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Abstract—This paper explores the use of selection diversity
for interference alignment systems. Multiple distinct alignment
modes exist for certain types of interference network. By
selecting the best alignment mode to support the signal-to-noise
rate (SNR) of the worst user, a diversity gain improvement
can be observed. This paper shows that in a 3-user double-
antenna interference channel, a system switching between two
alignment modes achieves a diversity gain of 2 in the fixed-rate
regime and the maximum degree-of-freedom (DoF) gain of 3 in
the variable-rate regime. Consequently, we disprove a previous
feasibility condition for diversity in alignment systems, which
requires a trade-off between the DoF gain and the diversity
gain.

I. INTRODUCTION

Interference alignment is a promising technique for inter-
ference management in multi-user networks. Through trans-
mitter beamforming, multi-user interference is projected into
overlapping subspaces at different receivers, thereby leaving
the remaining signal space for desired signals. In [1], [2],
interference alignment is shown to achieve the maximum
degree-of-freedom (DoF) gain in different types of interfer-
ence networks. Contrary to the DoF gain that is based on
data rates, diversity gain measures system performance from
the reliability perspective. For a system with minimum non-
zero rate constraint, system outage cannot be avoided even
if perfect channel state information at the transmitter (CSIT)
is available. Because of the outage, the system is subject
to finite diversity gains [3]. One natural question is how to
improve the diversity gain for interference alignment systems.

The pursuit of these two ends, however, requires seemingly
contradictory strategies. For given dimensions of signal space
at each receiver, the DoF gain asks to accommodate as many
messages as possible. Then, alignment constraints from dif-
ferent receivers limit the dimension of signal space occupied
by each message. The diversity gain, on the other hand, asks
each message to see as many dimensions as possible. Thus, to
improve the diversity gain, the signal space for alignment is
traded for diversity [4], [5]. Although each transmitter sends
at a rate lower than the maximum possible rate, a higher
diversity gain is achieved. In [4], a necessary and sufficient
condition to achieve diversity gain more than 1 at rate one
message per channel use per user was proposed for K-user
interference channel with M antennas at each transmitter and
N antennas at each receiver (Eqn. (21))

M +N ≥ K + 2. (1)

This work was supported in part by the NSF award CCF-0963925.

Another idea to improve diversity for alignment systems is
through space-time coding (STC). In 2-user double-antenna
X channels, the alignment scheme with Alamouti structure
achieves a diversity gain of 2 without losing the maximum
DoF gain [6]. Yet, such a scheme requires redundant transmit
dimensions after forming the alignment. Unfortunately, not
all alignment systems provide such redundant dimensions.

This paper proposes a new approach to improve the diver-
sity using selection. Antenna selection (or relay selection) is
well investigated for diversity in point-to-point systems and
cooperative networks (The interested readers are referred to
[7] and references therein.). The key insight of selection is
to confine the message in a good subspace. Thus, to achieve
diversity gain, one message does not need to see as many di-
mensions as possible. Multiple distinct alignment modes exist
for certain interference networks [8]. We propose to select the
alignment mode by protecting the performance of the worst
user. Particularly, we show a diversity gain of 2 is achievable
for the 3-user double-antenna interference channel. For this
setting, it can be verified that M +N < K + 2. Therefore,
we disprove the diversity feasibility condition in (1), which
assumes that seeing multiple dimensions is necessary for each
message to achieve diversity more than 1.

The rest of the paper is organized as follows. Section
II discusses previous results on feasibility condition for
diversity. In Section III, we present our selection algorithm
for alignment systems. Section IV provides diversity analysis.
Simulations are demonstrated in Section V and conclusions
are given in Section VI.

Notations: We use capitalized letter A ∈ Cm×n to denote
a matrix drawn from the m × n matrix space defined on
complex fields. We also use A∗, In, and E

x
to denote

Hermitian of matrix A, an identity matrix of size n × n,
and expectation over random variable x, respectively. The

notation o(x) defines a function such that lim
x→0

o(x)
x

= 0.

