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Abstract—Aside from the introduction of many new schemes,
the use of TCP-based AQM schemes and in specific RED is
anticipated to continue in foreseeable future as the de-facto
standard of network congestion control. Therefore, conducting
extra research work aiming at improving the performance of
RED is still a topic of high interest. In this paper, we present
an analytical study aiming at the fine tuning of the RED pa-
rameters. Utilizing a statistical analysis approach, we formulate
an optimization problem aimed at addressing the loss and delay
tradeoff of the RED queuing discipline. We provide a two-phase
iterative solution to the problem in order to identify the settings of
the RED parameters. We discuss the convergence characteristics
of our solution and investigate its low complexity characteristics.
Through extensive NS2 experiments, we illustrate the advantages
of our proposed optimization approach by comparing its results
to those of adaptive RED as well as standard RED with
recommended parameter settings.

Index Terms—RED, Markov chain queue modeling, optimal
parameter fine tuning.

I. INTRODUCTION

IN the past years, a number of Active Queue Management
(AQM) schemes [1] that utilize random early detection

mechanisms have gained widespread acceptance as alterna-
tives of improving loss and congestion characteristics of TCP.
Random Early Drop (RED) [2] is arguably the most widely
studied random early detection scheme. Although random
early detection schemes can potentially outperform traditional
drop-tail schemes in presence of TCP flows, it is often difficult
to parameterize random early detection queues under different
congestion scenarios. In addition, the effectiveness of such
schemes in presence of UDP flows and under delay constraints
are far less understood. Further, there is a need for constant
fine-tuning of parameters to adapt to current network condi-
tions. To that end and based on simplified models, guidelines
have been proposed in [3], [4], [5], [6], [7], [8] for setting
RED parameters in presence of TCP flows. However, most
studies on RED are based on heuristics or simulations rather
than a systematic approach.
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In what follows, we briefly review a subset of the very
large volume of research work most closely related to the
subject of this paper. A significant volume of research work
[3], [9]–[12] has focused on improving the efficiency and
fairness of TCP congestion control algorithms. Recently, the
prevalence of high Bandwidth-Delay Product (BDP) networks
have introduced significant challenges to the effectiveness
of TCP congestion control algorithms. To that end, various
mechanisms have been proposed to either adaptively adjust
transmitting window sizes [13]–[15], use different congestion
signals [16]–[19], or even explicitly signal the congestion
information to the sender [20], [21]. Often times, such mech-
anisms fail to simultaneously achieve high utilization and
fairness while maintaining low persistent queue lengths and
reduced congestion-induced packet drop rates. In contrast,
eXplicit Congestion-control Protocol (XCP) [22], Variable-
structure Congestion-control Protocol (VCP) [23], and Multi
Packet Congestion-control Protocol (MPCP) [24] decouple
fairness control from efficiency. By encapsulating congestion
related information into packet headers, all three protocols
attempt at achieving high utilization, low persistent queue
length, insignificant packet loss rate, and sound fairness.
However, XCP requires multiple bits in the IP packet header
introducing significant deployment obstacles. To the contrary,
VCP and MPCP are able to achieve a performance comparable
to XCP using only two ECN bits while keeping compatibility
with a variety of existing protocols.

From the standpoint of barrier to entry for existing standards
and network infrastructure, schemes such as RED, REM [12],
VCP, MPCP, and other mechanisms only utilizing one or two
bits of ECN in the IP packet header stack up more favorably
than those using a larger number of bits in the IP packet
header. The latter is also of special importance since the
manipulation of multiple bits in the IP packet header is subject
to major practicality implications in encrypted networks. For
example, the IPSec protocol only allows for bypassing of six
Differentiated Services (DiffServ) bits and two ECN bits in
the IP header across encryption boundaries.

Aside from the introduction of many new schemes, the
use of TCP-based AQM schemes such as RED is anticipated
to continue in foreseeable future as the de-facto standard of
network congestion control. Thus, conducting extra research
work that aims at improving the performance of RED is still
a topic of interest.

