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Abstract—Most multiuser precoding techniques require ac-
curate channel state information at the transmitter (CSIT) to
maintain orthogonality between the users. Such techniqueshave
proven quite fragile in time-varying channels because the CSIT
is inherently imperfect due to quantization error and feedback
delay. An alternative approach recently proposed by Maddah-Ali
and Tse (MAT) allows for significant multiplexing gain in the
multi-input single-output (MISO) broadcast channel (BC) even
with CSIT that is “completely stale”, i.e., uncorrelated with the
current channel state. With K users, their scheme claims to lose
only a log(K) factor relative to the full K degrees of freedom
(DoF) attainable in the MISO BC with perfect CSIT for large K.
However, their result does not consider the cost of the feedback,
which is potentially very large in high mobility (short channel
coherence time). In this paper, we more closely examine the
MAT scheme and compare its maximumnet DoF gain to single
user transmission (which always achieves 1 DoF) and partial
CSIT linear precoding (which achieves up toK). In particular,
assuming the channel coherence time isN symbol periods and the
feedback delay isNfd, we show that whenN < (1+o(1))K logK
(short coherence time), single user transmission performsbest,
whereas forN > (1+o(1))(Nfd+K/ logK)(1−log−1 K)−1 (long
coherence time), zero-forcing precoding outperforms the other
two. The MAT scheme is optimal for intermediate coherence
times, which for practical parameter choices is indeed quite a
large and significant range, even accounting for the feedback
cost.

Index Terms—MIMO, channel state information, quantization

I. I NTRODUCTION

Interference is a key bottleneck in wireless networks and
sophisticated interference reduction techniques such as mul-
tiuser MIMO [1], [2], interference alignment (IA) [3] and
network MIMO [4] are of great interest to researchers and
industry. While these techniques theoretically offer substantial
multiplexing gains, meaning they support more effectively
interference-free streams, they typically require highlyaccu-
rate transmitter channel state information (CSIT) to achieve
said gains. For example, in the case of the broadcast channel
with M transmit antennas andK ≥ M users, the optimal
multiplexing gain with perfect CSIT and CSIR isM , which
can be achieved by either dirty paper coding (DPC) [2], [5],
[6] or even by suboptimal linear precoders including zero-
forcing (ZF) [7]. Without any CSIT, however, the multiplexing
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gain collapses to1 for i.i.d. channels [1] or the more general
isotropic channel [8].

Real systems necessarily have imperfect CSI, particularlyat
the transmitter. Because the channel state must be estimated
(usually from noisy training symbols), then quantized to a
finite-rate value, and finally fed back over a noisy channel ina
specified periodic time-slot, the transmitter will have a delayed
and noisy estimate of the actual channel state1. In essence,
multiuser precoders are relying on a channel prediction in their
attempt to separate the users into interference-free channels.
In this paper, we only consider the loss due to the delay and
finite-rate quantization, and prediction simply means thatsince
the CSI feedback is subject to delay, the applied CSIT is only
a (delayed) prediction of the current channel state.

A. Background and Motivation

Imperfect CSIT is an interesting topic in both academia and
industry. Simple multiuser MIMO techniques such as ZF pre-
coding with limited CSI feedback [9]–[14] have been studied
extensively and also implemented in 4G cellular systems [15],
[16]. One theoretical observation is that the feedback ratemust
scale linearly withlog2 SNR to maintain the full multiplexing
gain with partial CSIT [10]. However, even with this feedback
rate, the feedback delay will cause serious degradation when
the feedback delay approaches (or exceeds) the channel coher-
ence time, causing multiuser precoding techniques to achieve a
lower rate than single user ones due to multiplexing gain loss,
regardless of the feedback rate [17]. Primarily because of this
sensitivity, multiuser MIMO techniques (also called SDMA)
have been largely disappointing in the field and it is widely
agreed they are only of use at very low mobility (pedestrian
speeds at most) [18], [19].

A clever recent work [20] gets around this apparently funda-
mental delay limitation by instead exploitingpreviouschannel
observations to increase the multiplexing gain through a novel
feedback, transmission, and receiver cancellation scheme. This
technique, which we term theMaddah-Ali-Tse (MAT) scheme,
achieves a multiplexing gain in a MISO broadcast channel
of K

1+ 1

2
+...+ 1

K

which is K/ log(K) for large K even with
completely outdated CSIT. This is nearly as good as the multi-
plexing gain ofK for perfect CSIT precoding schemes. It was
subsequently shown in [21] that a similar conclusion holds for

1Time division duplex (TDD) systems may in principle be able to exploit
reciprocity to reduce delay and quantization loss, but suchlosses still exist.
Furthermore, the reciprocal approach is usually not viablein current systems
since the downlink and uplink are nearly independent: the existence of a
downlink packet for a user does not imply that the user is alsotransmitting
in the uplink, especially in the same frequency coherence band.
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the the X and interference channels using a novel retrospective
interference alignment scheme. The guiding principle behind
these results is that with significant feedback delay, channel
“predictions” are bound to fail, but channel “observations” can
be exploited via eavesdropping and feedback to retroactively
remove interference.

A potentially important consideration for these two ap-
proaches is the resources they consume on the feedback
channel. Both [20] and [21] assumed a cost-free infinite rate
feedback channel. The MAT scheme is primarily of interest
for mobile scenarios, since with (very) low mobility the con-
ventional channel prediction techniques that achieve the full K
DoF can be used. Therefore, the MAT scheme still inherently
requires frequent and accurate channel state feedback, andits
main benefit is that it is robust to feedback delay. The goal of
this paper is to determine how much gain (if any) is possible
with an outdated/observed CSIT approach, while correctly
accounting for the unavoidable feedback channel overhead.

During the revision of this manuscript, a few other works
also inspired by the MAT scheme have investigated delayed
CSIT in various settings. In [22], the authors generalized the
idea of the MAT scheme and proposed a new precoder to
achieve a useful tradeoff between interference alignment and
signal enhancement at finite SNR with delayed CSIT. In dy-
namic channel conditions, the MAT scheme with appropriate
scheduling was shown in [23] to outperform conventional zero
forcing precoding even taking CSI estimation and feedback
error into account. In [24], the DoF region for the two-
user MIMO BC with delayed CSIT is derived using the
idea of retrospective interference alignment, and extended
to the MIMO interference channel with delayed CSIT and
output feedback in [25] through a new scheme called retro-
cooperative interference alignment. Finally, a novel achievabil-
ity strategy utilizing outdated state information is proposed in
[26] for the binary interference channel with finite states.None
of these works however account for finite-rate feedback.

