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Abstract—It has been shown recently by Geng et al. that in
a K user Gaussian interference network, if for each user the
desired signal strength is no less than the sum of the strengths
of the strongest interference from this user and the strongest
interference to this user (all signal strengths measured in dB
scale), then power control and treating interference as noise
(TIN) is sufficient to achieve the entire generalized degrees of
freedom (GDoF) region. Motivated by the intuition that the
deterministic model of Avestimehr et al. (ADT deterministic
model) is particularly suited for exploring the optimality of TIN,
the results of Geng et al. are first re-visited under the ADT
deterministic model, and corresponding TIN optimality results
are obtained. Next, we focus on the extension of these results
to ADT deterministic parallel interference networks, from a
sum-capacity perspective. To this end, we interpret the explicit
characterization of the sum-capacity of a TIN optimal network
(without parallel channels) as a minimum weighted matching
problem in combinatorial optimization, and obtain a simple
characterization in terms of a partition of the interference
network into vertex-disjoint cycles. Aided by insights from the
cyclic partition, the sum-capacity optimality of TIN for K user
parallel interference networks is characterized for the ADT
deterministic model. Subject to a mild invertibility condition the
optimality of TIN is shown to extend to parallel networks in a
separable fashion.

I. INTRODUCTION

Treating interference as noise (TIN) is a strategy that is uni-
versally applied in wireless networks to deal with interference
from users that are far away. Interestingly, it is also known to
be capacity optimal when the interference is sufficiently weak.
Most relevant to this work is the recent result by Geng et al.
in [1], where a broadly applicable condition is identified and
shown to be sufficient (also conjectured to be necessary in
almost all cases) for TIN to achieve the generalized degrees
of freedom (GDoF) region.

The ADT deterministic model [2] captures much of the
essence of the GDoF framework — the diversity of signal
strengths — but is less useful when the finer details such as the
channel phase or the distinction between rational and irrational
realizations become critical. The main idea motivating this
work is that the ADT deterministic model is well suited
for studying those robust regimes where the finer aspects of
channel realizations are not relevant. Given this insight, and
since the regime where TIN is optimal is arguably the most
robust regime, it follows that the ADT deterministic model
should suffice to identify this regime in the GDoF sense and
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to study its properties. As initial verification of this insight,
we begin by exploring the TIN optimality result of Geng et al.
in the ADT framework, where both the optimality conditions
and the GDoF region are mapped easily and become more
transparent. Encouraged by this insight, we proceed to explore
the optimality of TIN for parallel interference networks.

Optimality of TIN for parallel Gaussian interference net-
works is an intriguing question for the following reasons. On
the one hand, with the exception of the MAC-Z-BC network
(which contains the multiple access channel, Z-channel and
broadcast channel as special cases), it is known that all parallel
Gaussian networks are in general inseparable [3], [4], [5]. On
the other hand, for the 2 user interference network, extensions
to parallel channels have been made from an exact sum-
capacity perspective in [6] and from a GDoF perspective in [7].
In both cases, the results support separability of TIN optimal
sub-channels. However, the insights from the 2 user setting
do not directly extend to the K user setting. For example, the
GDoF region for the TIN optimal 2 user interference network
is polymatroidal, whereas the GDoF region of TIN optimal
K user interference networks, with K ≥ 3, is no longer
polymatroidal. The distinction is particularly significant for
parallel channels. Given the significant challenges in going
beyond 2 users, it is most intriguing if the separability of
parallel Gaussian interference networks will hold in the regime
where TIN is sum-GDoF optimal. In this work, we explore the
answer of this question under the ADT deterministic model,
from the sum-capacity perspective.

The focus on sum-capacity motivates us to first seek a
more explicit characterization. To this end, we show that
the sum-capacity characterization for a K user interference
network is essentially a minimum weighted matching problem
in combinatorial optimization. Consequently, the sum-capacity
is characterized in terms of a partition of the interference
network into disjoint cycles. Aided by the insights from
the cyclic partition approach, a separable extension of the
optimality of TIN to ADT deterministic parallel interference
networks is obtained subject to a mild invertibility condition.
While we focus here only on the ADT deterministic model,
extensions to the Gaussian setting can be found in the full
paper [8].

