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Abstract— The Variable-structure Congestion control Pro-
tocol (VCP) has been proposed as an alternative approach to
the eXplicit Control Protocol (XCP). In our earlier work, we
reported the NS2 simulation results of cross-layer profiling
studies of VCP, XCP, and TCP+REM in encrypted wireless
networks. Our studies utilized finite-state Markov chains to
model bit error characteristics of wireless links and applied
per packet link layer FEC codes in order to compensate for
such errors. Our simulation results showed that VCP takes
a significant step toward addressing the tradeoff between the
performance and practicality of implementation.

In this paper, we report the results of our implementation of
VCP in the Linux kernel. Our implementation of VCP consists
of a number of Linux Loadable Kernel Modules (LKMs) as-
sociated with transmitting, intermediate, and receiving nodes.
Our implementation allows for the co-existence of VCP with
standard transport protocols such as TCP and UDP. Utilizing
an experimental wired testbed capable of realistically emulat-
ing the fading characteristics of wireless links, we profilethe
performance of the Linux implementation of VCP. Based on
our profiling results in the Linux kernel, we observe (1) the
need for protecting protocol’s metadata as well as data against
bit errors, and (ii) that VCP represents a high performing
yet practical congestion control protocol for encrypted wireless
networks.

I. INTRODUCTION

A significant volume of research [6], [13], [16], [5], [1] has
been conducted by the research community in improving the
efficiency and fairness of TCP congestion control algorithms
[8]. However, the prevalence of high Bandwidth-Delay Prod-
uct (BDP) networks creates significant challenges for such
congestion control schemes. To that end, various mecha-
nisms [21], [17], [4] have been proposed to either adaptively
adjust sending window size by amending the parameters of
Additive-Increase Multiplicative-Decrease (AIMD) [3], use
different congestion signals [14], [12], [10], [2], or evenex-
plicitly signal the congestion information to the sender [19],
[9]. Often times, such mechanisms fail to simultaneously
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achieve high utilization and fairness while maintaining low
persistent queue length and minimizing congestion-induced
packet drop rate.

In contrast, XCP [11] and VCP [20] decouple the fairness
control from the efficiency. While XCP uses Multiplicative-
Increase Multiplicative-Decrease (MIMD) for efficiency and
AIMD for fairness control, VCP defines three levels of con-
gestion and does Multiplicative-Increase Additive-Increase
Multiplicative-Decrease (MIAIMD) in three regions of con-
gestion, respectively. By encapsulating congestion related in-
formation into the header of packets, both protocols achieve
high utilization, low persistent queue length, insignificant
packet loss rate, and sound fairness. Unfortunately, XCP
requires multiple bits in packets header introducing signifi-
cant deployment obstacles. On the contrary, VCP is able to
achieve a performance comparable to XCP using two ECN
bits while keeping compatibility with a variety of existing
protocols.

More importantly, VCP stacks up more favorably than
XCP since the manipulation of multiple bits in the IP packet
header by a protocol is subject to major practicality impli-
cations in encrypted networks. For example, High Assur-
ance IP Encryption (HAIPE) standard [25] only allows for
bypassing of six Differentiated Services (DiffServ) bits and
two ECN bits across its encryption boundary.

Our earlier works of [22] and [23] reported the NS2 [24]
simulation results of cross-layer profiling studies of VCP,
XCP, and TCP+REM in encrypted wireless networks. They
utilized finite-state Markov chains to model bit error charac-
teristics of wireless links and applied per packet link layer
Forward Error Correction (FEC) codes to compensate for
such errors. The simulation results showed that VCP takes
a significant step toward addressing the tradeoff between the
performance and practicality of implementation.

In this paper, we report the results of our implementation
of VCP in Linux and construct a testbed to conduct an ex-
perimental study. Specifically, the contributions of this paper
include:

• VCP implementation:To our best knowledge, this work
is the first implementation of VCP. Our implementa-
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tion consists of a number of LKMs associated with
transmitting, intermediate, and receiving nodes of VCP.
Most importantly, our implementation allows for the co-
existence of VCP with standard transport protocols such
as TCP and UDP.

• Protocol evaluation: Utilizing an experimental wired
testbed of Linux nodes capable of realistically emulat-
ing the fading characteristics of wireless links, we pro-
file the performance of the Linux implementation of
VCP. The paper demonstrates (i) the need for protecting
protocol’s metadata as well as data against bit errors,
and (ii) that VCP represents a high performing yet prac-
tical congestion control protocol for encrypted wireless
networks.

