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Abstract— Addressing the tradeoff between the QoS and con-
sumed power is a critical issue for wireless ad-hoc networks. The
loss observed in such networks is often temporally correlated.
This paper examines an optimal scheme to maximize the aggre-
gate data rate of wireless ad-hoc networks under the power and
loss constraints. In order to properly model temporally correlated
loss observed in a fading wireless channel, we propose the use of
finite-state Markov chains. Details of fading statistics of signal-to-
interference ratio (SIR), an important indicator of transmission
quality, are presented. We also analyze the impacts of enforcing
power, block-loss probabilities, and data rates constraints.

Index Terms— Wireless Ad-Hoc Networks, Rayleigh Fading
Channel, Throughput Maximization, QoS, Markov Chain Model,
Reed-Solomon Channel Coder, Adaptive Modulation.

|. INTRODUCTION

Recent proliferation of wireless devices has greatly facili-
tated access and exchange of information. Ad-hoc networks are
a special class of wireless networks where there is no such fixed
infrastructure as base stations for allocating channels, control-
ling usage, or provisioning of services. Rather, they need to
be adaptively self-organizing. Any node in an ad-hoc network
can transmit, receive, or relay signals. Optimal allocation of re-
sources under the power constraint is critical both for increased
utilization of the limited wireless spectrum and for longer bat-
tery life of the mobile devices. Such an optimal allocation intro-
duces an intelligent way of providing the desired level of quality
of service (QoS) under the power constraints in wireless envi-
ronments.

Due to the openness of transmission media, communica-
tion over a wireless link is prone to interferences from other
links in addition to noise. Often times, the former factor has a
much greater effect than the latter. While increasing the trans-
mission power of a user in an ad-hoc network will make the
outgoing link more reliable, it also shortens battery life and
causes interference to other users. Hence, the observed signal-
to-interference ratio (SIR) at the receiver is introduced to cap-
ture the tradeoff. Further, considering the mobility of the nodes
in an ad-hoc network, links are subject to the Doppler spread.
Although temporal correlation between signals cannot be ne-
glected, to date only few articles have utilized accurate models
of capturing temporally correlated loss of the wireless channel.

Among the common models proposed to characterize a flat
Rayleigh fading channel, one can find the Gilbert-Elliot channel
model of [4] followed by the model of [9] extending the original

model to a finite state Markov chain model. In [8], Tan et al. ex-
amined the validity of an amplitude-based finite-state Markov
chain model under the assumption that the use of the first-order
and second-order fading statistics can potentially improve the
system performance. Yousefi’zadeh et al. considered the two-
state Gilbert-Elliott loss model to capture temporally correlated
loss when optimizing total power consumption in end-to-end
transmission of multimedia content over wireless fading chan-
nels [10]. Hayajneh et al. [5] proposed a game-theoretic power
control algorithm for wireless channels. Relying on Geometric
Programming, a special case of convex optimization, Chiang et
al. [2] solved a set of resource allocation problems for QoS pro-
visioning in wireless ad-hoc networks. However, neither paper
took into account temporally correlated loss and time-varying
characteristics of the wireless channel.

The main contribution of our work is integrating a finite-
state Markov chain model into resource allocation problems in
wireless ad-hoc networks without incurring prohibitive over-
head. Relying on more accurate characterization of wireless
channels specifically a Rayleigh fading channel model, we pro-
pose the use of temporally correlated block-loss probabilities
in measuring QoS. Our approach is straightforward to extend
to other channel models such as Ricean and Nakagami fading
channels. The rest of this paper is organized as follows. In Sec-
tion I, we assess the underlying system model. More specif-
ically, first we analyze first-order and second-order statistics
of SIR. Second, we express the symbol error rate as a func-
tion of the average received SIR. We also examine the block-
loss probability based on symbol error rate and a finite-state
Markov chain loss model. In Section 111, we formulate a re-
source allocation problem aimed at maximizing the overall sys-
tem throughput subject to power and loss constraints. Detailed
problem formulation and solution are presented. Section IV
provides simulation results. Finally, Section V concludes this
work and discusses future work.

Il. SYSTEM MODEL ASSESSMENT

In this section, we assess the system model utilized for our
problem. From the perspective of a system, we seek to max-
imize the overall throughput under the constraints related to
powers, minimum link data rates, and per link block-loss prob-
abilities.