II. SYSTEM MODEL, DEFINITIONS, AND NOTATION

Consider the K user ADT deterministic interference net-
work, with M parallel sub-channels. Over the t-th channel



use, the signal sent from Transmitter i, X [m]
i (t), as observed

at Receiver k, Y [m]
k (t), over the m-th sub-channel, is scaled up

by a nonnegative integer value n[m]
ki , called the signal strength

level. The channel may be written as

Y
[m]
k (t) = b2n

[m]
k1 X

[m]
1 (t)c ⊕ · · · ⊕ b2n

[m]
kKX

[m]
K (t)c,

∀k ∈ [K] , {1, 2, . . . ,K},m ∈ [M ] , {1, 2, . . . ,M}

where addition is performed on each bit (modulo two). We
assume the real-valued channel input is positive and has peak
power constraint 1, then it can be written in base 2 as X [m]

i =

0.X
[m]
i,(1)X

[m]
i,(2)X

[m]
i,(3) . . . where the channel index is omitted

for compactness. Xi(t) = [X
[1]
i (t), . . . , X

[M ]
i (t)],Yk(t) =

[Y
[1]
k (t), . . . , Y

[M ]
k (t)] are the vectors containing the transmit-

ted symbols from Transmitter i and received signals observed
at Receiver k over all sub-channels, respectively. All channels
are fixed and known at all transmitters and receivers. At Trans-
mitter i, an independent message Wi uniformly distributed
over the message index set {1, 2, . . . , d2nRie} is mapped to the
transmitted codeword [Xi(1),Xi(2), . . . ,Xi(n)] (abbreviated
as Xn

i ) over n channel uses. At Receiver k, the received signal
[Yk(1),Yk(2), . . . ,Yk(n)] (abbreviated as Yn

k ) is used to
produce the estimate Ŵk of the message Wk. The probability
of error for Receiver k is given by the probability that Ŵk is
not equal to Wk. A rate tuple (R1, R2, . . . , RK) is said to be
achievable if we have an encoding and decoding mapping such
that the probability of error for each receiver approaches zero
as n approaches infinity. The capacity region C is the closure
of the set of all achievable rate tuples. The sum-capacity is
defined as CΣ = maxC

∑K
k=1Rk.

We introduce a directed graph representation that will be
useful to efficiently present the results in this work. The di-
rected graph representation of the K user interference network
consists of K vertices, V1, V2, · · · , VK , one for each user.
Since the vertices correspond directly to users, we will also
refer to them as users. For all (i, j) ∈ [K] × [K], there is a
directed edge eij from user j to user i, with weight w(eij)
defined as w(eij) = nij , if i 6= j and w(eij) = 0, if i = j.

We are particularly interested in the notion of cycles on this
directed graph. We define a cycle, π, as a cyclically ordered
subset of users, without repetitions. The set of all cycles is
denoted as [Π]. The cardinality of a cycle, denoted as |π| is
the number of users that it involves, |π| =

∑
Vk∈π 1,∀π ∈ [Π].

A cycle with only one user is a trivial cycle. Two cycles πp, πq ,
are said to be disjoint if they contain no common user, denoted
as πp ∩ πq = φ.

Introducing a slight abuse of notation in the interest of
conciseness, the same cycle, π, can also be equivalently rep-
resented as a set of edges representing a closed path where no
user is visited more than once. The weight of a cycle, denoted
as w(π), is the sum of the weights of all the edges traversed in
completing the cycle, w(π) =

∑
eij∈π w(eij),∀π ∈ [Π]. Note

that the weight of a trivial cycle is zero. Intuitively, the weight
of a cycle is the accumulation of the strengths of interference
terms encountered in the cycle.

Cyclic Partition: A subset of the set of all cycles, Π ⊂ [Π],
is said to be a cyclic partition if πp∩πq = φ, ∀πp, πq ∈ Π and∑
π∈Π |π| = K. In other words, a cyclic partition is a disjoint

cyclic cover of the K users.
Cyclic Partition Bound: For any cyclic partition Π, define

the corresponding cyclic partition bound, CΠ
Σ , as

∑K
k=1Rk ≤∑K

k=1 nkk − w(Π) where w(Π) =
∑
π∈Π w(π) is the net

weight of the cyclic partition, representing the total inter-
ference encountered in this partition. Since there are many
cyclic partitions, each of which gives rise to a cyclic partition
bound, let us denote the tightest of these bounds as the best
cyclic partition bound, CΠ∗

Σ . A cyclic partition that produces
the best cyclic partition bound is labeled an optimal cyclic
partition, and denoted by Π∗. For example, when K = 6, one
possible cyclic partition is Π = {{1, 3, 5}, {4, 2}, {6}} which
decomposes the users into three cycles, such that each user
is represented in exactly one cycle. The corresponding cyclic
partition bound is

∑6
k=1Rk ≤

∑6
k=1 nkk − (n13 + n35 +

n51)− (n42 + n24)− (0).
Participating Edge: Edge eij is a participating edge for the

cyclic partition Π if i 6= j and eij ∈ π for some π ∈ Π.
Cyclic Predecessor: Under cyclic partition Π, the cyclic

predecessor for user k is user Π(k), if eΠ(k)k is a participating
edge for Π. Note that if user k belongs to a trivial cycle in Π
then Π(k) = φ.