CN (0, 1) denotes a circular symmetric complex Gaussian
distribution with zero mean and variance 1.

II. SYSTEM MODEL AND PREVIOUS RESULTS

Consider a K-user interference channel as illustrated in
Fig. 1. Each transmitter is equipped with M antennas, and
each receiver is equipped with N antennas. The channel
matrix from Transmitter j to Receiver i is denoted as H[ji] ∈
CM×N , i, j ∈ {1, 2, . . . ,K}. Throughout the paper, we use
superscripts j, i as the indices for transmitter and receiver,
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s[1] s[1]
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Fig. 1. K-user interference channel with M antennas at each transmitter
and N antennas at each receiver.

respectively. We model each channel path as Rayleigh fading,
i.e., each entry in H[ji] is an i. i. d. CN (0, 1) distributed
random variable. During one transmission, we assume that
channel matrices stay constant. Thus, channels are block
fading. Let x[j] ∈ CM×1 be the precoded vector sent from
Transmitter j in one channel use. The received vector at
Receiver i can be written as

y[i] =
∑

j∈{1,2,...,K}

H[ji]x[j] +w[i], i ∈ {1, 2, . . . ,K} (2)

where w[j] ∈ CN×1 denotes the noise vector with
i. i. d. CN (0, 1) additive white Gaussian noise (AWGN)
entries. We assume that perfect global channel information is
accessible to all transmitters and receivers. For interference
channel, Receiver i is only interested in decoding messages
from Transmitter i. Since the network is fully connected, each
receiver sees interference from K − 1 users.

Assume that each user sends only one symbol s[j], drawn
from a fixed-point constellation, in each channel use. The
symbol s[j] is sent by linear beamformer v[j] ∈ CM×1 as

x[j] = v[j]s[j]. (3)

Each receiver uses a receive beamformer u[j] ∈ C1×N to
extract its desired symbol. For normalization, we let ∥v[j]∥ =
1, ∥u[j]∥ = 1, and E |s[j]|2 = P , where P is the transmitted
power for each user.

A. Feasibility condition for diversity [4]

With a zero-forcing (ZF) design, the beamformers need to
satisfy

u[i]H[ji]v[j] = 0, ∀i ̸= j, (4)

Rank
{

u[j]H[jj]v[j]
}

= 1, ∀j. (5)

The above constraints can be represented by K(K − 1)
equations. Note that the beamformers depend decisively on
cross channels. The authors in [4] propose to use extra
dimensions to protect the direct channels, corresponding to
additional K equations. The total number of equations for
their constraints are K(K − 1) + K = K2. Since each

transmit beamformer has M − 1 variables and each receive
beamformer has N−1 variables, the total number of variables
for design is K(M −1+N −1) = K(M +N −2). To have
a feasible design for diversity, the number of variables needs
to be no less than the number of total equations,

K(M +N − 2) ≥ K2,

which leads to (1). It can be checked that a setting with K =
3 and M = N = 2 is infeasible to achieve diversity more
than 1. However, in this paper, we disprove this feasibility
condition by showing that a diversity gain of 2 is achievable
for this setting. In other words, the additional K constraints
to protect direct channels are not necessary for diversity.

B. 3-user alignment by eigenvalue decomposition

We briefly review the eigenvector alignment for the setting
with K = 3 and M = N = 2 [1]. In the sequel of this paper,
we focus on K = 3 and M = N = 2. For this setting, the
DoF gain outerbound, 3, is achievable through linear interfer-
ence alignment. Each transmitter sends one message in one
channel use. Since the receiver has two antennas, it observes
a two-dimensional signal space. There are two interfering
messages. With alignment, these two messages occupy only
a one-dimensional subspace at each of the receivers, thus
leaving one dimension for the desired message. To confine
interfering messages, beamforming vectors are designed as