A. Analysis of Received Sgnal-to-Interference Ratio

Consider n wireless links, labeled Li,...,L,, on which
transmission powers are Py, ..., P,, respectively. Link i is as-
sociated with the i-th transmitter/receiver pair. At the end of
link 4, the power at receiver 4 is given by

Gii(t) P () Fiui(t) 1)

Similarly, interfering signals from all of the other links on
which P;’s (i # j) are transmitted are given by

Gi;(t)P;(t) Fi; (t) 2

The nonnegative number G;;(t) represents the path gain in the
absence of fading from the transmitter of link j to the receiver
of link ¢ at time ¢. G;(¢) captures such factors as path loss,
shadowing, antenna gain, and so on. F;;(¢) is the fading fac-
tor between the transmitter of link j and the receiver of link i.
The instantaneous signal-to-interference ratio at time ¢ for link
1 determines the quality of the received signal and is defined as

Gii(t)Pi(t) Fii(t)
22 Gi ()P () Fij (t) + Ni(t)

where N;(t) represents the white Gaussian noise on link i. We
note that while the work of [2] assumes identical and indepen-
dent distribution of all of the fading factors, this assumption
is not necessarily true in wireless channels. Instead, the chan-
nel is temporally-correlated, i.e. there is a correlation between
F;;(t) and Fj;(t + At) where At is a given time shift. In
order to capture the correlation of the channel, we make few
realistic assumptions as follows. First, compared with inter-
ferences from other users, noise is negligible and thus may be
accurately ignored. Second, it is reasonable to assume that the
fading factors in interfering signals Fj;’s where ¢ # j, have
identical and independent distributions. We note that the latter
assumption may be relaxed relying on a similar discussion to
the one furnished next for the fading components F3;. Third,
F;;’s have unit means so long as G;;’s are appropriately scaled
to reflect variations from this assumption. Fourth, when the
wireless channel varies slowly with respect to symbol interval,
P;(t) and G;; (t) can be viewed as constants and F;; () as aran-
dom variable within the symbol duration. Based on the above
assumptions, we define the average signal-to-interference ratio
SIR; as

SIR;(t) = 3)

E[G;;i P;F;;(t)] Gy PiFy;
SIR; = = (4)
E[GyPiFy;(t)] 2,4 GiP

where E[.] denotes the expectation operator and E[F;;(t)] =
F;;. Hence, it suffices to examine the distribution of Fj;(t) in
order to obtain fading statistics of STR;. We rely on the so-
called Rayleigh model with the fading factor « to relate the
output of a wireless noisy channel to its input. The output signal
of such a channel S, and its input S; can be related by

S,=aS; + N (5)

where N represents the white Gaussian noise. It is well es-
tablished that r = |a| has a marginal Rayleigh distribution

function in the form of
re="" /217

iz r>0 (6)

p(r) = >
where p2 equals to half of the average power of all of the multi-
path components. In order to properly characterize the tempo-
rally correlated loss behavior of the channel, we also need the
associated bivariate joint probability distribution function given
below.
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where I, is the zero-order modified Bessel function of the first
kind given by
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Further, \
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and

A = Jo(27 fmT) (10)

with Jy representing the zero-order Bessel function of the first
kind defined as

1)

Finally, f,, and 7 represent maximum frequency shift result-
ing from the Doppler effect and symbol duration, respectively.
Reference [6] includes a detailed derivation of both distribu-
tion functions. Considering the fact that F;; is defined as
Fy; = r2 = |a;|*, we are interested in the distribution of |a|”.
In order to calculate the distribution of |a|?, we first note that
Equation (9) implies u = \/% under the assumption that F;;’s
have unit means. Consequently, utilizing Equations (6) and (7),
we conclude that F;; has a marginal probability density func-
tion and a bivariate joint probability density function as shown
in Equation (12) and Equation (13), respectively.
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(13)
Having specified the probability density functions, we can now
focus on capturing temporally correlated loss of the fading
Rayleigh channel. We propose partitioning and modeling such
an analog channel with a digital Markov chain model. A re-
view of the literature reveals that there are numerous articles on
partitioning the received SNR or SIR. References [9] and [8]
are of special interest to us among those articles. In our work,
we apply the fundamental idea of partitioning to the probability



density function (pdf) of F;; in order to model the underlying
Rayleigh fading channel with a finite-state Markov chain. As
illustrated by Fig. 1, suppose that pdf of F}; is partitioned into
Sfinite intervals starting at zero and endingat INF. INF'is a
large real number satisfying