III. OPTIMALITY OF TIN THROUGH THE ADT MODEL

Following Geng et al.’s result [1] on the optimality of TIN
for the K user Gaussian interference network with one sub-
channel, it is not difficult to obtain a corresponding TIN
optimality result for the ADT deterministic model. The sub-
channel index is omitted in this section for compactness.

Theorem 1: In a K user ADT deterministic interference
network, where the channel strength level from Transmitter
i to Receiver j is equal to nji, ∀i, j ∈ [K], if the following
condition is satisfied

nii ≥ max
j:j 6=i
{nji}+ max

k:k 6=i
{nik}, ∀i, j, k ∈ [K], (1)

then power control and treating interference as noise can
achieve the whole capacity region. Moreover, the capacity
region is given by

CTIN =
{

(R1, R2, · · · , RK) ∈ RK+ :∑
Vk∈π

Rk ≤
∑
Vk∈π

nkk − w(π), ∀π ∈ [Π]
}

The proof details for Theorem 1 are omitted because they
parallel those for Theorem 1 in [1]. Here we only provide
some interesting observations. Each of the bounds defining the
capacity region represents the sum-capacity of a cyclic inter-
ference sub-network contained in the K user fully connected
interference network. A cyclic sub-network is comprised of
a cyclically ordered subset of users where each user causes
interference only to the preceding user and suffers interference
only from the following user in the cycle. The sum-capacity
of a cyclic interference sub-network is simply the sum of all



desired link strengths minus the sum of all cross link strengths.
Note that there exists many such sum-capacity bounds, as
there are many distinct cycles for all subsets of users. Out
of these cycle bounds, all but the tightest are redundant.
Nevertheless, when considered together, the cycle bounds
describe the precise capacity region of the fully connected
network whenever condition (1) is satisfied. This remarkable
aspect greatly simplifies the proof of the outer bound, because
only cyclic interference networks need to be considered.

Remark: Henceforth, we refer to (1) as the TIN optimality
condition. A network (sub-channel) is called TIN optimal if
the TIN optimality condition (1) is satisfied over the network
(sub-channel).

We now switch our attention from capacity region to sum-
capacity, where an explicit characterization is obtained. The
problem is highly non-trivial because the capacity region is not
polymatroidal. Toward this end, we use a minimum weighted
matching problem to obtain a simple characterization of the
sum-capacity in terms of a partition of the interference network
into vertex-disjoint cycles. The main result is that the sum-
capacity is always given by a cyclic partition bound. This is
stated in the following theorem.

Theorem 2: For TIN optimal ADT deterministic interfer-
ence networks, CΣ = CΠ∗

Σ .
Due to space limitation, for a detailed proof, we refer the

readers to our full paper available online [8]. The importance
of Theorem 2 is that it gives an explicit analytical formula
of the sum-capacity achieved by TIN, which we shall use for
parallel networks.

IV. OPTIMALITY OF TIN FOR PARALLEL NETWORKS

As we move from the single sub-channel case to multiple
parallel sub-channels, the outer bound proof becomes signifi-
cantly more challenging. Whereas formerly it was sufficient to
only consider each cyclic sub-network obtained by eliminating
all other users, messages and links, this is no longer possible
for parallel interference networks. For example, a different
cycle may be active in each sub-channel, however one cannot
eliminate a different set of links for each sub-channel. As an
outer bounding argument, eliminating a link is justified by
including a genie that takes all the messages originating at
the transmitter of that link, and provides them to the receiver
of that link, so that the receiver can reconstruct and subtract
the transmitted symbols from its received signal. However, in
a parallel channels setting, the message information provided
by the genie allows a receiver to reconstruct and subtract the
transmitted symbols from a transmitter on all sub-channels.
Thus, if a link from Transmitter i to Receiver j is removed
for one sub-channel, it must be removed for all sub-channels.
This makes it impossible to reduce a fully connected parallel
interference network directly into different cyclic sub-networks
over each sub-channel. As such, for parallel interference
networks, the reduction to cyclic networks is in general no
longer an option, and the entire network must be directly
considered for the outer bound. After exposing this added
source of difficulty, we proceed to the parallel networks.

