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Abstract—We consider the interference channel with K trans-
mitters and K receivers all having a single antenna, wherein
the K × K transfer matrix representing this channel has rank
D (D < K) . The degrees of freedom (DoF) of such channels
are not known as the rank deficiency in the transfer matrix
creates algebraic dependencies between the channel coefficients.
We present a modified version of the [CJ08] alignment scheme, to
handle these dependencies while aligning interference, and state
the sufficient conditions for achieving half rate per user using this
scheme. The difficulties in proving these sufficient conditions are
shown for K = 4 and K = 5. We also show that these sufficient
conditions are not satisfied for K ≥ 6.

I. INTRODUCTION

Understanding the degrees of freedom (DoF) of interference
networks is a significant problem in network information
theory, which has motivated many fundamental ideas. Optimal
DoF results are available for several K-user interference
channels (SISO or MIMO) using the principle of Interference
Alignment [1]–[4]. When all transmitters and receivers have
M antennas with full rank channel matrices, it is known
that KM

2 DoF are achievable using the [CJ08] asymptotic
alignment scheme [1], if the channel coefficients are time-
varying and drawn from a continuous distribution.

The DoF of rank deficient MIMO interference channels
have been studied in [5]–[8]. All these prior works consider
individual channels between a transmitter-receiver pair to be
rank deficient. Such rank deficient channels are frequently en-
countered in wireless MIMO networks due to poor scattering
and keyhole effects. This paper considers the overall transfer
matrix of the network to be rank deficient, which has not been
explored before. Rank deficient transfer matrices are observed
typically in wired and wireless networks with constraints in the
network topology. For example, such rank deficient transfer
matrices could manifest in relay networks, wherein all the
intelligence resides only at the transmitters. Rank deficiency
in the transfer matrix leads to spatial dependencies between
the direct and cross channels, implications of which will be
discussed in this work.

The DoF of 2-user SISO interference channel with such
rank deficiencies are known trivially, while those for 3-user
SISO interference channel follows from [9]–[11]. The use
of interference alignment for the 3 multiple unicast network
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coding problem was initially discussed in [9] and [10]. Later,
Meng et al. derived the feasibility conditions for asymptotic
interference alignment, in [11]. Rank deficiency in X channels
was discussed in [12], with the individual channels being
rank deficient. Spatial dependencies have also been observed
in interference channels with coordinated multipoint (CoMP)
transmission and reception, the DoF of which were explored
in [13].

In this paper, we introduce the problem of characterizing
the DoF of K-user SISO interference channels with transfer
matrix of rank D (D < K). We present a modified version
of the asymptotic interference alignment [CJ08] scheme to
handle the spatial dependencies that arise due to the rank
deficiency. A set of polynomial conditions are derived which
are shown to be sufficient for achieving half rate per user
using this modified scheme. We analyze the 4-user and 5-user
interference channels with rank D, and point out the difficulty
in proving the sufficient conditions here. We then study the
6-user interference channel where we show that the sufficient
conditions are not satisfied, thereby pointing out the challenges
in showing achievability for K ≥ 6.

II. SYSTEM MODEL

We consider the K-user SISO interference channel with
perfect global channel knowledge. The channel output at the
k-th receiver over the t-th channel use is given as,

Yk(t) =

K∑
j=1

Hkj(t)Xj(t) + Zk(t)

where, k ∈ {1, 2, . . . ,K} is the user index, t ∈ N is the
channel use index, Yk(t) is the output signal of the k-th
receiver, Xk(t) is the input signal of the k-th transmitter,
Hkj(t) is the channel coefficient from transmitter j to receiver
k over the t-th channel use, and Zk(t) is the AWGN at the k-
th receiver. The bold face notations Xk,Yk, and Zk are used
to represent the vector form of their corresponding scalars
over multiple channel uses, and the bold face notation Hij is
used to represent the diagonal channel matrix over multiple
channel uses. For any given time slot t ∈ N, the overall
transfer matrix is defined as the K × K matrix of the form
H(t) = [Hij(t)] ∀i, j ∈ {1, 2, . . . ,K} , and its rank is given
by D. Time indices are omitted for brevity.