In this paper, we perform a systematic study on the optimal
fine tuning of the RED parameters. Given the statistical

0090-6778/12$31.00 c© 2012 IEEE



YOUSEFI’ZADEH et al.: A STATISTICAL STUDY OF LOSS-DELAY TRADEOFF FOR RED QUEUES 1967

properties of the arrival pattern of a RED queue, we identify
the RED parameters yielding the minimal loss characteristic
under a delay and a normalizing fixed size packet constraint.
Our problem formulation appears in the form of a constrained
optimization problem that is efficiently solved in two iterative
phases. Compared to its conference version, this paper intro-
duces an intelligent heuristic search algorithm with a linear
complexity as oppose to a standard search algorithm with
quadratic complexity, refines the optimization approach based
on the literature of Block Coordinate Descent (BCD), and
greatly extends the performance evaluation results.

The rest of this paper is structured as follows. In Sec-
tion II, we provide a brief review of the RED algorithm
along with a profiling of the traffic patterns feeding RED
queues. In Section III, we formulate and solve an optimization
problem targeted at minimizing the loss characteristic of
a RED queue while satisfying an acceptable delay profile.
Section IV provides numerical results associated with the
proposed algorithms of Section III. Conclusions are provided
in Section V and Appendix I formalizes the general case of
our optimization algorithm.

II. RED PRELIMINARIES

In this section, we briefly describe the RED algorithm.
We also provide a traffic profiling discussion focusing on the
steady-state distribution probability of the occupancy of a RED
queue.

A. The RED Algorithm

The average queue size of a RED queue is calculated using a
low-pass filter with an exponentially weighted moving average
as

qt = (1− wq) qt−1 + wq q̃t (1)

where qt is the current average queue size, qt−1 is the average
queue size at the last time instant, wq is the weighting function,
and q̃t is the current instantaneous queue size. The value of
qt is then compared to two thresholds, a minimum threshold
qmin and a maximum threshold qmax. Each arriving packet is
dropped with probability pt given by

pt =

⎧⎨
⎩

0, qt < qmin

εt =
qt−qmin

qmax−qmin
pmax, qmin ≤ qt < qmax

1, qt ≥ qmax

(2)

While in our study pt is varied linearly from 0 to pmax when
the RED queue occupancy is in the region between qmin

and qmax, there are many other possibilities of choosing this
drop probability. Examples include choosing p as a nonlinear
convex, or nonlinear concave function of the queue size.

B. Traffic Profiling

We consider a queuing system with a capacity of K fixed
size packets operating under the RED queuing discipline. The
RED queuing system is described by its traffic pattern and is
assumed to be operating in its steady-state regime. In [25] and
[26], the authors develop a model for analyzing both transient
and steady-state behavior of RED queues accommodating a
large number of random traffic sources. The traffic generation

pattern of each source is assumed to follow a Poisson process
with a time varying rate. As the result of enforcing RED
with a value of wq in the order of 10−3 and for a slowly
varying Poisson parameter, the RED queue is considered to
be operating in a quasi-stationary state. As such, the behavior
of the queue can be approximated with M/G/1/K queuing
discipline.

In our study, we consider both UDP and TCP traffic scenar-
ios. When dealing with UDP traffic, we utilize the M/D/1/K
queuing discipline as the best practical alternative of today’s
Internet. Fig. 1 shows such queuing system representing the
Markov chain embedded in an M/D/1/K process at departure
instants, with the corresponding RED loss probabilities. RED’s
dropping behavior is then mapped to three subsets of the states
before qmin, between qmin and qmax, and after qmax. For an
M/D/1/K queue with a load factor ρ, we normalize the service
time to indicate the time unit such that the arrival rate is equal
to ρ. Then, the steady-state probabilities πk of being in state k
for k ∈ {0, · · · ,K} form a discrete Probability Mass Function
(PMF) the terms of which are calculated as

πk =

{
π∞
k

π∞
0 +ρG(K) , k ∈ {0, · · · ,K − 1}

1− G(K)
π∞
0 +ρG(K) , k = K

(3)

where G(K) =
∑K−1

k=0 π∞
k . Further, the steady-state proba-

bility π∞
k of state k for an infinite capacity M/D/1 queuing

system with load ρ is identified in Page 44 of [27] as

π∞
k = (1 − ρ) [

∑k
i=1 e

ρi(−1)k−i (iρ)
k−i

(k−i)!