B. Summary of Main Result

The main technical contribution of the present paper is to
determine thenet DoFprovided by the MAT scheme [20] for
a K user MISO broadcast channel. The net DoF is the prelog
capacity term remaining after subtracting off the feedback
DoF consumed (which depends on the feedback rate). This
can then be compared to two other baseline techniques: (i)
the no CSIT single user transmitter that always gets 1 DoF
and does not require feedback, and (ii) the partial CSIT zero-
forcing precoder that gets up to the fullK DoF when the
CSIT is sufficiently current and accurate. Although many other
techniques could be chosen and compared to MAT, these two
provide an instructive baseline comparison, and we conjecture
that other single user and multiuser precoding schemes would
result in a very similar tradeoff.

We start with theK = 2 user MAT scheme, proceed to
K = 3 and finally provide a general result for allK. The
approach leading to the net DoF result proceeds in two steps
in each case. First, we derive the multiplexing gain (DoF) with
finite rate feedback as a function of a parameterα > 0, where
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Figure 1. The maximum net DoF for MAT, SISO and multiuser ZF precoding
versus the coherence block lengthN with largeK. Note the is figure is not
to scale (the range of optimality for MAT would be much wider).

α → 0 is bounded rate CSIT andα → ∞ is perfect CSIT. The
DoF loss relative to what is reported in [20] is zero as long
as the feedback amount is sufficiently large. For example, for
K = 2 one requiresα ≥ 1 to achieve the43 DoF that the
MAT scheme promises. Second, we determine how the sum
feedback overhead increases in units of DoF as a function of
α, subtract that from the DoF gain found in step 1 and find
the maximum net DoF by picking the optimumα.

Interestingly, we find that there are regimes where each of
the three techniques is the best one, where the regimes are
defined by the coherence timeN and feedback delayNfd in
units of symbol times. Specifically, when the coherence time
N ≤ (1 + o(1))K logK, there is no value ofα that allows a
net increase in DoF from the MAT scheme, i.e., the net DoF is
strictly less than1 for anyK, which can be achieved by single-
user transmission. Furthermore, whenN > (1 + o(1))(Nfd +
K/ logK)(1 − log−1 K)−1, the MAT scheme is not able to
outperform ZF precoding in terms of the maximum net DoF.
However, the MAT scheme does provide an increase in the
maximum net DoF for the optimal value ofα in between these
two extremes. The main result and this tradeoff is summarized
in Fig. 1.

The intuition behind this result is straightforward. The
feedback rate for the MAT scheme must be held low in order
to not overwhelm the forward direction rate gain. But for a low
feedback rate, the resulting channel quantization error becomes
large and the MAT scheme fails to work well. This primarily
applies to the high mobility (short coherence time) scenario,
since feedback in that case must be frequent. For sufficiently
long coherence times, the feedback delay problem recedes and
eventually the conventional orthogonalizing precoders became
viable, which approach and eventually achieve the fullK
DoF. The MAT scheme fills a useful niche for moderate
mobility/coherence times, which appears to be a quite broad
and relevant regime for reasonable parameter choices. For
example, using a standard LTE air interface with four transmit
antennas and a carrier frequency of2.1GHz, we find that the
MAT scheme is preferable to ZF and single user transmission
for velocities ranging from about 27 km/hr up to airplane-type



3

speeds.

II. SYSTEM MODEL

A MISO broadcast channel withM transmit antennas and
K single antenna receivers is considered. In this paper, we
assumeM = K for simplicity2. In a flat fading environment,
this channel can be modeled as

yr[t] = h∗
r [t]x[t] + zr[t], r = 1, . . . ,K, (1)

where yr[t] is the received signal of receiverr at symbol
time t, x[t] ∈ CM×1 is the transmit signal with the average
power constraintE[x∗[t]x[t]] ≤ P , and zr[t] ∼ CN (0, 1) is
the additive white Gaussian noise. The channel state vectorof
receiverr is denoted byh∗

r [t] ∈ C1×M and the channel state
matrix is defined asH[t] = [h1[t], . . . ,hK [t]]. The channel
is assumed to be block fading:H[t] remains constant over a
block of N symbols, and is comprised of i.i.d. unit variance
complex Gaussian random variables for each block. It follows
thatH[t] is full rank with probability1.

We consider a delayed finite-rate feedback model. Each
receiver is assumed to have an instantaneous and perfect
knowledge of its own channel vectorhr[t]

3. It then quantizes
its channel vector toQ bits and feeds back the bits perfectly to
the BS with delay ofNfd symbols. Notice that we also assume
that the receivers obtain the channel state of all other receivers
via broadcasting in the forward channel from the BS.4

The channel state quantization is performed using a fixed
vector quantization codebook that is known to the transmit-
ter and all receivers. The codebookC consists of2Q M -
dimensional unit norm vectors:C = {w1, . . . ,w2Q}. The
receiver quantizes its channel vector to the closest quantization
vector, i.e., the quantization index at timet is

q[t] = arg min
i=1,...,2Q

sin2 (∠ (hr[t],wi)) ,

Note that only thedirectionof the channel vector is quantized
and fed back, and no information regarding the channel
magnitude is conveyed to the transmitter. Also, in this paper,
we consider the optimal codebook over any vector quantization
codebook in terms of the expected value of the logarithm of
the quantization error, i.e., the optimal codebook minimizes
the expected value of the logarithm of the quantization error.

The key performance metrics are thedegrees of freedom
(also known as themultiplexing gain), the feedback overhead
and thenet DoF. Let R(P ) denote the total average through-
put with transmit powerP . The multiplexing gain withK
receivers is defined as

DoF(K) := lim
P→∞

R(P )

log2 P
. (2)

2Diversity gain can be achieved when K > M (user selection) or M>
K (antenna selection), but those only affect the SNR and we are interested
in the multiplexing gain. Furthermore, whenK ≫ M , the opportunistic
beamforming will achieve nearly optimal degrees of freedomM with small
feedback overhead [27], butK needs to grow withSNR which is not assumed
in this paper.

3Note that since each receiver is assumed to have instantaneous and
perfect knowledge of its own channel vector, the cost of channel training
and estimation error is ignored.

4The CSI broadcast cost in the MAT scheme can be incorporated into the
analysis without changing the general conclusions.

The DoF is the prelog of the capacity, and is the number
of equivalent channels that carry ratelog2 P at high SNR.
Let F (P ) denote the total feedback rate, then the feedback
overhead withK receivers is formally defined as

FB(K) := lim
P→∞

F (P )

log2 P
,

which measures how quickly the feedback rate increases with
log2 P . Finally, we define the net multiplexing gain as

D̂oF(K) := DoF(K)− FB(K).