Let Rk(ρ) denote the achievable rate of user k where
ρ is the Signal-to-Noise Ratio (SNR). The capacity region



C(ρ) of this network is the set of achievable rate tuples
R(ρ) = (R1(ρ), R2(ρ), . . . RK(ρ)), such that each user can
simultaneously decode its desired message with arbitrarily
small error probability. The maximum sum rate of this channel
is defined as RΣ(ρ) = maxR(ρ)∈C(ρ)

∑K
k=1Rk(ρ). The sum

DoF is defined as dΣ = limρ→inf
RΣ(ρ)
log(ρ) and dΣ

K as the
normalized DoF per user.

III. OVERVIEW OF RESULTS

For the K-user SISO interference channel with rank defi-
cient transfer matrix (D < K), we show that the outer bound
of the sum degrees of freedom is : dΣ ≤ min{D, K2 }.

The rank deficiency in the transfer matrix creates algebraic
dependencies even among the cross channel coefficients mak-
ing it hard to apply the [CJ08] alignment scheme directly.
We introduce a modified version of the [CJ08] scheme to
deal with these dependencies, and then derive the sufficient
conditions under which there will be no overlap between the
desired and interfering signal spaces. This scheme is also used
in [14] to show achievability results for individual channel rank
deficiency of MIMO interference channels.

Let S denote the set of channel realizations with rank D.
Theorem 1: Degrees of freedom achievable for the K-user

interference channel with rank deficient transfer matrix, can
be made arbitrarily close to half per user using the modified
alignment scheme, if for each k ∈ {1, . . . ,K} : QHkk−P 6= 0
∀ P,Q ; where P and Q are multivariate polynomials in the
variables {Hij : i 6= j} and non-zero under S.

This theorem signifies that half rate per user is achievable
even with algebraic dependencies among the channels, pro-
vided the dependencies between the direct and cross channels
can not be expressed in the form defined above.

We then check if these conditions hold true for the general
K-user case. We discuss a simple approach that uses ergodic
alignment [15] ideas to get a subspace of realizations which in
turn would help us prove some, but not all, of these sufficient
conditions.

We present our analysis for K = 4, 5 and explain the
difficulties of proving the sufficient conditions from Theorem
1. We also study the 6-user channel, and show that the
sufficient conditions are not satisfied.

IV. PRELIMINARY ANALYSIS

Lemma 1: For the K-user SISO interference channel with
transfer matrix H of rank D, the sum DoF dΣ is bounded
from above by min{D,K/2}, i.e. dΣ ≤ min

{
D, K2

}
Proof: We know that for a generic K-user interference

channel the outer bound for the sum DoF is given by K
2 [1].

This bound also holds for the rank deficient channel considered
in this paper, giving the outer bound of K

2 when the rank
D ≥ K

2 . The rank of the transfer matrix, D, acts as the cutset
bound, i.e., no more than D independent data streams can be
transmitted over this network. Hence we get the final outer
bound for the sum DoF as, dΣ ≤ min{D, K2 }.

The outer bound depends on the value of D, but in our
analysis we will focus on the setting where D = dK2 e . The
rank D = dK2 e is the most interesting setting because, if we
can prove the achievability for this, the result extends easily to

all other values of D. A more rigorous discussion about this
can be found in the full version of this paper [16].

Consider the determinant of any l × l sub matrix of the
network transfer matrix H, where l > D, it gives a polynomial
in Hij which identically equates to 0. This implies that
the channel coefficients (Hij’s) are algebraically dependent.
In a generic interference channel the cross channels are all
algebraically independent, so the precoding matrix used in
[CJ08] scheme is almost surely full rank. But in a rank
deficient interference channel, especially in the case where
the rank is dK2 e , the cross channels might be algebraically
dependent thus making the precoding matrix rank deficient
too. We will modify the [CJ08] scheme to exclude the linearly
dependent columns in the precoding matrix, which reduces the
number of dimensions of the desired and interfering signal
spaces at the receivers. We will explore if there is overlap
between the desired and the interfering signal spaces, and
consequently the achievability of half rate per user.