R1 : H[21]v[2] = λ1H
[31]v[3], (6)

R2 : H[32]v[3] = λ2H
[12]v[1], (7)

R3 : H[13]v[1] = λ3H
[23]v[2], (8)

where λi ∈ C. Since each channel matrix is square
and almost surely full rank, we can obtain from (6)

and (7) that v[2] = λ1

(

H[21]
)−1

H[31]v[3] and v[3] =

λ2

(

H[32]
)−1

H[12]v[1], respectively. Thus, combing these

two equations and canceling v[3], we have v[2] =
λ1λ2

(

H[21]
)−1

H[31]
(

H[32]
)−1

H[12]v[1]. Further replacing

v[2] in (8) with the above line, we obtain

H[13]v[1] = λ1λ2λ3H
[23](H[21])−1H[31](H[32])−1H[12]v[1],

which can be transformed into

λv[1] = Hv[1], (9)

with H = (H[13])−1H[23](H[21])−1H[31](H[32])−1H[12] and
λ = 1

λ1λ2λ3
. The matrix H is called the alignment chain

matrix, and can be derived by tracing alignment path T1 →
R2 → T3 → R1 → T2 → R3 → T1. Eqn. (9) follows
the definition of eigenvalue decomposition, where λ and v[1]

are eigenvalue and normalized eigenvector of H, respectively.
Given H, we can obtain the design of v[1] by the eigenvalue
decomposition of the alignment chain matrix. With v[1], the
other beamforming vectors v[2] and v[3] can be computed
from (6) and (7). Since channels are generic, the condition
of linear independency between the desired subspace and the
interference subspace (shown in (5)) holds naturally.

Given transmit beamformers, the receive beamformer u[i]

can be computed from (4). Applying the receive beamformer
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to the received vector y[i] to cancel the aligned interference,
we have the following system equation

u[i]y[i] = u[i]H[ii]v[i]s[i] + u[i]w[i]. (10)

To decode the symbol, maximum-likelihood (ML) decoding
is performed based on the resulting system equation,

min
s[i]

∣

∣

∣
u[i]y[i] − u[i]H[ii]v[i]s[i]

∣

∣

∣
, ∀i. (11)

Thus, each receiver performs one single-symbol decoding.

III. SELECTION OF ALIGNMENT MODES

In this section, we propose to select alignment modes for
diversity. We also discuss its analogy to a 3-user 2-frequency
system without cross interference.

In a point-to-point system, there are two main approaches
to obtain diversity. The first approach is to transmit each
message through different independent fading paths, and
constructively combining faded copies at the receiver. As
a result, the diversity gain can be achieved without CSIT.
One successful example of this approach is STC [9]. If the
transmitter has CSIT, instead of blindly sending the message
to all fading paths, a second approach is to choose the
best path. One example of this second approach is antenna
selection [9]. In fact, simply avoiding the worst path can also
result in a diversity more than 1. The fundamental difference
between these two approaches is the dimension of the signal
space occupied by one message. STC requires each message
to see the entire signal space, whereas selection requires each
message to see only a good subspace. Recall that in alignment
systems, because of the multiple alignment constraints, it is
hard for each message to see the entire signal space. To
apply the STC idea, a redundant dimension is needed at each
transmitter1. However, a selection-based alignment system is
less restrictive compared to STC. From the above discussion,
if none of the transmitters touches the worst subspace, a
diversity gain more than 1 can be achieved. This intuitively
explains the motivation behind using selection.

A. Distinct alignment mode

For a 3-user double-antenna interference channel, an align-
ment solution can be found by eigenvalue decomposition
of the alignment chain matrix. Since the alignment chain
matrix is generated by a generic channel matrix and is 2×2,
there exists two distinct eigenvectors, each corresponds to
one alignment mode. In total, the system has two alignment
modes. For convenience, we add a subscript n ∈ {1, 2} to
denote the alignment mode.