The net DoF makes explicit the feedback cost, which is quite
important when comparing approaches that require differing
amounts of feedback, as in this paper.

III. BACKGROUND

In this section, for clarity, we first briefly summarize two
key previous results. Then, we introduce the traditional zero-
forcing scheme and modify the MAT scheme to use finite rate
feedback.

A. Multiplexing Gains with Outdated CSIT but no Quantiza-
tion Error

The DoF with outdated CSIT but no quantization error was
given by the following Theorem [20].

Theorem 1. [20] The optimal multiplexing gain with outdated
CSIT is

DoF⋆(K) =
K

1 + 1
2 + . . .+ 1

K

.

The optimal DoF is achieved by the MAT scheme which
was also introduced in [20], which works as follows. The
information symbols intended for a particular receiver canbe
overheard by other receivers. Even with outdated CSIT fed
back by the receiver, the transmitter can exploit this overheard
side information to create future transmissions which are
simultaneously useful for more than one receiver. However,
the result in [20] implicitly assumes the feedback is free.

B. Optimal Vector Quantization

We now briefly review some basic results on optimal vector
quantization in the MISO broadcast channel from [10], [28]–
[30]. Let ê denote the quantization of the channel vectorh and
θ denote the angle betweenh and ê. For the optimal vector
codebook, the lower and upper bound to the expected value
of the logarithm of the quantization error are given by [10]

Q

M − 1
≤ EH

[
− log2(sin

2 θ)
]
≤ Q + log2 e

M − 1
. (3)

The upper bound follows from Lemma 6 in [10] and the proof
in Appendix A. The lower bound in (3) simply follows from
Lemma 3 in [10].
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C. Zero Forcing with Delayed Finite-Rate Feedback

In the slow fading scenario where the feedback delayNfd

is smaller than the coherence timeN , traditional “predictive”
precoders can be adopted. In this paper, the standard zero-
forcing scheme (ZF) is considered, since the multiplexing gain
is of interest and the zero-forcing scheme can achieve the
full K multiplexing gain with perfect CSIT [7], [10]. The ZF
scheme proceeds as follows: at the beginning of each block,
each user quantizes its own channel vector toQ bits and
feeds back the quantization index. The transmitter receives
the feedback with delayNfd and uses zero-forcing precoding
based on the quantized and delayed CSI over the remaining
N −Nfd symbol times. Following the analysis in [10], if the
quantization rateQ is scaled asQ = α(K − 1) log2 P for
α > 0, the DoF with the ZF scheme is5

DoFZF(K) =

(
1− Nfd

N

)
(α ∧ 1)K,

and the feedback overhead isαK(K−1)
N . Therefore, the net

DoF is

D̂oFZF(K) = K

(
(α ∧ 1)− (α ∧ 1)Nfd + (K − 1)α

N

)
.

(4)

WhenN ≥ Nfd +K − 1, the net DoF is positive and has a
maximum value ofK(1 − Nfd+K−1

N ) with α = 1; for N <
Nfd +K − 1, the maximum net DoF is0.

D. Exploiting Outdated CSIT via Delayed Finite-Rate Feed-
back

In this subsection, we consider the MAT scheme with finite
rate CSI feedback. Since the interference-limited case and
multiplexing gain are of interest, Gaussian noise is omitted for
simplicity. Also, the feedback delay is assumed to be identical
to the coherence time in the description, i.e.,Nfd = N , but
the MAT scheme can be extended to the general case. Letur

and vr denote the symbols from two independently encoded
Gaussian codewords intended for receiverr. The transmission
scheme consists of two phases, which takes three symbol times
over three consecutive blocks in total as shown in Fig. 2.

Phase one: Feeding Receivers. This phase has two symbol
times. In the first symbol time of block 1, the BS transmits
the two symbols,uA and vA, intended for receiverA, i.e.,
x[1] = [uA vA]

⊤. At receivers, we have

yA[1] = h∗
A1[1]uA + h∗

A2[1]vA := LA(uA, vA)[1],

yB[1] = h∗
B1[1]uA + h∗

B2[1]vA := LB(uA, vA)[1].

ReceiverB measures the channel and obtains perfect knowl-
edge of its channel vector. It then quantizes the channel
vector and feeds back the quantization index. LetêB[1] =
[êB1[1] êB2[1]]

⊤ denote the quantized channel vector of re-
ceiverB.

Similarly, in the second symbol time of the block 2, the BS
transmits the two symbols,uB andvB , intended for receiver

5we adopt notationa ∧ b = min{a, b} anda ∨ b = max{a, b}.

B, i.e.,x[2] = [uB vB]
⊤. At receivers, we have

yA[2] = h∗
A1[2]uB + h∗

A2[2]vB := LA(uB, vB)[2],

yB[2] = h∗
B1[2]uB + h∗

B2[2]vB := LB(uB, vB)[2].

ReceiverA feeds back its quantized channel vectorêA[2] =
[êA1[2] êA2[2]]

⊤.
A key observation is that because the channel matrixH[1]

is full rank with probability1, if receiverA has the equation
LB(uA, vA)[1] overheard by receiverB, then it has enough
equations to solve for its own symbolsuA andvA. The same
story holds for receiverB. Therefore, the goal of the second
phase is to swap these two overheard equations through the
transmitter.

Phase two: Swapping the overheard Equations. This phase
has one symbol time in the block 3. Since we assume the
feedback delay is one block duration, the quantized channel
vectors at symbol time1 and2 are available at the transmitter.
Thus, the BS can transmit̂LB(uA, vA)[1] + L̂A(uB, vB)[2],
i.e., x[3] = [L̂B(uA, vA)[1] + L̂A(uB, vB)[2] 0]⊤, where
L̂B(uA, vA)[1] = ê∗B1[1]uA+ ê∗B2[1]vA andL̂A(uB, vB)[2] =
ê∗A1[2]uB + ê∗A2[2]vB. Receiver observes

yA[3] = h∗
A1[3]

(
L̂B(uA, vA)[1] + L̂A(uB, vB)[2]

)
,

yB[3] = h∗
B1[3]

(
L̂B(uA, vA)[1] + L̂A(uB, vB)[2]

)
.