+
∑k−1

i=1 eρi(−1)k−i (iρ)
k−i−1

(k−i−1)! ] , k ≥ 2
(4)

where π∞
0 = 1 − ρ and π∞

1 = (1 − ρ)(eρ − 1). We note that
depending on the choice of ρ, the numerical evaluation of (4)
faces stability issues when k is larger than 12. In such cases,
the asymptotic approximation of Equation (15.1.4) of [28] can
be used to identify the steady-state probabilities as

π∞
k ≈ C0

[
er0(k−1) − er0k

]
(5)

where r0 is the unique negative root of the equation r =
ρ(1− e−r) and C0 = 1−ρ

ρe−r0−1
.

We note that the case of TCP flows is best represented
by G/G/1/K queuing model for which we do not provide a
queuing analysis in this paper.

III. OPTIMAL FINE TUNING OF THE RED PARAMETERS

Given the statistical characteristics of a traffic pattern, the
discussion of this section revolves around fine tuning of the
RED parameters namely qmin, qmax, pmax, and wq . We work
with fixed size packets and assume a deterministic normalized
service time of one packet per unit time.

A. The Case of Instantaneous Queue Size

In this subsection, we establish a foundation for our opti-
mization problem by focusing on the case of instantaneous
queue size, i.e., wq = 1. Given the steady-state probabilities
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Fig. 1. M/D/1/K approximation of the steady-state behavior of RED under quasi-stationary assumptions. For clarity of the figure, only the full set of
transitions associated with k = qmax are shown.

πk of being in state k where k ∈ {1, · · · ,K}, we define
PLOSS(k), the conditional probability of loss in state k, as

PLOSS(k) =

⎧⎨
⎩

0, k < qmin
k−qmin

qmax−qmin
pmaxπk, qmin ≤ k ≤ qmax

πk, k > qmax

(6)
Hence, the statistical probability of loss for an arriving packet
at a RED queue is expressed as

PLOSS =
∑K

k=1 PLOSS(k) =∑K
k=qmax+1 πk +

∑qmax

k=qmin

k−qmin

qmax−qmin
pmaxπk

(7)
Note that Equation (7) represents a statistical average in
which the probability of loss in each state is calculated
based on the queue occupancy in comparison with the RED
thresholds. In the presence of a FIFO service discipline, the
statistical queuing delay of a packet arriving at a RED queue
is calculated as

PDELAY =
∑qmin

k=0 (k + 1)πk

+
∑qmax

k=qmin+1(1− k−qmin

qmax−qmin
pmax) (k + 1)πk

(8)
We note that Equation (8) represents a statistical average in
which the delay in each state is calculated based on the queue
occupancy and the probability of drop in comparison with
the RED thresholds. While the first summation term captures
the contribution of the states below the minimum threshold
of queue occupancy, the second summation term captures
the contribution of the states between the two thresholds.
Importantly, the statistical delay is only calculated for the
packets that are accommodated but not those that are dropped.
Utilizing Equation (7) and (8), we can now formulate a
constrained optimization problem that attempts at minimizing
the probability of packet loss subject to an upper bound Dmax

on its statistical queuing delay. The optimization problem is
formulated as

min
qmin,qmax,pmax

PLOSS (9)

Subject To: PDELAY ≤ Dmax (10)

0 ≤ qmin < qmax ≤ K (11)

0 ≤ pmax ≤ 1 (12)

In order to efficiently solve the problem, we describe a
two-phase iterative solution to the problem formulated above

and show that our solution converges to a local minimum. In
the first phase, we analytically solve for the optimal value of
p∗max assuming qmin and qmax are fixed and given.

Phase 1: Given fixed thresholds qmin and qmax, the
only decision variable in solving the optimization problem is
pmax. While the cost function is minimized for the smallest
value of pmax, the constraint function (10) enforces a lower
bound on the value of pmax. The optimal value of pmax

is then calculated at the boundary point of the constraint
function (10) as

Dmax =
∑qmin

k=0 πk(k + 1)

+
∑qmax

k=qmin+1 πk(k + 1)(1− k−qmin

qmax−qmin
p∗max)

(13)
The solution to the equation above appears as

p∗max =

[ ∑qmax
k=0 πk(k+1)−Dmax∑qmax

k=qmin+1 πk(k+1)(k−qmin)

]
(qmax − qmin)

(14)
Note that the operation associated with deriving the value of
p∗max from Equation (14) has a time complexity in the order
of O(K). Further, the value of p∗max satisfies the constraint
function (12).