A. The Modified Scheme
Consider the asymptotic interference alignment scheme

for K-user Gaussian SISO interference channel [CJ08] as
described in [1], [17]. The symbol extended version of the
receiver equation is given as,

Yj =

K∑
i=1

HjiXi + Zi,∀j ∈ {1, . . . ,K} (1)

Let us denote the precoding matrix used at each transmitter
in the [CJ08] scheme as Vn for some arbitrarily large n,

Vn = {(T1)α1(T2)α2 . . . (TN )αN1 |
N∑
i=1

αi ≤ n, α1, α2, . . . , αN ∈ {0} ∪ Z+} (2)

In = {(T1)α1(T2)α2 . . . (TN )αN1 |
N∑
i=1

αi ≤ n+ 1, α1, α2, . . . , αN ∈ {0} ∪ Z+} (3)

wherein T1, . . . , TN are the N = K(K − 1) cross channels
Hji, j 6= i and 1 refers to the all one column vector. We
can impose a lexicographic ordering on the columns Vn and
In. We will construct a new precoding matrix V̄n by just
removing linearly dependent columns of Vn. We will use
In and Īn to denote the original interference space and
interference space with the modified scheme, at the receivers
respectively. Similar to [17], all transmitters use the same set
of beamforming vectors V̄n and all receivers approximately
see the same interfering signal space of Īn . It can be noted
that In = Vn+1 and Īn = V̄n+1. Since we have removed only
the linearly dependent columns from Vn and In to form V̄n
and Īn, the column span of the precoding matrices remains
the same, i.e. following relations hold

span(V̄n) = span(Vn)

span(TiV̄n) = span(TiVn) ⊆ span(In) = span(Īn)

In the original construction, number of column vectors was
given by |Vn| =

(
n+N
N

)
and |In| =

(
n+N+1

N

)
. While we do



not precisely know the number of column vectors in V̄n and
Īn, we know that |V̄n| < |Īn| = |V̄n+1|. Now we will show
that the desired signal space occupies half the dimensions at
all receivers, almost surely. To this end, we need to align all
the interference at every receiver within one half of the total
signal space available, leaving the other half interference free
for the desired signals. This will enable the receivers to decode
its desired message.

We will use limit infimum in proofs for the following
lemmas as limits may not exist in general for divergent series.

Lemma 2: Growth rate of the new precoding vectors
asymptotically reaches zero for large n, i.e.

lim inf
n→∞

|V̄n+1|
|V̄n|

= 1 (4)

Proof: We will prove this by contradiction. Suppose the
contrary is true, i.e., there exists a positive number ε > 0 such
that

lim inf
n→∞

|V̄n+1|
|V̄n|

> (1 + ε) (5)

By definition of limit infimum, (5) means that there exists a
positive integer n0 such that for all n > n0, the below relation
holds.

|V̄n|
|V̄n0
|
> (1 + ε)n−n0 (6)

Note that (6) represents a recursive relation that holds for
all positive integers n, leading to :

|V̄n| > (1 + ε)n−n0 |V̄n0
| (7)

Based on the modified construction of precoding vectors
for asymptotic interference alignment scheme, we know that
|V̄n+1| ≤

(
n+N+1

N

)
. Hence, we have the following :

|V̄n+1|
|V̄n|

≤
(
n+N+1

N

)
(1 + ε)n−n0 V̄n0

(8)

It can be seen that for large n, the term on the right
side goes to zero since it is a ratio of a polynomial over
an exponential in n. Note that we have assumed ε to be a
positive number. However, we know that this cannot be true
since |V̄n| ≤ |V̄n+1|, leading to a contradiction. Hence the
assumption in (5) cannot hold, and we have proved the lemma,
i.e., growth rate of size of precoding matrix after removing the
dependent columns, reaches zero asymptotically for large n.