INF
/ p(Fu)dFy =16 (14)
0

where 6, e.g. 103, indicates the probability of not representing
a value of the pdf of Fj; by any state. Setting INF = 9 guar-
antees that 99.99% of the pdf values are covered. In our work,
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Fig. 1. Anillustration of finite interval partitioning of an arbitrary pdf.

we propose the use of an equally probable partitioning, i.e. we
want to find a set of thresholds {&1, - - - , €5}, such that

& =0

§s =INF (15)
s _1-4 —
€oon p(F“)dEz = "35> s = ]., . .,S

As an alternative to an equally probable partitioning approach,
the partitioning thresholds can be measured from the natural
burst lengths of a wireless channel. The thresholds allow us to
find Fj; s, the representative value of the pdf of F}; in state s,

by
gs
Fz/ Fup(Fi)dFs, s=1,....S  (16)

Therefore, the corresponding representative values of STR;’s
are given by

GiiPiFi s
>4 Gii Py

The temporal dynamics of the Markov chain are determined
by a matrix of one-step-transition probabilities IT = [74,]sxs-
Since we are working with slow-fading channels, it is reason-
able to consider only transitions between neighboring states or
staying in the same state [9]. According to Bayes theorem, the
probability of currently being in state r given having previously
been in state s can be computed as

SIR;, = s=1,...,8 17)

. 55:_1 Eis_lp(Fii;Fjj)dFiidFjj

Trsp = .
Je, p(Fii)dF;;

(18)

wherer € {s,s+1}and for1 < r,s < S. Due to the finite
value of the error introduced by the model and the transition-
ing assumption, we must modify the transition matrix such that
each row adds up to one. This can be done by uniformly scaling
each row by its sum as

7TST'

-5 (19)
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B. Compensation of Temporally Correlated Loss

We start the discussion of this section by introducing a per
link per state approximation of AZ; , the number of signal point
constellations in terms of per link per state bit error rate BER;
and per link per state symbol to interference ratio SIR; ;. Ex-
panding adaptive modulation results of Chung et al. [3] for M-
QAM modulation to our finite state Markov chain model, we
note that BER,; ; can be closely approximated as

~1.6 SIR; ,

BER; s = 0.2 exp( Y1

) (20)

assuming log, M; s > 2. For a slow fading channel, per state
symbol error rates can be accurately approximated as

SER;s = 1— (1 — BER, ;)" Mi= ~ BER, , log, M; ,

(21)
Per link data rate R; can further be expressed as
S 1 S
R; = ; Cst',s = T ; Cs 10g2 Mi,s (22)

where % is the baseband bandwidth and ¢ with s € {1,---,S}
the steady state probability of being in state s can be calculated
from the transition probabilities of a given Markov chain. We
note that in the case of equally probable partitioning, ¢; = %
forall s.

In order to compensate for the loss effect of the wireless
channel, we propose the use of Reed-Solomon (RS) channel
coders. An RS channel coder RS (b, k) converts k symbols into
a b-symbol block by appending (b — k) parity symbols. Such
a channel coder is able to correct as many as tC = |25
symbol errors in a block. In the calculation of the block-loss
probability, we consider using a 2-state Markov chain model
described in Fig. 2, and a 3-state Markov chain model shown
in Fig. 3. Intuitively, the 3-state model is more accurate than
its 2-state counterpart, at the cost of higher computational com-
plexity. Equations (12) through (15), (18), and (19) in Section
11-A have given details of deriving transition probabilities 7 ,.’s
from marginal and joint probability density functions.

Fig. 2. Anillustration of the 2-state Markov chain model.
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Fig. 3. Aniillustration of the 3-state Markov chain model.

Let (b, k, s) denote the probability of receiving exactly k
symbols from b symbols and winding up in state s. The proba-
bility of receiving exactly k symbols from a b-symbol block is

given by
S
k)= (b, k,s)
s=1

If a user receives at least b — tC' symbols correctly from b trans-
mitted symbols, the whole block is recoverable. Hence, the
block-loss probability is expressed as

b

T=1- )
k=b—tC
Next, we apply the block loss probability results to the 2-state
and 3-state Markov chains. First, we consider using a 2-state
Markov chain model. (b, k,1) and (b, k,2) indicate the
probabilities of receiving exactly k symbols from b symbols and
winding up in state 1 and state 2, respectively. Thus,

o(b,k) = ¢(b,k,1) + ¢(b, k,2) (25)

In accordance with the underlying Markov chain model,
(b, k,1) and (b, k, 2) can be computed recursively. The ex-
pressions are given below.