In the second phase, we provide a reduced order search
strategy in order to identify the values of q∗min and q∗max

based on a fixed value of pmax given in the first phase.

Phase 2: Given a fixed value for pmax obtained by the
solution of the first phase, the decision variables in solving
the optimization problem are qmin and qmax. Noting that
qmin and qmax are integers satisfying qmin < qmax in
the case of instantaneous queue size, we can perform a
search in the 2D space of (qmin, qmax). We note that the
upper triangle identified by vertices A, B, and C in Fig. 2
represents the feasible region of Constraint (11). Because
the feasible region of Constraint (11) contains K(K+1)

2
points, the time complexity of performing the search is in
the order of O(K2). That said, we have experimentally
observed an interesting phenomenon allowing us to develop
a heuristic search algorithm with a linear time complexity.
While we have no formal proof for our heuristic algorithm,
we have consistently verified its accuracy in our large set
of experimental findings. According to our observation, the
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Fig. 2. An illustration of the optimization region of (qmin, qmax) in their
2D space. The green and yellow region identify a subset of the feasible region
of Constraint (11) satisfying Constraint (10).

feasible region of Constraint (11) is always partitioned into
a set of qualified points and a set of disqualified points. The
partitioning of the two sets is the result of verifying which
points satisfy Constraint (10) of the optimization problem. In
Fig. 2, the set of green interior points or yellow boundary
points of the triangle identified by vertices A, D, and E
indicate qualified points, while the set of red points covering
the rest of the feasible region of Constraint (11) indicate
disqualified points. The single black point D is always located
on the main diagonal line segment attaching point A to point
C. It is also located at the boundary of the set of qualified
and disqualified points. The set of red disqualified points is
always bounded by segments DE, EB, BC, and CD. The
set of green/yellow qualified points is also always bounded
by segments AE, ED, and DA. In different experimental
scenarios, we have observed that point E moves on segments
AB and BC. Further, segment DE sometimes appears in
the form of a curve as opposed to a straight line in some
scenarios. Regardless of the scenario and the shape of DE,
we have always observed that the black point D located at
the intersection of segments DE and AC is the optimal point
identified by the search.

As such, we can identify a revised search criterion with
a linear time complexity of O(K). Such criterion traverses
the points located on segment AC above the main diagonal
starting from point A and moving up toward point C. The
optimal point D is then identified as the one on segment
AC above the main diagonal with the smallest value of the
cost function (9). In fact, the pattern of the values of the cost
function starting from point A is always non-decreasing until
reaching the point after point D on segment AC. Thus, the
search can be stopped at that point.

Below, we introduce an algorithmic representation of our
two-phase iterative solution described above that can identify
an optimal solution to the constraint NonLinear Integer
Programming (NLIP) problem of (9), (10), (11), and (12).

Algorithm 1 Iterative Optimization Algorithm
1: /* Step 1: Initialization */
2: Initialize (qmin ← �K/3�), (qmax ← �2K/3�), grid size

width (ε← 1), initial iteration number (i← 0), maximum
iteration number (imax ← 103), intermediate variables
(L3 ← 0), (L4 ← 0), and stoppage criterion variables
(L1 ← 0), (L2 ← 1), (δ ← 10−6).