Lemma 3: Given that the desired signal space V̄n does
not overlap with the interfering signal space Īn, the ratio of
desired signal dimensions and total signal dimensions can be
made arbitrarily close to 1

2 , i.e.

|V̄n|
|V̄n|+ |Īn|

≈ 1

2

Proof: We know from Lemma 2 that (4) holds true. Also,
for a sequence xn, if a > lim inf xn, then there is an infinite
subsequence xnk

of xn such that a > xnk
. Using this we can

choose a series of n and a value for δ such that

1 ≤ |V̄n+1|
|V̄n|

< 1 + δ

from which we get

lim
δ→0

|V̄n|
|V̄n|+ |V̄n+1|

=
1

2

Hence with appropriate choice of δ, we can make above
relation arbitrarily close to 1

2 , i.e. the ratio of desired signal
dimensions and total signal dimensions reaches 1

2 for large n.

Lemma 2 and 3 imply that for the interference channel
with rank deficient transfer matrix, DoF per user can be made
arbitrarily close to 1

2 for large n with the modified scheme, if
the desired and interfering signal space do not overlap.

B. The Overlap

Proof of Theorem 1: Consider the signal space at receiver
1, S1 = [H11V̄n Īn]. Matrix S1 needs to be full rank so that
desired and interference signal spaces have no overlap.

span(H11V̄n) ∩ span(Īn) = ∅ (9)

Let us denote the number of columns in V̄n as lv , and the
number of columns in Īn as lint . Note that lv =

(
n+N−1

N

)
and lint =

(
n+N
N

)
when all cross channels are algebraically

independent. Based on modified [CJ08] construction scheme,
the linear independence condition can be expressed as

H11

lv−1∑
i=0

qi
∏
m

(
Tm
)αmi 6=

lint−1∑
j=0

pj
∏
m

(
Tm
)αmj (10)

where m ∈ {1, . . . ,K(K − 1)}, αmi ∈ {0, 1, . . . , lv − 1},
αmj ∈ {0, 1, . . . , lint−1}, and all pi, qj are not simultaneously
zeros. Because of the diagonal nature of Hij’s and Tm’s, (10)
can be easily translated to its scalar form. If the conditions in
Theorem 1 are satisfied, (10) will hold almost surely under S,
a rigorous proof for this is presented in the full version of this
paper [16], and consequently matrix S1 will be full rank. The
same argument can be extended to the other direct channels
Hkk. This, along with Lemma 3, proves the theorem.

Consider the case where the rank is dK2 e, i.e. D = dK2 e. In
order to show that the sum DoF outer bound is tight for this
case, all we need to prove is that any polynomial of the form
QHkk−P is not identically equal to 0 under S. We can make
use of the Schwartz-Zippel lemma from polynomial identity
testing for this purpose, proof of applicability of Schwartz-
Zippel lemma under S is presented in [16].

Consider the K ×K transfer matrix H, since the rank of
this matrix is D = dK2 e, it’s rank decomposition is the product
of a K ×D matrix and a D ×K matrix.

H = G|K×D| ∗ F|D×K| (11)

In one time slot, each receiver will see a linear equation in
K variables (messages), each of which is in turn a linear
combination of D linear equations. Now consider sending the
same set of messages over two consecutive time slots, we will



use H1 to represent the coefficients of the linear equations
at the receivers for the first time slot and H2 for the second
time slot. Each receiver would be able to decode its respective
message if H1 −H2 = I|K×K|, which implies,

G1 ∗ F1 −G2 ∗ F2 = I|K×K|[
G1 G2

] [ F1

−F2

]
= I|K×K|

[
G1 G2

]
=

[
F1

−F2

]−1

(12)

wherein Gt,Ft are obtained from rank decomposition of
matrix Ht, t ∈ {1, 2}. If we have the freedom to manipulate[
G1 G2

]
or
[

F1

−F2

]
, then by choosing one as the

inverse of the other and by sending the same message over the
two time slots, we would be able to zero force the interference
over the two slots at each receiver. This gives us a set of
realizations where the value of the cross channels would
remain the same while the direct channels would vary, similar
to ergodic alignment [15].