The rest of the paper is organized as follows. In Section
II, we present the fundamentals of VCP. Section III presents
our implementation approach. Experimental studies are pre-
sented in Section IV. Finally, we present several conclusions
and discuss future work in Section V.

II. BACKGROUND

In this section, we first review the fundamentals of VCP.
Then, we present four principles of our implementation of
VCP in Linux.

A. Fundamentals of VCP

Fundamentally, VCP remains a window-based protocol
and is designed to regulate thecwnd with different conges-
tion control policies according to the level of congestion in
the network. VCP defines three levels of congestion: low-
load, high-load, and overload allowing for encoding the level
of congestion into two ECN bits in the IP packet header.
Upon arrival of a packet, each VCP-capable router does: (i)
compute the load factor of each of its links and map it to
one of the congestion levels, and (ii) update the ECN bits
in the packet header. A more congested downstream router
can further change the level of congestion by overwriting
it. Finally, the receiver signals the sender with the conges-
tion information via acknowledgment (ACK) packets. Con-
sequently, VCP applies three congestion control policies:MI
in the low-load region, AI in the high-load region, and MD
in the overload region. The MI region is utilized to eliminate
the slow start characteristic of TCP while the AI and MD
regions preserve the fairness characteristics of TCP.

B. Principles of Implementation

In contrast to XCP, VCP is desirable in terms of de-
ployment. Our implementation dedicates to highlight the
strengths of VCP and thus, four design principles are defined:

• Be transparent to applications:The protocol should not
require any change to applications, which is important
for a transparent deployment. Namely, all TCP-based
applications (e.g. FTP, HTTP) are able to communicate
via VCP without being aware of the existence of VCP.

• Offer easy integration in Linux:VCP should be imple-
mented as a LKM. Linux LKMs allow for adding new
kernel features without recompiling the existing kernel,
which means that a VCP module could be compiled,
loaded, and unloaded without rebooting the system.

• Preserve backward compatibility:The implementation
should be entirely compatible with existing TCP options
and schemes, such as fast-recovery, retransmission, etc.

• Be friendly to all transport protocols:A VCP-capable
router should be capable of dealing with other standard
transport protocols such as TCP and UDP. More impor-
tantly, such friendliness must not adversely affect the
performance of VCP.

III. L INUX IMPLEMENTATION OF VCP

A. The Overall Architecture

Many congestion control protocols including VCP oper-
ate by manipulating thecwnd of the sender. To expedite
the development, we take an implementation approach that
treats VCP as a protocol independent of TCP, while taking
advantage of its important features such as fast recovery and
retransmission. More specifically, VCP is implemented as a
“layer 3.5” protocol between the IP and the transport layer.
From the view point of the end nodes, it appears to be a
“dummy” layer while transmitting. The dummy property
comes from the fact that there is no new protocol header in-
troduced for VCP.

Furthermore, by directly grafting TCP on top of VCP,
the overhead introduced by crossing protocol layers is mini-
mized. The latter will be discussed in more detail in section
III. Under such architecture, for TCP-based applications,
TCP remains the underlying transport mechanism that de-
livers data except that the congestion control is taken overby
VCP. Thus, there is no need to change existing TCP-based
applications for VCP deployment. Put simply, our design
dedicates to enable VCP functionality with minimum over-
head, while keeping compatibility with legacy TCP stacks.

Before describing the implementation in more detail, we
provide an example scenario to explain the operation of VCP.
Assuming the establishment of an FTP session, the flow of
events in our example is as follows:

1) As operated normally, the FTP server renders FTP data
to TCP stack, whereby TCP packets are created. In-
stead of being passed to IP layer, TCP packets are de-
toured to VCP.
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2) VCP does nothing but (i) faking the packets as they are
coming from VCP, (ii) forwarding the modified pack-
ets to IP, and (iii) marking ECN bits as “01” denoting
the “LOW LOAD” in the context of VCP.

3) IP processes packets normally, i.e., it encapsulates
them with their IP headers, fills the protocol field of
IP header with the number of the transport layer pro-
tocol associated with packets, and transmits them out.
Note that the transport protocol id has been changed
from TCP to VCP in the last step.

4) A VCP-capable router receiving packets takes the fol-
lowing actions. First, the router examines the ECN
bits in a packet header and compares them with latest
congestion level of the outgoing link of the packet. If
more congested, the router updates the ECN bits with
“HIGH LOAD” or “OVER LOAD”. Otherwise, the
packet is simply forwarded onwards. Note that the
ECN bits could be updated by all VCP-capable routers
along the path from the sender to the receiver.