3: repeat
4: /* Step 2: Calculate p∗max */
5: Calculate the optimal value of p∗max from Equation (14)
6: /* Step 3: Calculate q∗min and q∗max */
7: Reset (L3 ← 1).
8: for (qmax = 1 to K) { do
9: qmin ← (qmax − ε)

10: if Constraint function (10) is satisfied then
11: Store the value of the cost function (9) in L4

12: end if
13: if L3 > L4 then
14: (q∗min ← qmin), (q∗max ← qmax), and (L3 ← L4);
15: else
16: Break
17: end if
18: end for
19: /* Step 4: Update Stoppage Criterion Variables */
20: Set (L1 ← L2) and (L2 ← L3)
21: Set (i← i+ 1)
22: /* Step 5: Check Stoppage Criterion */
23: until {( |L1−L2|

L1
< δ) or (i > imax)}

In the algorithm above, Step 1 in lines 1-2 initializes the
variables used by the algorithm. The main iterative loop is
shown in the repeat-until block spanning over lines 3-23.
Within the loop, Step 2 for calculating p∗max is described by
lines 4-5, Step 3 for intelligently searching to identify q∗min

and q∗max is described by lines 6-18, Step 4 for updating the
stoppage criterion is identified by lines 19-21, and Step 5 for
meeting the stoppage criterion and subsequently exiting the
loop is covered by lines 22-23.

We note that the time complexity of implementing the above
algorithm is O(IK2) where I indicates the number of itera-
tions. Further, we note that the two-phase iterative optimiza-
tion algorithm of this section expressed for the case of instan-
taneous queue size with decision variables pmax, qmin, qmax is
a special case of the two-phase iterative optimization algorithm
of Appendix I expressed for the case of average queue size
with decision variables pmax, qmin, qmax, wq . Based on the
discussion of Appendix I, both of these two-phase iterative
optimization algorithms converge to fixed points which are
conjectured to be local minima.
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B. The Case of Average Queue Size

In this subsection, we generalize the formulation of the
previous section to the case of average queue size.

We open our discussion by indicating that our objective is
to first express the current average queue size qt in terms of
the current instantaneous queue size q̃t. The latter is equivalent
to providing the solution to the first-order difference equation
expressed by (1) with input q̃t and output qt. Relying on the
method of successive calculations and starting from the initial
condition q0, the following pattern is observed.

qt = (1− wq)
tq0 +

t∑
j=1

wq(1 − wq)
t−j q̃j (15)

Since a unique solution exists, it is sufficient to verify that
Equation (15) satisfies the original equation. Relying on in-
duction, we start from Equation (1) to note that

qt = (1− wq)qt−1 + wq q̃t (16)

= (1− wq)((1 − wq)
t−1q0

+

t−1∑
j=1

wq(1− wq)
t−j−1q̃j) + wq q̃t

= (1− wq)
tq0 +

t−1∑
j=1

wq(1− wq)
t−j q̃j + wq q̃t

= (1− wq)
tq0 +

t∑
j=1

wq(1− wq)
t−j q̃j

arriving at the right hand side of Equation (15).
Analyzing Equation (15), we notice that it consists of a

transient and a steady-state term. Since 0 ≤ 1 − wq ≤ 1, the
transient term (1 − wq)

tq0 goes to zero in steady-state. The
steady-state solution is thus expressed as

qt =

t∑
j=1

wq(1 − wq)
t−j q̃j (17)

Our numerical evaluations have supported the observation that
the set of discrete random variables {q̃j}tj=1 are Independently
and Identically Distributed (IID) in the steady-state1. Recall
that the distribution of discrete random variables {q̃j}tj=1 can
be determined from the traffic and queuing profile. Relying
on the IID assumption, the steady-state PMF of the random
variable qt appearing in the form of a weighted sum of t
random variables {q̃j}ti=j can be numerically calculated as
a scaled discrete convolution of a number of PMFs, [29].
Further, the PMF of qt only depends on a small number of
random variables qt, qt−1, qt−2, and so on because the scaling
factor 1− wq is smaller than one.

Once the PMF of qt is calculated, we can revert back to
the constrained optimization problem with the cost function
(9) and constraint set (10), (11), and (12). In the latter case,
a new constraint related to the variable wq is added to the
constraint set as shown below.

0 ≤ wq ≤ 1 (18)

1Note that the IID assumption is only utilized to reduce the complexity of
numerically calculating the PMF of qt. The PMF of qt can be numerically
calculated even in the absence of the IID property albeit with a higher
complexity.