What determines the resulting system performance is the
signal-to-noise ratio (SNR) at the output of each receive
beamforming vector. Denote the interference subspace at

Receiver i as I
[i]
n . With a ZF design, the receive beamforming

vector u
[i]
n is any normalized row vector in the row span of

Φ[i]
n = I2 −

I
[i]
n I

[i]∗
n

I
[i]∗
n I

[i]
n

, i ∈ {1, 2, 3}, n ∈ {1, 2}, (12)

1A redundant transmit dimension naturally exists in a 2-user X channel
[6]; or it can be created by sacrificing the DoF gain [4], [5].
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which is the projection matrix to the null space of I
[i]
n . Then,

the SNR after cancelling the aligned interference can be
computed as

SNR[j]
n = v[j]∗

n H[jj]∗Φ[j]
n H[jj]v[j]

n . (13)

We define two alignment modes to be distinct if SNR[j]
1

is not exactly the same as SNR[j]
2 at all receivers. Note that

SNR[j]
1 can be correlated with SNR[j]

2 due to the involved
eigenvalue decomposition. In Fig. 2, we show the joint

probability density function (PDF) of SNR[1]
1 and SNR[1]

2

through simulation. It can be observed that the joint PDF is

symmetrical with respect to SNR[1]
1 and SNR[1]

2 , because the
two alignment modes are statistically the same. In addition,
the correlation is not very high as the joint PDF is relatively
flat around zeros.

The system has two distinct alignment modes. All users
need to be in the same alignment mode simultaneously for
the purpose of alignment. In other words, given User 1 is
in alignment mode 1, Users 2 and 3 cannot be in alignment
mode 2. To protect the performance of the worst user, we
select the mode that maximizes the minimum of SNRs
among all users. In other words, we formulate a max-min
optimization to choose the alignment mode n by

max
n∈{1,2}

min
j∈{1,2,3}

SNR[j]
n . (14)

Thus, the SNR of the worst user is enhanced by switching
between the two alignment modes.

The selection algorithm needs to compute six SNRs and
compare among them to choose the best alignment mode out
of two possible alignment modes. A centralized controller can
be used to collect global channel information and compute
the best alignment mode. The set of transmit and receive
beamforming vectors in the best alignment mode can be sent
from the centralized controller to the corresponding node to
release the computation complexity. All nodes perform trans-
mit beamforming, receive beamforming, and single-symbol
decoding, as expressed in (3), (10), and (11), respectively.

Globecom 2013 - Communication Theory Symposium

1775



Rx 3

Tx 1
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Tx 3

Fig. 3. An analogous 3-user 2-frequency system. Only one frequency can
be selected for each communication.

B. Analogy to a 3-user 2-frequency system

Consider a 3-user system without cross-interference as
shown in Fig. 3. Two frequency tones are accessible for each
node. The channel path between User pair j on Tone n is

denoted as h[j]
n , which is modeled by an i. i. d. CN (0, 1)

Gaussian random variable. The system can select only one
frequency tone for communication. A max-min selection can
also be formulated as

max
n∈{1,2}

min
j∈{1,2,3}

∣

∣

∣
h[j]
n

∣

∣

∣

2
. (15)

We can compare the two systems as follows:

1) Since alignment cancels cross-interference, the selec-
tion of one alignment mode is analogous to the selec-
tion of one frequency tone.

2) For both systems, all users need to choose the same
channel. In the interference channel, all users have
to select the same alignment mode. In the 3-user 2-
frequency system, the same frequency tone is used by
all users. In other words, the selections of operating
channels are correlated among all users.

3) For both systems, the SNRs are independent for all
users. In the 3-user 2-frequency system, channels
among different users are independent. Clearly, the
output SNRs follow i. i. d. exponential distributions. In
the interference channel, the output SNRs are computed
by (13). If we condition on all cross channels and allow

only direct channels to be random, v
[j]
n and Φ

[j]
n are

fixed. It can be verified that the resulting SNR[j]
n also

follows an i. i. d. exponential distribution for different
j.