(,O(b,k, 1) = SER1[7r11g0(b 1, k, 1) +7r21cp(b— 1,k,2)]
(1 - SERl)[Wllcp(b - 1, k— 1, 1)
+ map(b—1,k—1,2)]

(23)

(b, k) (24)

(26)
and
(,O(b, k, 2) = SERQ[lego(b —1,k, 1) + 7(22(,0(() —1,k, 2)]
+ (1 - SERQ)[TI'uQD(b - ]., k— ]., ].)
+ 772290(13 -1, k — 1a2)]
@7)

forb > k > 0, SER, denoting the symbol error rate in state s,
and the initial conditions

©(0,0,1) = ¢(0,0,2) = %

©(1,0,1) = SER; [m11¢(0,0,1) + m219(0,0, 2)]
©(1,0,2) = SERy[m12¢(0,0,1) + m22¢(0, 0, 2)]
©(1,1,1) = (1 = SERy)[m119(0,0,1) + m214(0,0, 2)]
©(1,1,2) = (1 = SERy)[m12¢(0,0,1) + m22¢(0,0, 2)]

(28)
Similarly, if a 3-state Markov chain model is used, we have

(b, k) = (b, k,1) + (b, k,2) + ¢(b,k,3)  (29)
where
@(b,k,1) = SERi[m119(b—1,k,1) + ma10(b — 1,k,2)]
+ (1= SERy)[muip(b—1,k—1,1)

+ 7T21(P(b - ].,k - 1,2)]
(30)

(p(b,k,Q) = SERQ[TFlg(p(b —
+ 7T32§0(b - ]-) ka 3)]
+ (1 = SERy)[map(b—1,k—1,1)
+ 71—2290(13 -1Lk-1, 2) + 71'32(,0(b -1,k 3)]
(31)

].7 k, ].) =+ ng(p(b — ].,k, 2)

and
(p(b, k, 3) = SER3[7T23(p(b —1,k, 2) + 7T33(,0(b —1,k, 3)]

+ (1 - SER3)[7T23(,0(b - ]., k— ]., 2)
+ 7T3390(b - 17k - 173)]

(32)
for b > k > 0 and the initial conditions

»(0,0,1) = ¢(0,0,2) = »(0,0,3) =

(]. 0,1) SER1[7T11(,0(0 0 1) +71'21§0(0 0 2)]

(]. 0,2) = SERQ[WlQ(p(0,0, 1) + 71'22g0(0 0 2)

+ p32P(0,0, 3)]

(1,0,3) = SER3[7723<,0( ,0 )+7T33§0(0 0 )]
©(1,1,1) = (1 = SERy)[m11¢(0,0,1) + 7721<,0(0,0, 2)]
©(1,1,2) = (1 — SER,)[m12¢(0,0, 1) + m22¢(0,0, 2)

+ 7(32(,0(0,0,3)]
(p(]-a 15 3) = (1 - SER3)[7F2390(05 07 2) + 7T3390(0, 07 3)]

(33)

At the end of this section, a discussion of channel state infor-
mation (CSI) is in order. We consider two scenarios. In the first
scenario, we assume that CSI is known at the encoder and hence
the transmitter. Therefore, the calculations of optimal per state
per channel BER,; ; in Equation (20) can be carried out. In
the second scenario, we assume that CSI is unknown at the en-
coder/transmitter. We note that in the latter scenario, the set of
per link per state parameters M; , are reduced to a set of per link
parameters M;. Although we consider the effects of per state
per channel BER;  in the latter case, we use the expectations
of the per state quantities in the calculation of BER; ;, namely

BER; = Y.° ,(,BER;,and STR; = Y5, ¢, SIR, ,.