For the case of average queue size, it is important to note
that the steady-state probabilities appearing in the cost and
constraint functions of the optimization problem depend on
the RED parameter wq . Thus, wq represents a new decision
variable for the optimization problem. While one can still
utilize the two-phase recursive optimization approach to solve
the resulting problem, the closed-form expression identified
for p∗max in the first phase does not hold any longer. Rather, a
numerical optimization approach such as Sequential Quadratic
Programming (SQP) [30] should be used in conjunction with
a line search algorithm such as the one proposed by [31] to
calculate the values p∗max and w∗

q in the first phase.
Next, we investigate potential implications of utilizing av-

erage queue lengths rather than instantaneous queue lengths
on the second phase of our proposed algorithm. In the latter
scenario, we note that the search of the second phase has to
be performed over a continuous K×K space to identify q∗min

and q∗max. In order to perform the search over the region of
the K ×K space, a quantized grid covering the triangle with
edges at the origin, point B, and point C of Fig. 2 is formed.
Therefore, the complexity of the search is higher depending on
the granularity of the quantization grid. Nonetheless, our ob-
servation of the case of instantaneous queue size with regards
to the boundary of the feasible region of Constraint (11) still
holds and our intelligent search algorithm described earlier
can still be applied. The time complexity of implementing the
above algorithm is O(I max(GK2, N logN)) where I , G,
and N indicate the number of iterations, the grid size, and
the degree of quadratic estimation identified by SQP method,
respectively. With a large grid size and when wq is fixed, e.g.,
wq = 0.002, the complexity of the problem is reduced to that
of instantaneous queue size.

In Appendix I, we provide a two-phase iterative optimiza-
tion algorithm with decision variables pmax, wq, qmin, qmax

for the case of average queue size.
At the end of this subsection, we note that the dual problem

of our optimization problem for both cases of instantaneous
and average queue size is obtained by swapping the cost func-
tion (9) with the constraint function (10). The dual problem
can then be solved relying on a similar approach described in
this section.

C. RED Design Guidelines

In this subsection, we provide some RED design insights
based on the analysis of this section. First, we note that the
derivation of our results is independent of the traffic model
of Section II-B. In fact, the results are valid as long as
the steady-state probabilities of being in each state can be
identified either analytically or numerically, i.e., the details of
the queuing model of Fig. 1 such as transition probabilities
are not of significant importance. Second, the approach of
this section can be utilized either on an online (closed-loop) or
offline (open-loop) basis depending on the type of background
traffic. While in the case of reactive TCP flows a closed-loop
approach is to be used in which steady-state probabilities are
treated as moving time averages, in the case of UDP flows an
open-loop approach utilizing the existing queuing models can
work better. Third, the validation results of our approach are
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TABLE I
FIXED PARAMETER SETTINGS OF SRED AND ARED. FOR SRED,

pmax = 0.1.

K qmin qmax wq

20 6.66 13.33 3.99e-5
30 10.00 20.00 3.99e-5
50 16.66 33.33 3.99e-5

100 62.50 133.33 3.99e-5
500 62.50 187.50 3.99e-5

pointing to the fact that under the optimal loss-delay tradeoff
operating regime, specially as delay bounds become tighter,
the optimal settings of a RED queue force its behavior to
match that of a drop-tail queue. While at the first glance this
result may not be expected, it is an important finding of this
paper.

IV. NUMERICAL ANALYSIS

In this section, we validate the results of the algorithms
of Section III. In order to manage the available space, we
only report sample results selected from a large set of several
tens of thousand experiments conducted by us using NS2 [32]
discrete event simulation tool. Nonetheless, we note that the
reported results are true indicators of the categorical behavior
of our experiments.

The topology of our experiments includes a single server
queue the behavior of which is governed by RED. We ex-
periment with fixed length data packets of size 1024 bytes
and in the case of utilizing TCP flows ACKnowledgment
(ACK) packets of size 40 bytes. In our experiments, all of the
values of qmin, qmax, and K are normalized and expressed
as multiples of a size of a data packet. The RED queue is
fed with UDP Poisson arrival patterns, FTP arrival patterns
utilizing TCP SACK1, and HTTP arrival patterns utilizing
TCP SACK1. TCP traffic arrival patterns are generated directly
by NS2 and are independent of Poisson patterns. TCP SACK1
is implemented based on TCPAgent which in turn uses TCP
Tahoe with selective repeat ACKs following RFC2018. The
queue is assumed to offer a normalized service rate of one
data packet per second. The settings allow us to examine the
performance of our algorithm for UDP traffic patterns mapped
to M/D/1/K queuing model as well as TCP traffic patterns.

