
cussion of Section III.A, we note that from the signal to noise
ratio standpoint the power efficiency of the latter scheme suffers
a 3 dB loss compared to that of the former scheme for the same
transmission power. This justifies the lower optimal power of
an ST/DR antenna system compared to that of a DT/SR antenna
system.

In addition, the following comments are in order. First, we
observe that plotting the optimal values of power Õ Ð � ÐBú�û versus
the values of available bit rate

�  
for a fixed quality of ser-

vice Õ � 

� or
ö  

yields similar qualitative results as the ones
shown in the above figures, i.e., the optimal power curves are
non-decreasing functions of the available bit rates

�  
. How-

ever, we have observed that the impact of increasing the value
of
�  

for a given Õ � 

� on the overall optimal power is not
as significant as the impact of increasing the value of Õ � 
��
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Gilbert−Elliott Channel: Conatinership Video Sequence: R0=128kbps

ST/SR Antenna QPSK
DT/SR Antenna QPSK
ST/DR Antenna QPSK
DT/DR Antenna QPSK

Fig. 7. QPSK plot of optimal power versus peak signal to noise ratio for sin-
gle/double transmit/receive antenna systems. Containership.qcif video source
and the Gilbert-Elliott loss model have been considered.
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Gilbert−Elliott Channel: Foreman Video Sequence: R0=256kbps

ST/SR Antenna QPSK
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Fig. 8. QPSK plot of optimal power versus peak signal to noise ratio for
single/double transmit/receive antenna systems. Foreman.qcif video source and
the Gilbert-Elliott loss model have been considered.

for a given
�K 

. In other words, the four curves illustrated in
different figures are closer to each other. Second, comparing
the results of Containership.qcif with those of Foreman.qcif, we
observe similar qualitative behaviors with higher optimal power
values in the case of the second sequence. The results are ex-
pected considering the higher motion of the second sequence
compared to the first. Third, we have conducted another set
of experiments for a channel loss characterized by the Gilbert-
Elliott model and an average burst length of g Ô � @@ (sé � · � .
Although not shown in the figures, our findings exhibit a similar
qualitative behavior and are consistent with the reported results
of this section. Fourth, we observe a similar qualitative be-
havior regardless of utilizing BPSK or QPSK. Finally, we note
that the choice of scaling factors in our reported experiments
indicates a scenario in which source and channel coders are im-
plemented in hardware. The results of software implementation
are similar and are not reported here.

At the end of this section, we study the distribution of the
power components. Fig. 9 shows a sample plot of the optimal
power components of source coding Õ � , channel coding Õ ' , and
transmission Õ Ð along with the total optimal power Õ Ð � ÐBú�û for
an ST/SR antenna system. We provide a set of observations
that are based on Fig. 9 and similar figures not shown here for
DT/SR, ST/DR, and DT/DR antenna systems. The first impor-
tant observation is that the allocation of power is qualitatively
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ST/SR: Bernoulli Channel: Foreman Video Sequence: R0=256kbps
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Fig. 9. Total optimal power and its allocation among source coding, chan-
nel coding, and transmission. An ST/SR antenna system, QPSK modulation,
Foreman.qcif video source, and the Bernoulli loss model have been considered.

the same for different choices of video sources, channel mod-
els, and number of transmit/receive antennas. The allocation of
source coding power increases very little while the allocation
of channel coding and transmission powers increase with much
higher rates for higher QoS metrics. We have also observed
that the distance between the curves of Õ Ð and Õ ' remain the
same for different choices of system parameters. The second
observation is that by increasing the number of transmit and/or
receive antennas the intersection point of the plots of transmis-
sion and source coding shifts to the right. This indicates that
less power has to be assigned to the transmission component as
the result of improving transmission efficiency. The intersec-
tion point moves from the left to the right for the combinations
ST/SR, DT/SR, ST/DR, and DT/DR antenna systems.

VII. CONCLUSIONS

In this paper, we presented some solutions to the general
problem of power control in wireless media systems with mul-
tiple antennas. We provided an analysis of the underlying wire-
less system consisting of transmitting, channel, and receiving
sides. Relying on our analysis results, we formulated an op-
timization problem aimed at minimizing the total power con-
sumption of wireless media systems subject to a given qual-
ity of service level and an available bit rate. Our formulation
considered the power consumption related to source coding,
channel coding, and transmission of double transmit antennas.
While our source coding analysis used both a Gauss-Markov
source and a video source, our channel coding analysis relied
on a Rayleigh fading channel along with the Bernoulli/Gilbert-
Elliott loss models. Finally, our transmission analysis used
space-time block codes. We evaluated the performance of
our power optimized solution for both single/double trans-
mit/receive antenna systems and observed that utilizing a dou-
ble transmit double receive antenna system provided lowest op-
timal power values. The optimal power values of a single trans-
mit double receive antenna system were the next best followed
by those of a double transmit single receive antenna system and
a single transmit single receive antenna system.

We are currently working on the expansion of our results into
the layered and replicated media scenarios as a general com-
bined framework for distributing multimedia content over the

wireless backbone. We are focusing on both coding and net-
working aspects of the problem. In addition, we are developing
novel content processing algorithms capable of providing video
summaries, thereby further reducing the power consumption of
a wireless system.
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