5) On the receiving side, VCP accepts packets and pro-
cesses each packet as follows. First, the congestion
information in ECN bits is saved. Then the packet is
forwarded to the TCP stack. When sending an ACK
packet back, VCP reads the saved congestion informa-
tion and marks the ECN bits in the header of the ACK
correspondingly.

6) A VCP ACK received at the sender is converted back
to a normal TCP ACK packet and delivered to the TCP
stack after saving its ECN bits. Meanwhile, VCP ad-
justs thecwnd based on the updated congestion infor-
mation.

B. Linux Congestion Control Architecture

Since VCP contributes by manipulatingcwnd solely based
on the router feedback, it may potentially replace the entire
Linux congestion control scheme. However, Linux performs
congestion control in our implementation based on the rea-
sons discussed below. To better demonstrate our implemen-
tation, next we describe the Linux congestion control archi-
tecture first. For the purpose of efficiency, the Linux imple-
mentation of congestion control is tightly coupled with other
TCP features. We dedicate to keep compatibility with TCP
and take advantage of certain features of TCP. As a result, it
is neither reasonable nor effective to simply prune the con-
gestion control from the Linux TCP implementation. Recall
that we tend to implement VCP as a “layer 3.5” protocol,
which means that once a packet arrives at the TCP layer af-
ter crossing the VCP layer, the information related to VCP is
supposed to be lost.

Fortunately, as of 2.6.13, Linux supports pluggable con-
gestion control algorithms enabling seamless integrationof

Fig. 1. Incoming VCP Data Packet Path

various congestion control algorithms with TCP stack. In
this architecture, a variety of congestion control algorithms
are organized via a data structure:

struct tcp_congestion_ops { ... }

By invoking the register function below, a group of TCP
congestion control algorithms such asreno, vegas, andbic
could be registered to TCP.

int tcp_register_congestion_control(
struct tcp_congestion_ops *ca)

The latest registered one would be the active congestion con-
trol algorithm. Such architecture provides VCP with an ele-
gant interface to interact with Linux’s native congestion con-
trol scheme. Thus, we implement the congestion control of
VCP as a pluggable congestion control algorithm of TCP
which not only conforms to our principles mentioned earlier
but is also very efficient.

More specifically, VCP consists of two components, work-
ing onend-hostside androuter side, respectively. Both com-
ponents are implemented as LKMs, and hence can be trans-
parently enabled and disabled.

C. VCP End Host Module

VCP defines a new IP packet type called VCP with the
protocol number200. While installing the VCP host module,
by calling

int inet_add_protocol(
struct net_protocol *prot,
unsigned char protocol)

function, VCP is registered to IP and signals IP to deliver the
packets with protocol number of 200 to the VCP’s receiving
handler. Meanwhile, the TCP’s sending function is changed
from ip queuexmit() to vcp queuexmit() in order to detour
a TCP packet to VCP rather than IP. As noted earlier, VCP
is implemented as one of the congestion control algorithms
of TCP. Thustcp vcp, a new congestion control algorithm, is
registered to TCP while installing the VCP module.tcp vcp
is responsible for updating thecwndof TCP. In what follows,

3 of 7



we explain what happens to a TCP packet in terms of outgo-
ing and incoming paths after enabling VCP .

• Outgoing packet path: While transmitting, a TCP
packet generated by normal TCP stack is bypassed to
VCP before it is forwarded to IP. Invcp queuexmit(),
the member variablesk protocol in socketdata structure
is changed from 6 (TCP) to 200 (VCP). Meanwhile, the
ECN field is marked as “01”. Then, the VCP packet
is forwarded to IP for transmission by a direct function
call ip queuexmit(). Thus, although VCP is embedded
between TCP and IP as a “layer 3.5” protocol, there is
no need for a new VCP packet header. Furthermore,
there is nearly zero overhead introduced in the outgoing
path of a TCP packet.

• Incoming packet path: While receiving, a VCP packet is
delivered from IP to the VCP’s receiving handler since
VCP has been registered on top of the IP protocol. After
saving the value of ECN bits, VCP forwards the packet
to TCP, leaving the rest of processing of the packet to
TCP. Fig. 1 illustrates the incoming data path of VCP.

D. VCP Router Module

As presented in [20], a VCP capable router should be able
to (i) sample and compute network load on the network link,
and (ii) intercept VCP packets and mark ECN bits.