The transmission scheme is summarized in Fig. 2. Putting all
these received equations together in matrix form, for receiver
A we have


yA[1]
yA[2]
yA[3]


 =




h∗
A1[1] h∗

A2[1]
0 0

h∗
A1[3]ê

⋆
B1[1] h∗

A1[3]ê
⋆
B2[1]



[
uA

vA

]

+




0 0
h∗
A1[2] h∗

A2[2]
h∗
A1[3]ê

∗
A1[2] h∗

A1[3]ê
∗
A2[2]



[
uB

vB

]
,

rewritten in a simpler form as

yA =




yA[1]
yA[2]/|hA[2]|
yA[3]/|hA1[3]|


 = H∗

A

[
uA

vA

]
+ I∗B

[
uB

vB

]
, (5)

whereI∗B denotes the interference from transmitting symbols
intended for receiverB. This equation has an interference
alignment interpretation. The received signalyA lies in
the 3-dimensional vector space. The intended symbols
uA and vA of receiver A are sent along the vectors
[h∗

A1[1] 0 h∗
A1[3]ê

∗
B1[1]]

⊤ and [h∗
A2[1] 0 h∗

A1[3]ê
∗
B2[1]]

⊤

respectively. The unintended symbolsuB and vB are
sent along the vectors[0 h∗

A1[2] h
∗
A1[3]ê

∗
A1[2]]

⊤ and
[0 h∗

A2[2] h
∗
A1[3]ê

∗
A2[2]]

⊤ respectively.
If the quantization error is0, then the quantized channel

vectorêA[2] is in the same direction as the true channel vector
hA[2] and thusuB andvB are sent along the same direction.
Therefore, by zero-forcing the interference, receiverA has2
interference-free dimensions. Also, due to the CSI broadcast
from BS, receiverA knows the quantized channel vectorêB[1]
of receiverB. Therefore, receiver A can recover its intended
symbolsuA andvA by solving two independent linear equa-
tions. Similarly, for receiverB, it also has2 interference-free
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Figure 2. Block diagram of the MAT scheme with quantization error for K = 2.

dimensions and can recover its intended symbolsuB andvB.
All in all, we recover4 symbols using3 symbol times and
thus achieves43 degrees of freedom.

However, it is easy to see that with finite rate feedback, the
quantization error is in general nonzero and thus less than4

3
degrees of freedom will be achieved.

IV. M AIN RESULTS

In this section, the impact on the DoF of accounting for
finite rate feedback is investigated for the MAT scheme, and
then compared to single user and ZF transmission. We first
start with the two user case, then move to three users and
finally generalize to theK user case. The proof techniques
are essentially the same, but the details of theK = 2 and
K = 3 cases are instructive to understand the general case.

A. Two User Case,K = 2

We first consider the two user case as introduced in Section
III-D. The following lemma relates the multiplexing gain to
the singular values of interference matrixI∗B.

Lemma 1. For the two user case, the DoF with the finite-rate
feedback MAT scheme is

DoFMAT(2) =
2

3
− 2

3

(
lim

P→∞
E

[
log2(σ

2
2)

log2 P

]
∨ (−1)

)
,

whereσ2 > 0 is the second largest singular value ofI∗B.

Proof: See Appendix B.

From Lemma 1, we can derive the following theorem which
relates the multiplexing gain to the quantization accuracyQ,
which is the feedback rate per user per feedback interval.

Theorem 2. For the two user case, if the quantization rate
Q is scaled asQ = α log2 P for anyα > 0, the multiplexing
gain under the MAT scheme is2(1+α)

3 ∧ 4
3 .

Proof: See Appendix C.

In Theorem 2, we requireα > 0 in order to ensure that
Q → ∞ asP → ∞. However, ifα → 0 then the asymptotic
multiplexing gain is2

3 in the boundedQ case. Therefore we
conclude that for allα the multiplexing gain is between23 and
4
3 . Whenα ≥ 1, the full multiplexing gain4

3 can be achieved,
which recovers the result in [20]. Finally, we note that when
α < 1

2 , the multiplexing gain becomes less than1 which is
less than the no CSIT case (i.e., single user transmission).

The following lemma characterizes the feedback overhead
required by the MAT scheme.

Lemma 2. For the two user case, if the quantization rateQ is
scaled asQ = α log2 P for α > 0, then the feedback overhead
under the MAT scheme is23Nα.

Proof: From the transmission scheme, it can be seen that
receiverA has to feed back its channel vector at symbol time
2 of block 2 to align the interference; while receiverB has
to feed back its channel vector at symbol time1 of block
1 to align the interference. Therefore, over total3 blocks,2
channel vectors must be fed back. It follows then the aggregate
feedback rate is 2

3N α log2 P bits/slot and thus the feedback
overhead is 2

3N α.
Combining Theorem 2 and Lemma 2 gives the net DoF as

D̂oFMAT(K = 2) = DoF(K)− FB(K)

=
2

3

(
(1 +

N − 1

N
α) ∧ (2− α

N
)

)
,

which has a maximum of2(2N−1)
3N .
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Figure 3. The maximum net DoF of MAT, SISO and ZF forK = 2 with
varying coherence block lengthN .

For comparison, let us consider single user transmission
(SISO) and zero-forcing. For single user transmission, it is
easy to see that the net DoF is1, since no CSI feedback is
needed. For zero-forcing, according to (4), whenN ≥ Nfd+1,
the maximum net DoF is

D̂oFZF(K = 2) = 2

(
1− Nfd + 1

N

)

which is achieved by choosingα = 1; for N < Nfd + 1, it is
0.

When N ≤ 2, the maximum net DoF with MAT is no
greater than1 and thus the MAT scheme cannot provide a net
gain in DoF compared to SISO forK = 2 and any value of
α. WhenN > 3Nfd + 2, the maximum net DoF with MAT
is less than that with ZF, and thus the MAT scheme cannot
provide a maximum net DoF gain forK = 2. However, when
2 ≤ N ≤ 3Nfd+2, the MAT scheme can provide a maximum
net DoF gain compared to SISO and ZF forK = 2 with
optimal value ofα = 1. Fig. 3 present numerical results of
the maximum net DoF for the three techniques respectively.
The feedback delay is assumed to beNfd = 100 for clarity.
The actual feedback delay depends on the system design. For
example, in a narrowband channel with symbol rate100 KHz,
Nfd = 100 means the feedback delay is1 msec. From the
figure, it can be seen that the MAT scheme does provide a net
DoF gain for2 ≤ N ≤ 302, which is a significant range.

B. Three User Case

In this subsection, we extend to the three user case. Ac-
cording to [20], the MAT scheme takes11 symbol times in
11 consecutive blocks. The received signal of userA over the
total 11 symbol times can be written in matrix form as

yA = H∗
AuA + I∗B,C [u

t
B,u

t
C ]

t,

whereuA is a 6× 1 vector of symbols intended only for user
A, H∗

A is a 11× 6 matrix with rank6, andI∗B,C is a 11× 12
interference matrix. Notice thatI∗B,C must contain2 zero row
vectors, since among the11 symbol times,2 symbol times

are used for transmitting the symbols only intended for user
A and thus there is no interference.