We define the subset S′ ⊂ S as the set of channel
realizations where for each H in the subset there exists a
complementary realization H′ such that H−H′ = I, i.e.,

S′ = {H | H ∈ S, H′ ∈ S, H−H′ = I} (13)

When P 6= 0 and Q 6= 0 under S′, we get non-zero realizations
for QHkk − P , thus proving that this polynomial is non-zero
under S. The same argument could be made when only one
of the two polynomials P or Q is non-zero under S′. The
problem occurs when both P and Q are zeros in S′, in which
case we can not get non-zero realizations for QHkk−P even
under S′, making it hard to say whether QHkk − P is a zero
or a non-zero polynomial under S . At this point, it is not clear
whether the conditions hold for generic K.

V. ACHIEVABILITY

In this section we will first show the hurdles in proving the
sufficient conditions for K = 4 and K = 5. We will also show
that the sufficient conditions are not satisfied for K ≥ 6.

A. K = 4 and D = 2

Consider the 4-user rank deficient SISO interference chan-
nel with 4 direct channels and 12 cross channels.

Lemma 4: All 12 cross channels of 4 × 4 channel matrix
with rank D = 2, are algebraically independent.

Proof: We prove this with the help of symbolic toolbox
in MATLAB. Please refer the full version of this paper [16]
for further details.

Let us denote the first direct channel H11 as z; the set of
all cross channels as X = {Hij : i 6= j;∀i, j ∈ {1, 2, 3, 4}},
and S the set of all channel realizations with rank 2. Consider
a 3 × 3 submatrix of H containing two direct channels, say
H11 (denoted as z) and H22. The determinant of any such
submatrix is zero (since D = 2).∣∣∣∣∣∣∣

z H12 H13

H21 H22 H23

H41 H42 H43

∣∣∣∣∣∣∣ = 0

Evaluating the determinant, we get a polynomial in z,H22 and
the 7 cross channels. Rearranging the polynomial equation, we
can express H22 as a rational function, f2(z,X), of z and the
7 cross channels.

H22 =
H21(H12H43 −H42H13) +H23(zH42 −H41H12)

zH43 −H41H13

The denominator polynomial, zH43 − H41H13 is non-zero,
this is shown in [16]. The denominator could still evaluate to
zero for some realizations in S and f2(z,X) will be undefined
for these realizations. But we can consider a domain D under
which f2(z,X) is always defined, i.e., set of all points in S
for which the denominator polynomial is always non-zero. We
can also see that the set of points excluded from S to get D
has measure zero.

Consider the determinant of another 3× 3 submatrix com-
prising of H11 and H22.∣∣∣∣∣∣∣

z H12 H14

H21 f2(z,X) H24

H31 H32 H34

∣∣∣∣∣∣∣ = 0

Evaluating the above determinant, we get a multivariate poly-
nomial which is quadratic in z, of the form:

A(X)z2 +B(X)z + C(X) = 0 (14)

where A(X), B(X), C(X) are all polynomial functions of the
12 cross channels. Also polynomials A(X), B(X), C(X) are
non-zero since the cross channels are algebraically indepen-
dent.

Let us assume that there is a polynomial Q(X)H11−P (X)
that always evaluates to zero under D. We already know that
Q(X) is a non-zero polynomial, so we can express H11 as a
rational function of the cross channels, i.e., z = H11 = P (X)

Q(X) ,
which is always defined in the domain D′ ⊆ D. Similar to D,
we can see that the set of points excluded from S to get D′
has measure zero. Substituting this rational function for z in
(14), we get

A(X)P (X)2 +B(X)P (X)Q(X) + C(X)Q(X)2 = 0 (15)

The above equation holds if

• The polynomial in (15) is non-trivial and always evaluates
to zero.

• z = P (X)
Q(X) is a root of the quadratic equation (14).