Taking advantage ofqdisc and timers, sampling and com-
puting network load could be easily achieved in Linux. With
regard to handling VCP packets,netfilter [18] can be used
which is a built-in Linux kernel module allowing for inter-
cepting and manipulating network packets. Via registeringa
hook function at the point of “NFIP POSTROUTING” on
the router, VCP packets could be intercepted bynetfilter

and forwarded to the VCP router module, wherein the ECN
bits of the packet are marked as LOWLOAD, HIGH LOAD,
or OVER LOAD.

It is worth noting that such an implementation allows for
the co-existence of VCP with standard transport protocols
such as TCP and UDP. Importantly, the mixture of flows of
different protocols (VCP, TCP, UDP) does not adversely af-
fect the performance of VCP.

While computations of VCP parameters are involved with
Floating-Point (FP) operations and although Linux kernel
supports such operations, we do not use them in order to
avoid the performance overhead associated with its use.
Rather, we choose to transform all FP numbers to integers
by simply amplifying all FP numbers by a factor of 1000. In
fact, there are three places in VCP where FP computations
are needed. One is for the calculation of load factor in the
router and the other two are for the calculations of the MI/AI
parameters. Since operands associated with these computa-

Fig. 2. The Experimental Environment

tions are in a small range, such transformation provides an
acceptable precision.

We note that there are several alternative approaches to
implement VCP, i.e., (i) introducing a new TCP option sim-
ilar to what is proposed in [27], or (ii) replacing the entire
TCP protocol stack. While the former approach might re-
quire a separate implementation for each possible transport
protocol, the latter approach introduces significant compati-
bility issues. In contrast, our approach is simple and efficient,
while keeping compatibility with legacy TCP stacks.

IV. EXPERIMENTAL STUDIES

In this section, we present our experimental study con-
ducted in a real testbed, comparing the performance of VCP,
TCP Drop Tail (TCP/DT) and TCP Random Early Drop
(TCP/RED). Fig. 2 shows our experimental setup. VCP end
node code runs at end-hosts, i.e., the VCP Client (C) and the
VCP Server (S). VCP router code runs on routers R1 and R2.

The bottleneck link is between R1 and R2, which is set
to 10Mbps full-duplex via theethtool interface provided in
most Linux distributions. The link delay is created via the
netem utility [7] on both routers to create 400ms Round Trip
Time (RTT). An FTP server is set up at S using thevsftpd

built in the Fedora Core 5 distribution of Linux. Five FTP
requests start from C to S simultaneously and the size of each
requested file is 5MB. Both side links from C to R1 and from
S to R2 are 1Gbps links operating in full-duplex mode.

To optimize the performance of TCP, a variety of TCP pa-
rameters are adjusted following the TCP performance tuning
guides of [15], [26]. VCP parameters are set as presented in
[20]. With regard to RED cases, the drop probability is set to
0.1, minimum and maximum queue size are set to one third
and two thirds of the queue buffer size, respectively.

Specifically, our experiments analyze performance using
three metrics:

• Utilization: The ratio of bandwidth consumed over the
bottleneck link versus the bottleneck bandwidth, mea-
sured every RTT time unit. A ratio close to 1 is expected
for VCP when it converges.
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Fig. 4. Per-flow utilization (VCP)

• Per-flow utilization:The ratio of each flow’s bandwidth
consumption versus the bottleneck bandwidth. VCP is
supposed to demonstrate nearly the same ratio among
all flows.

• FTP elapsed time:The average elapsed time for down-
loading 5 files via FTP. If VCP is more effective, shorter
elapsed time is expected.

The experimental studies are two fold, one for a wired bot-
tleneck link and another for a wireless bottleneck link. The
wireless link effect is emulated via another LKM that imple-
ments the Gilbert-Elliott error model developed in our pre-
vious work [22] as a mean of capturing temporally corre-
lated fading characteristics of wireless links. Using thisem-
ulated wireless network, we validate the simulation results in
our earlier work of [23]. First, we measure the performance
of VCP, TCP/DT, and TCP/RED in a wired environment to
build our baseline and validate our implementation. Next, we
explore the performance of VCP and TCP in wireless envi-
ronments with a variety of parameter settings.

A. Performance in Wired Networks

We note that the purpose of this study is not to compre-
hensively evaluate the performance of VCP, but how VCP
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Fig. 5. Per-flow utilization (TCP/DT)
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Fig. 6. Per-flow utilization (TCP/RED)

performs in wireless networks where non congestion loss is
common. As a result, VCP might not demonstrate its full per-
formance potential due to lack of fine-tuning. With proper
fine-tuning, we believe that VCP is able to perform better
than the results reported in this paper.