4) The difference between two systems hides in the cor-
relation of two channels to the same user. In the 3-user
2-frequency system, channels are independent between

two frequency tones to the same user. Then,
∣

∣

∣
h[j]
1

∣

∣

∣

2

is independent from
∣

∣

∣
h[j]
2

∣

∣

∣

2
. On the other hand, in the

interference channel with fixed cross channels, SNR[j]
1

is correlated to SNR[j]
2 due to the corresponding eigen-

value decomposition. SNR[j]
1 and SNR[j]

2 are correlated
exponential random variables.
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Fig. 4. The PDF of |∆|. Its near-one behavior is almost linear. Thus, we
can expect E

H[ji]

1
1−|∆|2

< ∞.

In the following section, analysis is conducted to show
the correlation between the two alignment modes does not
decrease the diversity gain.

IV. DIVERSITY ANALYSIS

In this section, we analyze the achievable diversity for the
proposed selection algorithm. Discussion on the connection
between the number of distinct alignment modes and achiev-
able diversity is also provided.

The proof is based on the outage probability of the
instantaneous normalized receive SNR [10]. We show its
near-zero behavior scales as

P

(

max
n

min
j

SNR[j]
n < ϵ

)

= cϵ2 + o(ϵ2), (16)

where c ∈ C is an arbitrary constant. We need the following
conjecture to prove the main theorem.

Conjecture 1. Let ∆[j] = v
[j]∗
2 v

[j]
1 u

[j]
1 u

[j]∗
2 , which reflects

the correlation of beamformers corresponding to the two

modes. Since ∆[j] is statistically equivalent for all users, we

remove the superscript j for convenience. We conjecture the

following expectation is upperbounded by a finite number

E
H[ji]

1

1− |∆|
< ∞. (17)

Since ∆ denotes the product of transmit correlation and
receive correlation, its norm |∆| is upperbounded by 1. Recall
that ∆ is derived from the eigenvectors of the alignment
chain matrix. To conduct the analysis, upper bounds on inner-
product of eigenvectors of non-Hermitian random matrices
are needed. Although the probability of two parallel eigen-
vectors, i.e., |∆| = 1, is zero, the near-one behavior of |∆|
determines whether E

H[ji]

1
1−|∆| is integrable or not. We sim-

ulate the distribution of |∆| in Fig. 4. It can be observed that
|∆| is almost linear in the near-one regime. In other words,
the PDF f(|∆| = γ| |∆| → 1) = c(1 − γ) for a constant c.
Also, numerical integration says that E

H[ji]

1
1−|∆| ≈ 2.4168.

Thus, evidence shows that the conjecture holds.
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Theorem 1. With the max-min selection algorithm in (14),
a diversity gain of 2 is achievable for the 3-user double-

antenna interference channel in the fixed-rate regime; a DoF

gain of 3 is achievable in the variable-rate regime.

Proof. The DoF gain claim holds naturally since both align-
ment modes achieve a DoF gain of 3. Switching between
them cannot reduce the DoF gain.

For the proof of the diversity claim, first, we fix the cross-
channels and analyze the direct channels. Then, we consider
the influence of the cross-channels. We provide a lowerbound
on the outage probability, which corresponds to the diversity
upperbound. The max-min operations in (16) involves six
SNRs. We can arbitrarily select two SNRs corresponding to
different receivers and modes to lowerbound the outage as

P

(

max
n

min
j

SNR[j]
n < ϵ

)

> P
(

SNR[j1]
1 < ϵ, SNR[j2]

2 < ϵ
)