If we suppose that the non-trivial polynomial in (15) always
evaluates to zero, then this gives a zero polynomial in the
12 cross channels, indicating that the 12 cross channels are
algebraically dependent. However this is a contradiction.

If we could show that z = P (X)
Q(X) cannot be a root, we can

establish that Q(X)H11 − P (X) 6= 0. This is hard as we
do not exactly know P (X) or Q(X). Using MATLAB, we
were able to verify that for rational realizations of the cross
channels Hij the roots of the equation (14) are not always
rational. Even though this helps in showing that the polynomial
Q(X)H11 − P (X) is almost surely non-zero in the rational
space, we will not be able to make the same statement for the
general space S .



The analysis of the 5-user channel with rank D = 3 is very
similar to one presented above, so due to space constraints
the details for this will be presented in the full version of this
paper [16]. This analysis provides insights into why it is hard
to prove the sufficient conditions, even for the simple 4-user
and 5-user channels.

B. Challenges with Higher Number of Users

The 4-user and 5-user channels have algebraically inde-
pendent cross channels. But as we increase the number of
users to 6, we can see that the cross channels are no longer
algebraically independent. To see how this might affect us,
consider the 6-user interference channel with rank deficient
transfer matrix H. Similar to the analysis in section V-A,
consider a 4 × 4 submatrix of H containing only 2 direct
channels, say H11 = z, and H22, the determinant of any such
sub matrix is zero. Evaluating this determinant, we can express
H22 as a rational function of H11 and the 12 cross channels,
H22 = f2(z,X), and this rational function is always defined
in a domain D.

Consider the determinant of another 4×4 submatrix contain-
ing of H11 and H22 = f2(z,X). Evaluating this determinant,
we can get a multivariate polynomial which is quadratic in z
of the form

A1(X)z2 +B1(X)z + C1(X) = 0 (16)

where A(X), B(X), C(X) are all polynomial functions of the
cross channels. We can do the same for H33, by considering
two different sub matrices containing H11 and H33, and derive
another multivariate polynomial which is quadratic in z after
modifying the domain D to include the rational function
H33 = f3(z,X).

A2(X)z2 +B2(X)z + C2(X) = 0 (17)

In the 4-user case, doing this with H33 would result in the
same polynomial as (14). But in the 6-user case considered
here, we can see that (16) will have certain cross channel
coefficients, namely H24 and H42, which are not present in
(17), and (17) will have certain cross channel coefficients,
namely H34 and H43, which are not present in (16). By lin-
early combining (16) and (17) after scaling them appropriately,
we can eliminate the z2 terms and solve for z as a function
of the cross channels.

(A2(X)B1(X)−A1(X)B2(X))z −
(A1(X)C2(X)−A2(X)C1(X)) = 0 (18)

The above equation shows that for a 6-user interference chan-
nel with rank D = 3, there exists a polynomial Q(X)H11 −
P (X) = 0. But, both the P (X) part and Q(X) part of
(18) have to be non-zero polynomials in order for (18) to
be relevant, as under the modified alignment scheme it is
not possible for either of them to be zero polynomials. That
being said, by using MATLAB we can numerically confirm
that these polynomials are non-zeros and thus (18) is relevant.
In other words the desired and interfering signal spaces will
overlap at the receivers if we try to use the modified scheme
for the 6-user channel.

Even though this is not enough to say that the DoF outer

bounds from Lemma 1 are not achievable for higher number of
users, it shows the complications that arise when we increase
the number of users in the interference channel with rank
deficient transfer matrix.

VI. CONCLUSIONS

We introduced the problem of characterizing the DoF of
the K-user interference channel with rank a deficient transfer
matrix. We presented a modified asymptotic alignment scheme
to handle the algebraic dependencies, and discussed the suf-
ficient conditions to achieve half rate per user. We illustrated
the difficulties of proving the sufficient conditions for the
simpler cases of K = 4, 5 and showed that the sufficient
conditions are not met for K ≥ 6. In conclusion, finding
the optimal DoF of the general K-user interference channel
with rank deficient transfer matrix remains open and presents
a considerable challenge.
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