Fig. 3 shows a significant performance gap between TCP
and VCP. As expected, VCP consistently achieves high band-
width utilization and good fairness. In contrast, TCP/DT
illustrates an unbalanced bandwidth allocation behavior be-
tween flows. Although TCP/RED significantly improves the
performance of TCP/DT, it remains ill-behaved in terms of
its fairness characteristic. Fig. 4, 5, and 6 illustrate per-flow
utilizations of VCP and TCP. In the duration of downloading,
all VCP flows consume bandwidth evenly, while TCP flows
exhibit severe oscillations. In terms of completion time, the
average time for VCP to download five files is 32.1 sec-
onds while TCP/DT requires an average of 71 seconds and
TCP/RED requires an average of 42.5 seconds. Furthermore,
all VCP flows complete around the same time, while TCP
flows finish with significant deviations. In the figure, the end
point of each curve denotes the moment when all FTP flows
finish. Fig. 7, 8, and 9 show thecwnd measures of VCP and
TCP, respectively.
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B. Experimental Evaluation with the Wireless Emulator

This section compares the performance of VCP and
TCP approaches in emulated wireless networks formed by
Multiple-Input Multiple-Output (MIMO) links with/without
FEC schemes applied at the link layer. We emulate the wire-
less link effect over the testbed noted earlier by applying an
LKM module implementing the Gilbert-Elliott error-model
over the bottleneck link.

In the following section, the configuration of error-model
and the description of parameters follow those of [23].

1) The Effects of MIMO:Fig. 10 compares the comple-
tion time of VCP with TCP/RED at various antenna configu-
rations. In all cases, VCP outperforms TCP/RED, achieving
20% faster transmission. As illustrated, the performance is
directly related to the quality of the channel. For small val-
ues ofSNRG representing low channel quality, the value of
Packet Error Rate (PER) is close to 100% and thus yields a
very long completion time. As the quality of channel im-
proves, the value of PER improves eventually approaching
zero. For different antenna configurations, the performance
of 1x1, 2x1, 1x2, and 2x2 MIMO links are in an ascending
order as the result of improving SER from the former to the
latter configuration. For proper scaling of the performance
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Fig. 10. FTP Completion Time of VCP and TCP/RED in Wireless Net-
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gap, completion times larger than 500 seconds are scaled
down to 100 seconds.

We observe a very interesting phenomenon, that the com-
pletion time of TCP/RED is not proportional withSNRG.
As the link quality improves, the loss results from the con-
gestion decreases. However, while the link quality drops for
lower values ofSNRG, random bit errors introduce more
packet loss somewhat limiting the explosion of thecwnd

and thus achieving a RED-like effect, i.e., by dropping pack-
ets earlier congestion losses are reduced. As a result, better
completion times are achieved.

2) The Effects of FEC:As reported in [23], applying the
same level of FEC protection to ACK packets as data packets
results in significant ACK packet loss. The latter is due to
the fact that short ACK packets are corrupted with a smaller
number of bit errors. As verified by our experiments, this
phenomenon can significantly affect the performance of VCP
as it heavily relies on the congestion information in the ACK
packets. Due to space limitation, we only report the results
with different FEC rates applied to data and ACK packets.

Fig. 11 shows the effects of enabling link layer FEC for
a 2x1 MIMO link. Note from the figures that introducing a
small percentage of FEC at the link layer can significantly
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improve the performance of VCP. While not shown due to
the shortage of space, we have observed similar results for
other configurations of MIMO links. Comparing different
configurations of MIMO links, we observe once more that
the performance of 1x1, 2x1, 1x2, and 2x2 are in an ascend-
ing order.

V. CONCLUSION

In this paper, we reported the results of our implementa-
tion of VCP and an experimental study on its performance
in a real network testbed. Our implementation was transpar-
ent to applications, compatible with legacy TCP stack, and
allowed for the co-existence of VCP with standard transport
protocols such as TCP and UDP. We conducted our exper-
imental study in a wired testbed consisting of Linux nodes
realistically emulating the fading characteristics of wireless
links in the Linux kernel.

Our experiments’ results demonstrated that (i) the need for
protecting protocol’s metadata as well as data against bit er-
rors, and (ii) that VCP represents a high performing yet prac-
tical congestion control protocol for encrypted wireless net-
works.

Our future work includes optimizing the performance of
VCP by parameter fine-tuning, as well as a comprehensive
performance evaluation versus XCP and other TCP/AQM
mechanisms.
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