I1l. RESOURCE ALLOCATION PROBLEM

In this section, we formulate our problem and provide a so-
lution to it. Our goal is to examine optimal ways of allocating
powers in order to achieve maximum aggregate data rate subject
to block-loss probability requirements among other constraints.
Specifically in a network with n links, we aim at maximizing
the system throughput.

n
maxp; m; , Riotar = Y _ R (34)
=1
Subject To : U, <V Vi (35)
Ri,s Z R’i,s,lb VZ; S (36)
P <P Vi (37)

We note that in the formulation above, P;’s and M; ,’s are the
decision variables. Further, we note that the SER parameters of
the Markov chain discussion of Section I1-B appear in the form
of a set of per link per state parameters. We also note that while
our formulation is a throughput maximization subject to power
constraints, it can be converted to a power minimization subject
to throughput constraints by interchanging the role of the objec-
tive function (34) and the constraint function (37). Expressions



(4), (20), and (22) show that the data rates R;’s are related with
per link per state constellation sizes M; ;. Therefore, the objec-
tive function (34) is to be optimized over all feasible powers and
constellation sizes. The first set of constraints (35) is the maxi-
mum allowable block-loss probability on each link. Constraint
set (36) is enforced so that the approximation of Equation (20)
under Equation (22) holds. Same as the objective function, this
set is related with M; ’s. The last set of constraints (37) indi-
cates regulatory or system limitations on transmission powers.
As shown by Equations (20) through (33) in Section 11-B, ¥;’s
are essentially functions of per link per state SER; ,’s, hence
of P;’s as well as M; ;’s.

Next, we provide a discussion of solving the optimization
problem formulated by (34) along with the constraint sets (35),
(36), and (37). Relying on the Lagrangian theory, we convert
the problem in its standard form to an optimization problem
without constraints. We define the Lagrangian function of the
original problem as

L=- 2%1 Ri+ >0 AP — U5 )
+ 2%21 Yoy piys(—Ris + Risap)
+ > i1 Vi(Ps — P )

where the parameters A;, u; s, and v; are the Lagrange multipli-
ers in the Lagrangian Equation (38). The unconstrained mini-
mization problem is defined as

(38)

minp, ar; , L = miny, ,,p{= 2, Ri
+ 3 Ai(T — T )
+ Zsszl Z?:l ,ui,s(_Ri,s + Ri,s,lb)
+ Einzl Vz(Pz - Pi,ub)}

Conditions of Optimality: Constraint Qualifications

(39)

We now investigate the existence of necessary and sufficient
optimality conditions also known as constraint qualifications.
For our unconstrained minimization problem of (39), the con-
straint qualifications are expressed in terms of Lagrange multi-
plier theory [1]. They revolve around conditions under which
Lagrange multiplier vectors satisfying the following conditions
are guaranteed to exist for a local optimum Q* = {P;*, M/}
that satisfies

VL(Q*) =0
where VL = [2L, S0L].

Although the constraints (35) cannot be expressed in a closed
form, we are still able to solve the problem by deploying Se-
quential Quadratic Programming (SQP) and line search tech-
niques. In SQP, the necessary conditions for optimality are
represented by the Karush-Kuhn-Tucker (KKT) conditions de-
scribed as the collection of Equation (40) and the following re-
lationships.

(40)

A (" =) =0 Vi
pis*(—Ris* + Riss) =0 Vi, s
vi*(P" — Piup) =0 Vi (41)

At pis*, vt >0

where \;*, pis*, and v;* are Lagrange multipliers at the lo-
cal optimum. Positive multipliers indicate active constraints. A

variant of the quasi-Newton method can then be used to itera-
tively find the solution to the optimization problem [7]. This is
equivalent to solving a quadratic estimation of the problem in
every iteration.

We end this section by presenting an analysis of the compu-
tational complexity for the approach described above. The time
complexity of solving the problem of (40) is O(I d log d) where
T indicates the number of iterations and d indicates the degree
of the quadratic estimation. For moderate values of I, the com-
plexity results are hence quite good compared to other recursive
optimization approaches such as dynamic programming intro-
ducing a time complexity in the order of O(d?).