Without quantization error, the rank ofI∗B,C is 5 and thus
the interference lies in a5-dimensional subspace. Therefore,6
degrees of freedom among11 symbol times can be achieved by
zero forcing the interference for each user. With quantization
error, the interference will spill out of the5-dim subspace
and the zero-forcing scheme cannot eliminate all the inter-
ference. Similar to the two user case, we have the following
lemma relating the multiplexing gain to the singular valuesof
I∗B,C :{σ1, . . . , σ11}.

Lemma 3. For the three user case, the multiplexing gain with
the finite-rate feedback MAT scheme is

DoFMAT(3) =
6

11
− 3

11

9∑

i=6

(
lim

P→∞

E
[
log2(σ

2
i )
]

log2 P
∨ (−1)

)
.

Proof: The proof is similar to that of Lemma 1 and
omitted for conciseness.

From Lemma 3, we can derive the following theorem which
relates the multiplexing gain to the quantization accuracyQ.

Theorem 3. For the three user case, if the quantization rate
Q is scaled asQ = 2α log2 P for α > 0, the multiplexing
gain under the MAT scheme is6(1+2α)

11 ∧ 18
11 .

Proof: The proof is similar to that of Theorem 2 and
omitted for conciseness.

The feedback overhead is given by the following lemma.

Lemma 4. For the three user case, if the quantization rate
Q is scaled asQ = 2α log2 P for α > 0, then the feedback
overhead under the MAT scheme is3011N α.

Proof: From the transmission scheme, it can be seen
that the key role played by the feedback is to ensure the
interference in the future transmissions always lies in the5-
dimensional subspace. Therefore, each receiver has to feed
back its channel vector5 times to inform the transmitter its
specific5-dimensional subspace. Thus, over11N total symbol
times,15 channel vectors must be fed back in total. It follows
then the total feedback rate is3011N α log2 P bits/slot.

Combining Theorem 3 and Lemma 4 gives the net DoF as

D̂oFMAT (K = 3) = DoF(K)− FB(K)

=
6

11

(
(1 +

2N − 5

N
α) ∧ (3 − 5

N
α)

)
.

When N ≥ 5
2 , the net DoF has a maximum of6(3N−5)

11N ;
otherwise, the maximum net DoF is611 .

The maximum net DoF with SISO is still1 and according
to (4), whenN ≥ Nfd + 2, the maximum net DoF with ZF
for K = 3 is

D̂oFZF(K = 3) = 3

(
1− Nfd + 2

N

)

which is achieved by choosingα = 1; for N < Nfd + 2 it is
0.

When N ≤ 30
7 , the maximum net DoF with MAT is no

greater than1 and thus the MAT scheme cannot provide a net
gain in DoF compared to SISO forK = 3 and any value of
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Figure 4. The maximum net DoF of the MAT, SISO and ZF forK = 3

with varying coherence block lengthN .

α. WhenN > 11Nfd+12
5 , the maximum net DoF with MAT is

less than for ZF. The useful range therefore is

30

7
≤ N ≤ 11Nfd + 12

5
,

for which the MAT scheme can achieve a maximum net
DoF gain. Fig. 4 shows the maximum net DoF for the three
techniques for a feedback delay ofNfd = 100. The MAT
scheme provides a net DoF gain in this case for5 ≤ N ≤ 222.

C. GeneralK User Case

In this subsection, we generalize the previous results to
the K user case. Let K

1+ 1

2
+...+ 1

K

= KD
T , whereD,T ∈ N .

According to [20], the transmission scheme for theK user
case takesT symbol times inT consecutive blocks, and the
received signal for userA overT symbol times can be written
in matrix form as

yA = H∗
AuA + I∗/Au/A, (6)

whereuA is aD × 1 vector of symbols intended for userA,
u/A is a (K − 1)D × 1 vector of symbols intended for users
other thanA (the subscript/A means all other users except
userA); H∗

A is a T × D matrix with rankD, and I∗/A is a
T × (K − 1)D matrix. Notice thatI∗/A containsD

K zero row
vectors, since among theT symbol times,DK slots are used
for transmittingD symbols only intended for userA.

Without quantization error, the rank ofI∗/A is (T −D) and
thus the interference lies in a(T −D)-dimensional subspace.
Therefore,D degrees of freedom for each user can be achieved
by zero forcing the interference. With quantization error,
some interference will spill out of the(T − D)-dimensional
subspace and the zero-forcing scheme cannot eliminate all the
interference. Similar to the two and three user case, we have
the following lemma, which relates the multiplexing gain with
the singular values ofI∗/A: {σ1, . . . , σT }.

Lemma 5. For the K user case, the multiplexing gain with
finite rate feedback MAT scheme is

DoFMAT(K)

=
D

T
− K

T

T−D/K∑

i=T−D+1

(
lim

P→∞

E
[
log2(σ

2
i )
]

log2 P
∨ (−1)

)
.

Proof: See Appendix D.
The following lemma relates the singular values ofI∗/A:

{σT−D+1, . . . , σT−D/K} to the quantization errorsin2 θ.

Lemma 6. For the K user case andT − D + 1 ≤ i ≤
T −D/K,

1

T −D/K
sin2 θ ≤ σ2

i ≤ 4(T −D/K) sin2
θ

2

holds with probability approaching to1 asQ → ∞.

Proof: See Appendix E.
The following theorem generalizes Theorem 2 and Theorem

3.

Theorem 4. For the K user case, if the quantization rateQ
is scaled asQ = α(K−1) log2 P for α > 0, the multiplexing

gain under the MAT scheme is
(

1+(K−1)α
K ∧ 1

)
DoF⋆(K).

Proof: See Appendix F.
When α ≥ 1, the optimal multiplexing gain without

feedback rate constraint DoF⋆(K) can be achieved; while if
α < α⋆ = 1/2+...+1/K

(1+1/2+...+1/K)(K−1) , the multiplexing gain drops
to less than1 and outdated CSIT becomes useless.

The feedback overhead is characterized by the following
theorem, which generalizes Lemma 2 and Lemma 4.

Lemma 7. For theK user case, if the quantization rateQ is
scaled asQ = α(K − 1) log2 P for α > 0, then the feedback
overhead with the MAT scheme isK(K−1)(1/2+...+1/K)

(1+1/2+...+1/K)N α.