A. ADT Deterministic Model

While we deal with multiple parallel sub-channels in this
section, it is worth highlighting that we assume throughout
each sub-channel is TIN optimal by itself. What we wish to
explore is whether collectively such parallel channels remain
separable and therefore TIN optimal. Let us start with a few
relevant definitions.

For the definitions that have been introduced, we will add
a superscript to indicate the sub-channel index, for example
cyclic partition Π[m], cyclic predecessor Π[m](k), and cyclic
partition bound CΠ[m]

Σ . Note that many cyclic partitions are
possible for each sub-channel, and a different cyclic partition
may be used for each sub-channel.

Participating Input and Output Levels (X [m]
i,u , Y

[m]
k,u ): For

the m-th sub-channel, we define participating input levels
X

[m]
i,u , 0.X

[m]
i,(1), . . . , X

[m]

i,

(
n

[m]

Π[m](i)i

) to be the bits that are

sent from Transmitter i and observed at its predecessor Re-
ceiver Π[m](i). The received signal levels resulting from all
interfering X [m]

i,u are defined as the participating output levels

Y
[m]
k,u ,

∑K
i=1,i6=k 2n

[m]
ki X

[m]
i,u where the summation is bit-wise

modulo two. We can also write Xi,u in a vector form as
X

[m]
i,u = [X

[m]
i,(1), . . . , X

[m]

i,

(
n

[m]

Π[m](i)i

)]. Similar vector notation

is used for Y [m]
k,u when the vector form is clearer.

Invertibility: The m-th sub-channel is said to be invertible
if the mapping from X

[m]
u , (X

[m]
1,u , . . . , X

[m]
K,u) to Y

[m]
u ,

(Y
[m]
1,u , . . . , Y

[m]
K,u) is invertible for an optimal cyclic partition

Π[m]∗. Mathematically, we require H(X
[m]
u |Y[m]

u ) = 0.

The significance of these definitions will become clear with
the statement of the result, illustrative examples, and finally
from the details of the proof. Perhaps the most intriguing is
invertibility. At this point it suffices to say that it is a “mild”
property and is easily testable for a given problem instance.
The mildness of this property will be explicitly addressed in
Section IV-B. With these definitions, we are now ready to state
the main result of this section in the following theorem.

Theorem 3: In a K user ADT deterministic interference
network with M sub-channels, if each sub-channel is indi-
vidually TIN optimal and invertible, then even collectively for
all the sub-channels of the parallel interference network, the
sum-capacity is achieved by a separate TIN solution over each
sub-channel.

The proof of Theorem 3 is deferred to Section IV-C. At
this point it is important to understand the statement of the
theorem and its limitations through illustrative examples.

Example 1: Consider the K = 3 user ADT deterministic
interference network with M = 3 parallel sub-channels,
shown in Figure 1(a). It is readily verified that each sub-
channel by itself is TIN optimal. Therefore, according to
Theorem 1, TIN is optimal for each sub-channel by itself.
For the 3 sub-channels, consider the optimal cyclic par-
titions Π[1]∗ = {{1, 2, 3}},Π[2]∗ = {{3, 2, 1}},Π[3]∗ =
{{1}, {2, 3}}. The weights of the participating edges are
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Fig. 1. Two 3 user ADT deterministic interference networks with 3 sub-channels each. Each sub-channel is TIN optimal individually. (a) For the optimal
cyclic partitions Π[1]∗ = {{1, 2, 3}},Π[2]∗ = {{3, 2, 1}},Π[3]∗ = {{1}, {2, 3}}, the participating input and output levels, X[m]

i,u , Y
[m]
i,u , i,m ∈ {1, 2, 3}

are labeled and the mapping from (X
[m]
1,u , X

[m]
2,u , X

[m]
3,u ) to (Y

[m]
1,u , Y

[m]
2,u , Y

[m]
3,u ) is easily verified to be invertible for each sub-channel. (b) For the optimal

cyclic partitions Π[1]∗ = {{1, 2, 3}},Π[2]∗ = {{3, 2, 1}} and Π[3]∗ = {{1, 2, 3}}, participating inputs and outputs X
[m]
i,u , Y

[m]
i,u , i,m ∈ {1, 2, 3} are

labeled. In this case, the mapping from (X
[3]
1,u, X

[3]
2,u, X

[3]
3,u) to (Y

[3]
1,u, Y

[3]
2,u, Y

[3]
3,u) is not invertible.