Viewing the queue capacity K and the maximum delay
threshold Dmax as our design parameters, our experiments
span over two sets. In the first set of experiments, we in-
vestigate the loss performance of our proposed solution for
a fixed Dmax and varying queue sizes K . In the second set
of experiments, we investigate the loss performance of our
proposed solution for a fixed K and varying delay thresholds.
We compare the performance of our solution with that of
Standard RED (SRED) and Adaptive RED (ARED) [8]. The
parameters of SRED and ARED (with the exception of pmax

for ARED) are selected by NS2 representing the best heuristic
and numerical findings in the literature. While the value
of pmax is set to 0.1 in SRED experiments, it is chosen
dynamically in ARED experiments in order to maintain a
stable average queue length. Table I includes the values of
the fixed parameters used by both SRED and ARED.

In the discussion and figures below, our Optimal RED
algorithm is referred to as ORED. Fig. 3 illustrates the
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Fig. 3. A performance comparison of ORED, ARED, and SRED for a fixed
normalized service rate of one packet per second, Dmax = 100msec, and
a Poisson arrival pattern with two different choices of load factors ρ. The
cases of (a) instantaneous queue size with wq = 1, ρ ∈ {92%, 99%}, and
(b) average queue size with ρ ∈ {88%, 99%} are considered.

comparison results of ORED with those of SRED and ARED
for the cases of instantaneous and average queue sizes utilizing
two different choices of load factor ρ associated with a
Poisson arrival pattern. As observed from the figure, the loss
performance of ORED is best among the three for both cases
of instantaneous and average queue size and both choices of
ρ.

Next, we investigate the performance of our scheme for TCP
traffic. In TCP experiments, we numerically generate time-
varying moving average values of πk with k ∈ {0, · · · ,K}.
For every time epoch consisting of the last N instances of
discrete arrival time, we count the number of occurrences of
each k. Then, we run our iterative algorithm for that time
epoch with an initial condition set by the solution of the
previous step.

Fig. 4 illustrates the results of feeding the queue with FTP
and HTTP traffic patterns utilizing TCP SACK1. The two
triplets of curves in Fig. 4(a) and Fig. 4(b) are associated with
an aggregate traffic pattern generated by 50 and 100 sources.
As observed from the figures, ORED is again outperforming
both SRED and ARED. It is also interesting to observe that the
effects of changing the number of sources for both experiments
is only relevant for small values of K . As K increases from
20 to 100 in Fig. 4(a), all curves show an increased loss
followed by a decreased loss for K > 100. The reason
is that congestion-caused loss (but not RED-caused loss) is
dominant when the queue capacity is less than 100. As the
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(b) HTTP Average Queue Size

Fig. 4. A performance comparison of ORED, ARED, and SRED for
aggregate traffic patterns generated by (a) {50, 100} FTP, and (b) {50, 100}
HTTP sources utilizing TCP SACK1. A fixed normalized service rate of one
packet per second, Dmax = 100msec, and the case of average queue size
are considered.

queue capacity increases from 20 to 100, the overall arrival
rate of the queue increases proportional to the queue capacity
yielding a higher overall loss rate. As the queue capacity
increases beyond 100, RED-caused loss becomes dominant
and the overall loss rate drops. The observation of Fig. 4(a)
is absent in Fig. 4(b) because HTTP flows are short-lived.
Another interesting observation in the figures is that ARED
outperforms SRED for small values of K but not large values
of K . This is because ARED is designed to maintain an
average queue length around the value of 1

2 (qmin+ qmax). To
that end, ARED drops packets earlier and in larger numbers
than SRED in order to be able to accommodate bursty traffic.
Using the automatic configuration option available in the
current implementation of NS2 for SRED, the parameters are
configured according to the link bandwidth and link queue
capacity leading to a better handling of the loss-delay tradeoff
at the price of forming longer queues.