Proof: From the transmission scheme, it can be induced
that the key role played by the feedback is to ensure the
interference for a particular user in future transmissionsalways
lies in a (T − D)-dimensional subspace. Therefore, each
receiver has to feed back its channel vector(T −D) times to
inform the transmitter its specific(T − D)-dimensional sub-
space. Thus, over totalNT symbol times,K(T −D) channel
vectors must be fed back. It follows that the feedback rate
is K(K−1)(1/2+...+1/K)

(1+1/2+...+1/K)N α log2 P bits/slot. Finally, the theorem
follows by invoking the definition of feedback overhead.

Combining Theorem 4 and Theorem 7 gives the net DoF
as

D̂oFMAT (K) = DoF(K)− FB(K)

=
N + α(K − 1)(N −K(1/2 + . . .+ 1/K))

(1 + 1/2 + . . .+ 1/K)N

∧ K(N − α(K − 1)(1/2 + . . .+ 1/K))

(1 + 1/2 + . . .+ 1/K)N
.

WhenN ≥ K(1/2+ . . .+1/K), the net DoF has a maximum
value of K(N−(K−1)(1/2+...+1/K))

(1+1/2+...+1/K)N ; otherwise, the maximum
net DoF is 1

1+1/2+...+1/K , which is worse than SISO.
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The maximum net DoF with SISO is still1 and according
to (4), whenN ≥ Nfd +K − 1, the maximum net DoF with
ZF is

D̂oFZF(K) = K

(
1− Nfd +K − 1

N

)

which is achieved by choosingα = 1; for N < Nfd +K − 1,
it is 0.

As in the K = 2 and K = 3 case, we can identify
a range where the MAT scheme is worthwhile in terms of
the maximum net DoF. WhenN ≤ K(K−1)(1/2+...+1/K)

K−(1+1/2+...+1/K) =

(1+ o(1))K logK, single user SISO is better, while forN ≥
(1+1/2+...+1/K)Nfd+K−1

1/2+...+1/K = (1 + o(1))(Nfd +K/ logK)(1 −
log−1 K)−1 , zero forcing is preferable6. The MAT scheme
is the best for all other values ofN when using the optimal
value ofα = 1.

Fig. 1 provides a visual summary of the main results. We
fix the number of usersK and vary the block durationN ,
and plot the maximum net DoF attained by the MAT, single
user transmission (SISO), and zero-forcing (ZF). The three
different channel coherence time regimes can be immediately
observed: (i) short coherence time (N ≤ (1 + o(1))K logK),
(ii) moderate coherence time ((1+o(1))K logK < N < (1+
o(1))(Nfd+K/ logK)(1− log−1 K)−1), and (iii) long coher-
ence time (N ≥ (1+o(1))(Nfd+K/ logK)(1− log−1 K)−1).
One would prefer to choose SISO for (i), MAT for (ii) and
ZF for (iii).

D. Analog vs. Digital Feedback

An alternative way to feed back CSI is analog feedback,
where each receiver feeds back its channel vectorhr by ex-
plicitly transmittingM complex coefficients over an unfaded
additive Gaussian noise feedback channel:

G[t] =
√
PH[t−Nfd] + Z[t],

whereG[t] is the received channel state feedback andZ[t]
is the Gaussian noise with unit variance in feedback channel.
As H[t] is composed of i.i.d. complex Gaussian with unit
variance, the optimal estimator of CSI is the MMSE estimator
given by

Ĥ[t−Nfd] =

√
P

1 + P
G[t],

whereĤ[t] is the estimator of true channel stateH[t]. Since
we are interested in the scaling rate of the feedback rate
with respect tolog2 P as P → ∞, the estimator noise can
be neglected and the CSIT is accurate and only subject to
feedback delay. Therefore, the DoF with noiseless analog
feedback is the same as that with accurate CSIT, and the sum
feedback overhead isK

2

N . Then, the net DoF is given by

D̂oFMAT (K) =
K(N −K(1 + 1/2 + . . .+ 1/K))

(1 + 1/2 + . . .+ 1/K)N
,

D̂oFZF(K) = K

(
1− Nfd +K

N

)
.

6Note that we implicity assumeNfd ≥ K logK, which is generally true
in practice. Refer to the Section E Design Guidelines for thepractical value
of Nfd.

Comparing it to the result with digital (quantized) feedback,
we see that the net DoF with analog feedback is almost
the same as the maximum net DoF (α = 1) with digital
feedback. Therefore, the tradeoff between coherence time,
feedback rate/delay, and the transmission techniques shown
in Fig. 1 remains the same with analog feedback. Note that
the digital feedback appears to be more flexible than analog
feedback, since it can adjustα to meet the feedback rate
constraints and achieve a gradual degradation of net DoF while
analog feedback is only feasible when feedback overheadK2

N
is supportable in the feedback channel.

E. Design Guidelines

This subsection translates the previous analytical results into
rough design guidelines for a real-world system. To be con-
crete, we adopt the parameters used in the 3GPP LTE standard
[16]. The carrier frequency is chosen to befc = 2.1 GHz
and resources are allocated to users in “resource blocks” in
the time-frequency grid consisting of12 subcarriers, spanning
180 KHz in frequency, over14 OFDM symbols, which spans
1 msec in time. Therefore, a data symbol slot is effectively
Ts = 1/168 msec since there are12× 14 = 168 symbols sent
in a msec. The typical CSI feedback delay is assumed to be
an LTE frame, which is10 msec, soNfd = 10× 168 = 1680
symbols. Assuming the standard relation between channel
coherence time, Doppler spread, and user velocityv, we have
v = c

fcNTs
m/s, wherec is the speed of light. Then, based on

the results in the previous section, approximate regimes where
the MAT scheme achieves a net DOF gain are summarized
in Table I. We caution against taking this table too literally,
since other factors not modeled in this paper will play a rolein
the regimes of optimality, but nevertheless it appears thatthe
MAT scheme provides a net DoF gain for a very large range
of mobility. The upper limit is where the mobility is so high
that it is better to switch to simple single user transmission,
whereas the lower bound on velocity represents the crossing
point over to ZF precoding. We observe that as the number
of antennas (and thus users) increases, ZF precoding takes on
increasing role since its maximum achievable DoF isK vs.
MAT’s K/ logK and thelogK gap becomes more significant.