w(Π[1]∗) = w({e[1]
12 , e

[1]
23 , e

[1]
31}) = n

[1]
12 + n

[1]
23 + n

[1]
31 =

3, w(Π[2]∗) = w({e[2]
32 , e

[2]
21 , e

[2]
13}) = n

[2]
32 + n

[2]
21 + n

[2]
13 =

3, w(Π[3]∗) = w({e[3]
11 , e

[3]
23 , e

[3]
32}) = 0 + n

[3]
23 + n

[3]
32 = 3. Then

according to Theorem 2, the sum-capacity values for each sub-
channel by itself are given by C[m]

Σ =
∑3
i=1 n

[m]
ii −w(Π[m]∗) =

9 − 3 = 6, m = 1, 2, 3. What we wish to know is if TIN
continues to be the sum-capacity optimal scheme for all 3 sub-
channels collectively. Let us check for invertibility for each
sub-channel. According to the definitions, the participating
inputs for sub-channel 1 are X [1]

1,u = [X
[1]
1,(1), . . . , X

[1]

1,(n
[1]
31 )

] =

φ,X
[1]
2,u = [X

[1]
2,(1), . . . , X

[1]

2,(n
[1]
12 )

] = [X
[1]
2,(1), X

[1]
2,(2)], X

[1]
3,u =

[X
[1]
3,(1), . . . , X

[1]

3,(n
[1]
23 )

] = [X
[1]
3,(1)] and the participating outputs

for sub-channel 1 are Y [1]
1,u = [X

[1]
2,(1) ⊕X

[1]
3,(1), X

[1]
2,(2)], Y

[1]
2,u =

[X
[1]
3,(1)] and Y

[1]
3,u = φ. It is now trivial to verify that from

(Y
[1]
1,u, Y

[1]
2,u, Y

[1]
3,u), we can recover (X

[1]
1,u, X

[1]
2,u, X

[1]
3,u). There-

fore, sub-channel 1 is invertible. Similarly, the participating
inputs and outputs for sub-channels 2 and 3 are shown in Fig-
ure 1(a) and it is easily verified that sub-channels 2 and 3 are
invertible as well. Therefore, we conclude that separate TIN is
optimal for this parallel network, and, the sum-capacity of the
3 sub-channels collectively, is the sum of their individual sum-
capacities. In other words, the sum-capacity is 6 + 6 + 6 = 18
and is achieved by separate TIN on each sub-channel.

To also expose the limitation of Theorem 3, the next
example illustrates a relatively rare situation where invertibility
is not satisfied, and so Theorem 3 cannot be applied. We do
not know whether separate TIN is optimal here.

Example 2: Consider the 3 user ADT deterministic interfer-
ence network with 3 sub-channels, as shown in Figure 1(b),
with the optimal cyclic partitions Π[1]∗ = {{1, 2, 3}},Π[2]∗ =
{{3, 2, 1}} and Π[3]∗ = {{1, 2, 3}} for the first, second and
third sub-channel, respectively. It is easy to verify that all
3 sub-channels are TIN optimal individually. However, with
the participating inputs and outputs X [m]

i,u , Y
[m]
i,u shown in the

figure, it is also easy to see while the first two sub-channels
are invertible, the third sub-channel is not.

B. Mildness of Invertibility Condition
The intuition behind the mildness of the invertibility con-

dition is analogous to the commonly encountered issue of
invertibility of channel matrices in wireless networks, i.e.,
the property is satisfied everywhere except over an algebraic
variety of lower dimension than the parameter space, and
therefore is increasingly likely to be true when the parameter
space is a large field. In particular, we expect invertibility
to hold for an increasing fraction of channel realizations in
the deterministic setting as the signal levels nij are drawn
from larger sets (parallel to power increasing in the Gaussian
setting for the GDoF metric). To strengthen this intuition, we
take a closer look at the invertibility condition. We present 3
classes of networks that satisfy the invertibility property, thus
separate TIN is sum-capacity optimal when each sub-channel
is individually TIN optimal. The proofs and related discussions
are relegated to the full paper [8].

Network 1: (3 User) 3 user ADT deterministic paral-
lel interference networks where each sub-channel satisfies
n

[m]
12 + n

[m]
23 + n

[m]
31 6= n

[m]
21 + n

[m]
32 + n

[m]
13 ,∀m ∈ [M ].