In the second set of experiments, the queue size is fixed.
Utilizing a Poisson arrival with a load factor of ρ = 0.99,
Fig. 5(a) illustrates the loss performance of ORED as a
function of delay threshold for four different values of K .
Fig. 5(b) shows similar results for a traffic pattern generated
by 10 FTP sources. The curves in both figures show that
increasing the value of Dmax will result in reducing loss by
servicing a larger number of packets that stay in the queue for
a longer period of time.
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Fig. 5. A performance comparison of ORED as a function of Dmax for four
different choices of queue size K ∈ {50, 100, 200, 500} with (a) a Poisson
arrival pattern identified by ρ = 0.99, and (b) an aggregate traffic pattern of
10 FTP sources utilizing TCP SACK1. The case of instantaneous queue size
with wq = 1 is considered.

The results of SRED for both Fig. 5(a) and Fig. 5(b) as
well as the results of ARED for Fig. 5(b) are not shown for
clarity but are similar to reported results. While not shown,
each curve of ORED is always below the curves of ARED
and SRED for each choice of K . Further, our experiments
in the case of average queue size and in a broad range of
parameter selections as well as with implementations of TCP
besides TCP SACK1 have led to observing results consistent
with those reported here.

Considering the wide range of parameter settings in our
experiments, our technique is able to perform well under
different traffic loads and types. Further, experimenting with
large values of ρ in the case of Poisson traffic patterns as
well as a large number of sources in the case of TCP traffic
patterns illustrate the robustness of our technique under severe
congestion conditions.

We have observed that our iterative algorithm converges
after an average value of I = 10 iterations for Poisson
experiments. It converges after an average value of I = 15
and I ≤ 7 iterations for the initial and subsequent epochs
in TCP experiments, respectively. Thus, we also argue that
applying our technique to identify optimal settings of RED
parameters is relatively practical.

V. CONCLUSION

In this paper, we presented the results of our systematic
study on the optimal fine tuning of RED parameters. Given
the steady-state of queue occupancy values, we identified the
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RED parameters locally minimizing the loss characteristic of
the queue while satisfying an acceptable delay profile. Our
problem formulation appeared in the form of a constrained
optimization problem that could be efficiently solved in two
iterative phases. Through extensive simulations the sample
results of which reported here in comparison with standard
RED and adaptive RED schemes, we investigated the accuracy
and efficiency characteristics of our algorithms.

APPENDIX A
ITERATIVE OPTIMIZATION OF RED FOR THE CASE OF

AVERAGE QUEUE SIZE

In this section, we claim that a generalization of the
iterative optimization algorithm of Section III-A converges
to a fixed point solution of the problem formulated by the
objective function (9) and constraints (10), (11), (12), (18)
along with decision variables pmax, wq, qmin, qmax for the
case of average queue size. Further, we conjecture that the
fixed point is a local optimal point.

Choosing a value of 1 for parameter ε2, the generalized
version of the iterative optimization algorithm of Section III-
A is derived by changing Step 2 to calculate the optimal value
of p∗max and w∗

q utilizing SQP and the line search algorithm
of [31] instead of Equation (14).

To support our claim, we note that both of our two-phase
iterative algorithms find their roots in the literature of BCD
[42]–[44]. The BCD algorithms are effective methods of
minimizing real-valued continuously differentiable functions
of partitioned multiple decision variables subject to bound
constraints. They can also be used when additional non-bound
constraints exists. A BCD algorithm is known to converge to
a stationary point if the objective function (or the Lagrangian
function formed by the objective and the nonlinear constraint
functions) is convex or under milder conditions quasiconvex
and hemivariate.

While we cannot mathematically prove our iterative al-
gorithms converge to local minima, we have consistently
observed the following phenomena through extensive simula-
tion results. First, both two-phase iterative algorithms always
converge to the vicinity of the optimal solution identified by
exhaustive search either in the unpartitioned 4-dimensional
space of decision variables in the case of average queue size
or the 3-dimensional space of decision variables in the case
of instantaneous queue size. Second, the plots of objective
function and delay constraint against partitioned decision
variables always appear to satisfy convexity or semi-convexity
and hemivariation conditions.

Based on the discussion above and since the the cost
function of Equation (9) can only decrease in each iteration
of our two-phase algorithm, we conjecture that the algorithm
converges to a local minimum.
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