V. CONCLUSION

In this paper, we studied the MAT scheme with finite
rate feedback and compared it with the two other commonly
used transmission schemes (single user transmission and zero-
forcing). We established the regimes where each scheme
outperforms the other two in terms of the maximum net DoF
and found that the MAT scheme is useful in the intermediate
coherence time regime which is a quite significant range
for practical parameters. The downlink training and channel
estimation error are not considered in this paper. In fact, it can
be shown that the downlink training cost only affects the DoF
by a product term1− K

N which is close to1 becauseN ≫ K
in practice, and the channel estimation error is negligibleat
high SNR. Future work could consider more realistic fading
channel and feedback models and non-asymptotic metrics like
throughput at finite SNR. We assume such considerations will
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Table I
APPROX. RANGE OF OPTIMALITY OF THEMAT SCHEME WITH LTE-LIKE PARAMETERS, SEESEC. IV-E

Number of antennasK Coherence timeN Coherence timeTc (msec) Velocity v (km/hr)
2 2 ≤ N ≤ 5000 Tc ≤ 30 v ≥ 17

4 7 ≤ N ≤ 3200 0.04 ≤ Tc ≤ 20 27 ≤ v ≤ 12, 000

16 46 ≤ N ≤ 2400 0.3 ≤ Tc ≤ 14 36 ≤ v ≤ 1900

change the trade-off boundaries, but expect that the general
trends and conclusions of this paper will hold.

APPENDIX

A. Proof of (3)

By Lemma 6 in [10], the quantization errorsin2 θ stochas-
tically dominates the random variablẽZ, whose cdf is given
by

FZ̃(z) =

{
2QzM−1, 0 ≤ z ≤ 2−

Q
M−1

1, z ≥ 2−
Q

M−1

.

Using this fact, we have

EH

[
− log2(sin

2 θ)
]
≤ E

[
− log2(Z̃)

]
=

∫ ∞

0

P(Z ≤ 2−z)dz

=

∫ ∞

0

FZ̃(2
−z)dz =

Q + log2 e

M − 1
.

B. Proof of Lemma 1

Proof: As can be seen in (5), in order to achieve the
maximal multiplexing gain, receiver A must attempt to zero-
force the interference, i.e.,

U∗
AyA = U∗

AH
∗
A

[
uA

vA

]
+U∗

AI
∗
B

[
uB

vB

]
,

whereU∗
A is a2×3 zero-forcing matrix. The rank ofU∗

A must
be 2 to recoveruA and vA. Then, the average throughput of
receiverA can be derived as

RA(P )

=
1

3
E

[
log2

det
(
I2 +

P
2 HAUAU

∗
AH

∗
A + P

2 IBUAU
∗
AI

∗
B

)

det
(
I2 +

P
2 IBUAU

∗
AI

∗
B

)
]
.

Define the singular value decompositionIB = UΣV∗, where
Σ = diag{σ1, σ2} andU∗

A is chosen by canceling as much
interference as possible. Using matrix analysis, we can derive

det

(
I2 +

P

2
IBUAU

∗
AI

∗
B

)
(a)
= det

(
I2 +

P

2
U∗

AI
∗
BIBUA

)

(b)
= (1 +

P

2
λ2
1)(1 +

P

2
λ2
2)

(c)

≥ 1 +
P

2
(λ2

1 + λ2
2)

(d)
= 1 +

P

2
‖IBUA‖F

(e)

≥ 1 +
P

2
σ2
2 ,

where (a) follows from the fact thatdet(I + AB) =
det(I +BA); (b) follows from the definition thatλ1, λ2 are
the singular values ofIBUA; (c) follows from neglecting

the remaining nonnegative partsλ2
1λ

2
2; (d) follows from the

definition of Frobenius norm‖ · ‖F ; (e) follows from the fact
thatminUA:U∗

A
UA=I ‖IBUA‖F = σ2

2 .
ChooseUA to be the last2 columns ofV, i.e., UA =

V(2 : 3), the lower bound is achieved. The interference power
therefore becomes

det

(
I2 +

P

2
IBUAU

∗
AI

∗
B

)
= 1 +

P

2
σ2
2 . (7)

Then, by the definition of multiplexing gain in (2), we have
DoFA(2)

= lim
P→∞

E log2 det
(
I2 +

P
2 (HAUAU

∗
AH

∗
A + IBUAU

∗
AI

∗
B)
)

3 log2 P

− lim
P→∞

E
[
log2 det

(
I2 +

P
2 IBUAU

∗
AI

∗
B

)]

3 log2 P

(a)
=

2

3
− 1

3
lim

P→∞

E
[
log2 det

(
I2 +

P
2 IBUAU

∗
AI

∗
B

)]

log2 P

(b)
=

2

3
− 1

3

(
lim

P→∞

E
[
log2(Pσ2

2)
]

log2 P
∨ 0

)

=
1

3
− 1

3

(
lim

P→∞

E
[
log2(σ

2
2)
]

log2 P
∨ (−1)

)
,

where (a) follows from the fact that the rank ofHAUA

is 2 almost surely and that the signal power dominates the
interference power whenP → ∞; (b) follows from (7) and
let P → ∞. Finally, the proof is completed by considering
receiver B similarly.

C. Proof of Theorem 2

Proof: From Lemma 1, the multiplexing gain can be
derived as

DoF(2) =
2

3
− 2

3

(
lim

P→∞
E

[
log2(σ

2
2)

log2 P

]
∨ (−1)

)

(a)
=

2

3
− 2

3

(
lim

P→∞

E
[
log2(sin

2 θ)
]

log2 P
∨ (−1)

)

(b)
=

2

3
+

2

3

(
lim

P→∞

Q

log2 P
∧ 1

)

=
2

3
+

2

3
(α ∧ 1) ,

where (a) follows for the following reason. First, we can
derive that

σ2
2 = 2 sin2

θ

2
,

which is proved as follows.
To find the expressionσ2, it suffices to consider the last two

rows ofI∗B , denoted bŷI∗B. Let us define a new2-dimensional
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unit norm vectorα such that its angles to the two rows ofÎ∗B
are the same. Also, defineα⊥ as the2-dimensional unit norm
vector which is orthogonal toα. Then we have the following
singular value decomposition ofÎ∗B:

Î∗B =

[
1√
2

1√
2

1√
2

− 1√
2

][√
2 cos θ

2 0

0
√
2 sin θ

2

] [
α∗

(
α⊥)∗

]
,

whereθ is the angle between the two rows ofÎ∗B, i.e., θ =
∠(hA[2], êA[2]). Therefore,σ2

2 = 2 sin2 θ
2 .

Second, since(1/2) sin2 θ ≤ 2 sin2 θ
2 ≤ 2 sin2 θ when0 ≤

θ ≤ π
2 , we have(1/2) sin2 θ ≤ σ2

2 ≤ 2 sin2 θ. It follows that

| lim
P→∞

E

[
log2(σ

2
2)

log2 P

]
− lim

P→∞
E

[
log2(sin

2 θ)

log2 P

]
|

≤ lim
P→∞

log2 2

log2 P
= 0.