,

where j1 ̸= j2. If we condition on the cross channels, as
argued in Subsection III-B, SNR[j]

n follows a conditional

exponential distribution. In addition, SNR[j]
1 only depends

on its direct channel H[jj]. Then, SNR[j1]
1 is conditionally

independent from SNR[j2]
2 . These arguments lead to

P
(

SNR[j1]
1 < ϵ, SNR[j2]

2 < ϵ
)

= E
H[ji],j ̸=i

P
(

SNR[j1]
1 < ϵ, SNR[j2]

2 < ϵ|H[ji]
)

= E
H[ji],j ̸=i

P
(

SNR[j1]
1 < ϵ|H[ji]

)

P
(

SNR[j2]
2 < ϵ|H[ji]

)

= E
H[ji],j ̸=i

ϵ2 + o(ϵ2) = ϵ2 + o(ϵ2). (18)

The last step of (18) holds because P
(

SNR[j]
n < ϵ|H[ji]

)

is

exponentially distributed with variance 1.

In what follows, we provide an upperbound on the outage
probability, which corresponds to the diversity lowerbound.

Let Ej1j2 denote the event SNR[j1]
1 < ϵ and SNR[j2]

2 < ϵ
with j1, j2 ∈ {1, 2, 3}. Then, the event max

n
min
j

SNR[j]
n < ϵ

corresponds to
⋃

j1,j2∈{1,2,3}

Ej1j2 . Its outage probability can

be upperbounded by

P

(

max
n

min
j

SNR[j]
n < ϵ

)

<
∑

j1,j2∈{1,2,3}

P (Ej1j2). (19)

We have shown that P (Ej1j2) scales as ϵ2+o(ϵ2) for j1 ̸= j2
in (18). It suffices to show that P (Ejj) also follows the same
scaling.

Computing P (Ejj) needs the joint PDF of f
(

h̃[j]
1 , h̃[j]

2

)

,

where h̃[j]
n = u

[j]
n H[j]v

[j]
n denotes the equivalent channels

incorporating the transmit and receive beamforming. From

Subsection III-B, h̃[j]
1 and h̃[j]

2 are correlated Gaussian pro-
vided that cross interference channels are fixed. We can
calculate the conditional covariance matrix of [h̃[j]

1 , h̃[j]
2 ]T as

Σ[j] = E
H[jj]|H[ji]

[

h̃[j]
1

h̃[j]
2

]

[

h̃[j]∗
1 h̃[j]∗

2

]

=

[

1 ∆
∆∗ 1

]

.

The eigenvalues of Σ[j] can be found as

λ[j]
1 = 1− |∆| ,λ[j]

2 = 1 + |∆| . (20)

Note that SNR[j]
1 + SNR[j]

2 =
∣

∣

∣
h̃[j]
1

∣

∣

∣

2
+

∣

∣

∣
h̃[j]
2

∣

∣

∣

2
, which

follows a generalized Chi-square distribution with degree 4
by conditioning on cross-channels. Its conditional PDF is

f(SNR[j]
1 + SNR[j]

2 = γ|H[ji])

=
exp

(

−γ/λ[j]
1

)

λ[j]
1 − λ[j]

2

+
exp

(

−γ/λ[j]
2

)

λ[j]
2 − λ[j]

1

.

Therefore, we can upperbound P (Ejj |H[ji]) by

P (Ejj |H[ji]) < P
(

SNR[j]
1 + SNR[j]

2 < 2ϵ|H[ji]
)

=

∫

γ<2ϵ

⎛

⎝

exp
(

−γ/λ[j]
1

)

λ[j]
1 − λ[j]

2

+
exp

(

−γ/λ[j]
2

)

λ[j]
2 − λ[j]

1

⎞

⎠ dγ

=
2ϵ2

λ[j]
2 λ[j]

1

+ o(ϵ2).

Note that

P (Ejj) = E
H[ji]

P (Ejj |H[ji]) < E
H[ji]

2ϵ2

λ[j]
1 λ[j]

2

+ o(ϵ2).