IV. SIMULATION RESULTS

In this section, we present an example to show how to max-
imize system throughput under power constraints. Let us con-
sider a simple four node network. As shown in Fig. 4, the
network consists of 4 nodes A, B,C and D, and 4 links L,
L,, L3, and L4. Each link indicates a transmitter/receiver pair.
Note that a node can be a transmitter and/or receiver on multiple
links. We note that in the case of simultaneously transmitting
on multiple links, the power of a node is split on the outgoing
links proportionally. Originally, nodes A and D are separated
by a distance of 20m, and so are B and C. By geometry the
distance of each single hop is 10+/2m. In our experiments, we
allow node A to move across the horizontal axis 2 both toward
and away from node D. We indicate the position of node A
from a reference point by z. We select the reference point to be
the middle of diagonal line connecting nodes B and C. Hence,
the original position of node A is indicated by z = 10. As
explained earlier, we consider two scenarios in which CSI is
known and not known, respectively. In our simulations, each

Fig. 4. Anillustration of the network topology used in the simulation task.

link has a maximum transmission power of 1W. All nodes are
using adaptive M-QAM modulation representing a symbol with
log, M; s bits per link per state. The baseband bandwidth for
each link is 10kH z and the minimum data rate for each link
is 20kbps under the conditions of Equation (20) and Equation
(22). We set a maximum allowable block-loss probability of
0.1 on each link. With the exception of G112, G'34, the gains for
each link are computed as G;; = El;' and G;; = % fori # j,

where d;; represents propagation pe;fh length from the transmit-
ter of link j to the receiver of link 4. The factor ) can be viewed



as the power falloff with frequency in an FDMA system, or the
spreading gain in a CDMA system. It is set as n = 0.005 in
our simulations. The gains for G152, G34 are set to 0 since it is
assumed that a node does not transmit to itself. This gives the
following gain matrix in terms of z.

1/(z? +100)2 0
n/(x + 10)*
n/(z? + 100)?
n/(z + 10)*

n/(x? +100)2 n/20*
1/200% n/(z+10)*  n/20*
n/20*  1/(z% +100)2 0
n/2002 7/( 1/2002

(42)

RS(127,63) coders are used by all of the transmitters. Working
with the 2-state Markov chain fading model, we first calculate
the threshold vector and the corresponding transition probabil-
ity matrixas [0  0.69304 9] and

G =
n/(z + 10)*

| 0.4085 0.5915

= 0.3755 0.6245

(43)
respectively. The 3-state Markov chain model has a threshold
vector of [0 0.4054 1.0983 9] and a transition probability
matrix of

0.4688 0.5312 0
0.5312 0.2588 0.3872
0 0.3692 0.6308

m= (44)

Fig. 5 shows the curves of optimal total throughput versus
the position of mobile node A. It includes two sets of curves
associated with the two scenarios of known and unknown CSI.
Each set of curves includes two curves associated with 2-state
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Fig. 5. Optimal curves of total throughput versus z the position of mobile

node A.

and 3-state Markov chain models. The most striking observa-
tion is the fact that all four curves are in the form of concave
curves. While for the small values of x the interference from
other nodes reduces the overall throughput, for the large val-
ues of z the throughput is decreased due to the loss of signal
strength. The curves show that the throughput is at its maxi-
mum level when the value of x represents the original position
of node 4 at x = 10. Itis also observed from Fig. 5 that the to-
tal throughput of the 3-state Markov chain model is better than

of the 2-state Markov chain model in both sets. This is justi-
fied considering the fact that the 3-state Markov chain model is
a more precise model of the Rayleigh channel than the 2-state
model. Further, it is observed from Fig. 5 that having access
to CSI provides better results in terms of throughput than not
having access to CSI for similar 2- and 3-state models.

We have observed that an average of twenty and no more
than thirty iterations are required for convergence. Finally,
it is worth mentioning that while utilizing a 4-state Markov
chain does not introduce a significant gain compared to a 3-
state Markov chain, it introduces significantly higher overhead
of calculation. The results of the 4-state Markov chain model
are close to those of the 3-state model and are not reported here.

V. CONCLUSION

In this paper, we examined the problem of resource allocation
in Rayleigh fading wireless ad-hoc networks with temporally
correlated loss. Specifically, we sought to optimize the aggre-
gate data rate of such networks subject to power and loss con-
straints. We analyzed fading statistics of signal-to-interference
ratio (SIR), an important metric of transmission quality. Re-
lying on our analysis, we modeled temporally correlated loss
behavior of the Rayleigh fading wireless channel with finite-
state Markov chains. We also noted that it would be straight-
forward to extend our approach to Ricean or Nakagami fading
channels. We applied our Markov chain models toward solving
our formulated throughput optimization problems. We also nu-
merically validated our results by investigating our throughput
maximization results under node mobility.

We are currently working on the integration of multiple an-
tenna systems into our problem and analyzing their effects on
our optimization problem. We are also investigating the im-
plications of applying our results to the context of multimedia
applications.
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