Thus, step(a) follows.

Finally, step(b) follows from the lower and upper bound
of E

[
log2(sin

2 θ)
]

in (4).

D. Proof of Lemma 5

Proof: Focus on receiver A first. As can be seen in (6),
in order to achieve the maximal multiplexing gain, receiverA
must try to zero-force the interference, i.e.,

U∗
AyA = U∗

AH
∗
AuA +U∗

AI
∗
/Au/A,

whereU∗
A is a D × T zero-forcing matrix of rankD. Then,

the average throughput of userA is

RA(P )

=
1

T
E log2

det
(
ID + P

K (HAUAU
∗
AH

∗
A + I/AUAU

∗
AI

∗
/A)
)

det
(
I(K−1)D + P

K I/AUAU
∗
AI

∗
/A

) .

ChooseUA as the lastD columns ofV: UA = V(T−D+1 :
T ), whereI/A = UΣV∗ is the singular value decomposition.
Then, the interference power becomes

det

(
I(K−1)D +

P

K
I/AUAU

∗
AI

∗
/A

)

=

T∏

i=T−D+1

(1 +
P

K
σ2
i ) =

T−D/K∏

i=T−D+1

(1 +
P

K
σ2
i ), (8)

where the last equality follows from the fact thatI/A contains
D
K zero row vectors.

Then, by the definition of multiplexing gain in (2),

DoFA(K)

= lim
P→∞

RA(P )

log2 P

(a)
=

D

T
− 1

T
lim

P→∞

E log2 det
(
I(K−1)D + P

K I/AUAU
∗
AI

∗
/A

)

log2 P

(b)
=

D

T
− 1

T

T−D/K∑

i=T−D+1

(
lim

P→∞

E
[
log2(Pσ2

i )
]

log2 P
∨ 0

)

=
D

KT
− 1

T

T−D/K∑

i=T−D+1

lim
P→∞

(
E
[
log2(σ

2
i )
]

log2 P
∨ (−1)

)
,

where (a) follows from the fact thatHAUA is of rank
D almost surely and that the signal power dominates the
interference power whenP → ∞; (b) follows from (8) and
let P → ∞. Finally, the proof can be readily completed by
considering all the users.

E. Proof of Lemma 6

Proof: It suffices to consider the nonzero rows of inter-
ference matrixI∗/A, so we remove theDK zero rows and still
denote the interference matrix asI∗/A for ease of notation. First,
we prove the upper bound. Denote the interference matrix with
zero quantization error bȳI∗/A, and defineE = Ī∗/A− I∗/A. Let
Ei denote rows ofE for i = 1, . . . , T − D

K .
From the perturbation bounds for the singular values of a

matrix due to Weyl [31], we have

|σi − σ̄i| ≤ ‖E‖F , for i = T −D + 1, . . . , T − D

K
,

where σ̄i is the singular value of̄I∗/A. Since Ī∗/A is of rank
T −D, σ̄i = 0 for i = T −D + 1, . . . , T −D/K.

Moreover, the angle between theith row of I∗/A and Ī∗/A is
0 or θ (due to the quantization error). And when the angle isθ,
‖Ei‖2 = 2 sin θ

2 . Thus,‖Ei‖22 ≤ 4 sin2 θ
2 , for i = 1, . . . , T −

D
K . Therefore,‖E‖2F ≤ 4(T −D/K) sin2 θ

2 . It follows then

σ2
i ≤ 4(T − D

K
) sin2

θ

2
, for i = T −D + 1, . . . , T − D

K
.

Next, we prove the lower bound. LetIi denote rows ofI∗/A,
for i = 1, . . . , T − D

K andSi denote the space spanned by all
the rowsI1, . . . , IT−D

K
other thanIi. Define

dist(Ii,Si) := min
Xi∈Si

‖Ii −Xi‖2.

Note that whenQ is sufficiently large and thusθ is small, the
angle betweenIi and any linear combination of the other rows
of I∗/A is no less thanθ with high probability. Specifically, for
∀ǫ > 0, there existsQ0 such that forQ > Q0, the probability
that the angle betweenIi and any linear combination of the
other rows ofI∗/A is no less thanθ is greater than1 − ǫ.
Therefore, dist(Ii,Si) ≥ sin θ with probability approaching
to 1 whenQ → ∞. Furthermore, from thenegative second
moment identityin [32] we have

T−D
K∑

i=1

σ−2
i =

T−D
K∑

i=1

dist(Ii,Si)
−2.
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Then it follows that

σ−2
T−D

K

≤
T−D

K∑

i=1

σ−2
i =

T−D
K∑

i=1

dist(Ii,Si)
−2

≤
T−D

K∑

i=1

1

sin2 θ
=

T − D
K

sin2 θ
.

Therefore, with probability approaching to1 asQ → ∞,

σ2
T−D

K

≥ sin2 θ

T − D
K

.

F. Proof of Theorem 4

Proof: From Lemma 5,

DoF(K)

=
D

T
− K

T

T−D/K∑

i=T−D+1

(
lim

P→∞

E
[
log2(σ

2
i )
]

log2 P
∨ (−1)

)

(a)
=

D

T
− K

T

T−D/K∑

i=T−D+1

(
lim

P→∞

E
[
log2(sin

2 θ)
]

log2 P
∨ (−1)

)

(b)
=

D

T
+

(K − 1)D

T

(
lim

P→∞

Q

(K − 1) log2 P
∧ 1

)

=
D

T
+

(K − 1)D

T
(α ∧ 1) ,

where(a) holds for the following reason. ForT−D+1 ≤ i ≤
T−D/K and∀ǫ > 0, by Lemma 6 andQ = α(K−1) log2 P ,
there exists constantP0 such that whenP > P0,

P{ 1

T − D
K

sin2 θ ≤ σ2
i ≤ 4(T − D

K
) sin2

θ

2
} ≥ 1− ǫ.

Furthermore,log2
(σ2

i )
log

2
P ∨ (−1) is bounded below by−1 and

above by0, so forT −D + 1 ≤ i ≤ T −D/K, there exists
constantP1 such that whenP > P1,

| E
[
log2(σ

2
i )
]

log2 P
∨ (−1)− E

[
log2(sin

2 θ)
]

log2 P
∨ (−1) |≤ ǫ.

Finally, (b) follows from the lower and upper bound of
E
[
log2(sin

2 θ)
]

in (3).
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