To complete the proof, we only need to show 0 <
E

H[ji]

1

λ
[j]
1 λ

[j]
2

< ∞, then each term in the RHS of (19)

has an upperbound scaling as cϵ2 + o(ϵ2). From (20), we
have 1

λ
[j]
1 λ

[j]
2

= 1
1−|∆|2

> 1. It follows that E
H[ji]

1

λ
[j]
1 λ

[j]
2

>

1. For the upperbound, E
H[ji]

1

λ
[j]
1 λ

[j]
2

= E
H[ji]

1
1−|∆|2

=

1
2

(

E
H[ji]

1
1+|∆| + E

H[ji]

1
1−|∆|

)

. Clearly, the first term has a

finite value. Based on Conjecture 1, the second term also
has a finite value. Therefore, E

H[ji]

1

λ
[j]
1 λ

[j]
2

has a finite value.

This concludes the proof.

The theorem gives an impression that the number of
distinct alignment modes is equal to the achievable diversity.
In what follows, we discuss its extension to other network
settings. Let us consider the 2-user X channels, where each
of the two transmitters sends one message to each of the
two receivers. One alignment mode depends on the aligned
interference subspace at each of the two receivers. Since we
can arbitrarily choose the aligned interference subspace, there
are infinite alignment modes. Clearly, the achievable diversity
is upperbounded by the diversity of the corresponding point-
to-point channel, thus cannot be infinite. Identifying distinct
alignment modes in terms of diversity is an interesting
problem for future works.

V. SIMULATION

In this section, we simulate the bit error rate (BER) per-
formance of the proposed selection algorithm, and compare
it with the scenario without selection and the analogous 3-
user 2-frequency system. We simulate an uncoded system
with fixed-rate modulation for diversity. BPSK modulation
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Fig. 5. BER comparison for 3-user double-antenna interference channel
using linear alignment. BPSK modulation is used to carry each symbol.
Each user achieves an uncoded rate of one bit per channel use.

is used for symbol s[j], because we only need to illustrate
the achievable diversity gain. Then, the uncoded rate is one
bit per channel use per user. Each user is assigned with equal
transmit power P . Since the noise variance is normalized, the
average receive SNR is equal to the transmit power P . Note
that the design is statistically equivalent for all users. The
BERs are equal for all receivers. Without loss of generality,
we only illustrate the BER at Receiver 1.

Fig. 5 shows the simulation results. The horizontal and
vertical axes represent the average receive SNR and BER,
respectively. It can be observed that without selection, the
eigenvector alignment [1] achieves only a diversity gain of
1 (labelled as ’wo selection’). The diversity gain can be
improved to 2 using the proposed max-min selection given
in (14) (labelled as ’w selection’). Compared to the 3-user
2-frequency system, our proposed system achieves the same
diversity gain (a diversity gain of 2) but has a small SNR off-
set (less than 0.5 dB). This is due to the correlation between
two alignment modes. Further, we compare our proposed
system to a single-user 2-frequency selection system, where
the user selects the stronger frequency channel for commu-
nication. It can be observed that the SNR offset increases
to approximately 2 dB. This implies that the correlation of
selections among users (all users are required to choose the
same alignment mode) outweighs the correlation between the
two alignment modes.

VI. CONCLUSIONS

This paper presents a selection algorithm for the 3-user
double-antenna interference channel to improve the diversity
gain. For the considered network setting, there are two
optimal alignment modes. These two modes are equivalent
in terms of the DoF gain. The fact that they are distinct
provides an opportunity to improve reliability. We propose
an algorithm switching between the two modes to maximize
the minimum of SNRs among all users. Consequently, we
show that the proposed system achieves a diversity gain of
2 in the fixed-rate regime and the maximum DoF gain of 3

in the variable-rate regime. The idea can be generalized to
other interference networks, e.g., X channels, that have many
optimal alignment modes. Diversity gain can be increased
without losing the optimal rate.
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