Network 2: (Acyclic Graph) K user parallel ADT deter-
ministic interference networks, where for each sub-channel,
the bipartite graph is acyclic. The undirected bipartite graph
is defined by viewing the cross links between the participating
input and output levels as the edges.

Network 3: (Dominant Partitions) K user ADT determin-
istic parallel interference networks where in each sub-channel
n

[m]

Π[m]∗(k)k
> n

[m]
jk ,∀j, k ∈ [K], j /∈ {k,Π[m]∗(k)},m ∈ [M ].

C. Proof of Theorem 3

Theorem 2 provides the achievable rate
∑M
m=1 CΠ[m]∗

Σ =∑M
m=1

[∑K
i=1 n

[m]
ii − w(Π[m]∗)

]
by separate TIN over each

sub-channel. We only need to prove that it is an outer
bound, assuming that each sub-channel is invertible. Consider
the optimal cyclic partition for each sub-channel. Then by
definition, w(Π[m]∗) =

∑K
i=1 nΠ[m]∗(i)i. We define i

[m]
max ,

argmaxj 6=i n
[m]
ji to be the user that receives the most interfer-

ence from Transmitter i in sub-channel m. Writing the binary



X
[m]
i =

n
[m]
ii∑

b=1

X
[m]

i,(b)2
−b =

n
[m]

Π[m]∗(i)i∑
b=1

X
[m]

i,(b)2
−b +

n
[m]

i
[m]
maxi∑

b=n
[m]

Π[m]∗(i)i
+1

X
[m]

i,(b)2
−b +

n
[m]
ii∑

b=n
[m]

i
[m]
maxi

+1

X
[m]

i,(b)2
−b , X

[m]
i,u +X

[m]
i,v +X

[m]
i,q (2)

n(Ri − ε) ≤ I(Wi;Y
n
i ,X

n
i,u,X

n
i,v) = H(Yn

i ,X
n
i,u,X

n
i,v)−H(Yn

i ,X
n
i,u,X

n
i,v|Wi) (3)

= H(Xn
i,u|Xn

i,v) +H(Xn
i,v) +H(Yn

i |Xn
i,u,X

n
i,v)−H(Yn

i |Wi) (4)

≤ H(Xn
i,u|Xn

i,v) + n

M∑
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i
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maxi
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) (6)
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M∑
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(
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n
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]
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Fig. 2. The signal levels of user i. The signal levels that cause interference
(X[m]

i,u , X
[m]
i,v ) suffer no interference at the desired receiver.

expansion of the channel input, we have (2) shown at the top
of this page, where X [m]

i,u , X
[m]
i,v , X

[m]
i,q are the bits that interfere

at Receiver Π[m]∗(i), the other bits that interfere at Receiver
i
[m]
max and the remaining input bits, respectively (see Figure 2).
Xi,u = [X

[1]
i,u, . . . , X

[M ]
i,u ] is the stack of X [m]

i,u for all sub-
channels. Similar notation is used for Xi,v with v replacing
u. Give Xi,u,Xi,v through a genie to Receiver i. Then from
Fano’s inequality, we have (3) shown at the top of this page,
where the second term in (5) follows from the fact that the
entropy of X [m]

i,v is smaller than the number of bits therein
and the third term in (5) is due to the property that the signal
levels in Yi that receive Xi,u,Xi,v do not suffer interference
(see Figure 2), because each sub-channel is TIN optimal.

Adding (6) for i ∈ {1, . . . ,K}, we have (7) (see above),
where in (8), Xn

u = (Xn
1,u, . . . ,X

n
K,u) is the collection of

Xn
i,u for all users. Similar notations are used for Xn

v and Yn
u .

Then (8) follows from the independence of Xi and the fact that
conditioning does not increase entropy. The second term of (9)

follows from the definition of Y [m]
k,u =

∑K
i=1,i6=k 2n

[m]
ki X

[m]
i,u

and the fact that given the desired message Wk and X [m]
i,v , the

only thing left in Y
[m]
k is Y [m]

k,u . The last step is due to the
invertibility assumption. Normalizing it by n and applying the
limit n→∞, we arrive at the desired outer bound.

V. DISCUSSIONS

In the context of K user parallel ADT deterministic in-
terference networks when each sub-channel satisfies the TIN
optimal condition, we show that separate TIN over each
sub-channel is optimal from the perspective of sum-capacity,
subject to a mild invertibility condition. The results translate
directly into GDoF results for K user parallel Gaussian
interference networks, as shown in the full paper [8].
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