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Abstract—This paper studies the sum Degrees of Freedom
(DoF) of K-user asymmetric MIMO Interference Channel (IC)
with square direct link channel matrices, that is, the wu-th
transmitter and its intended receiver have )/, € N antennas
each, where 1/, need not be the same for all u € [1: K].

Starting from a 3-user example, it is shown that existing
cooperation-based outer bounds are insufficient to characterize
the DoF. Moreover, it is shown that two distinct operating
regimes exist. With a dominant user, i.e., a user that has more
antennas than the other two users combined, it is DoF optimal
to let that user transmit alone on the IC. Otherwise, it is
DoF optimal to decompose and operate the 3-user MIMO IC
as an (M; + My + Ms)-user SISO IC. This indicates that
MIMO operations are useless from a DoF perspective in systems
without a dominant user.

The main contribution of the paper is the derivation of a
novel outer bound for the general K-user case that is tight
in the regime where a dominant user is not present; this is
done by generalizing the insights from the 3-user example to
an arbitrary number of users.

I. INTRODUCTION

Interference channels (IC) have been extensively studied in
the past years due to their practical relevance. The capacity
of even the simple two-user case is still open in general. For
the Gaussian noise IC progress has been made by focusing on
the degrees-of-freedom (DoF), or scaling of the sum-capacity
with signal-noise-ratio (SNR) as SNR grows to infinity. A
signaling scheme, known as interference alignment [1], has
been shown to achieve 1/2 the interference-free capacity for
each user for almost all channel realizations, regardless of
the number of users, in single antenna systems. This showed
the surprising result that ICs are not intrinsically interference
limited.

Multiple-input-multiple-output (MIMO) techniques are
widely used in practical wireless communication systems as
a means to increase the spectral efficiency. The complete
characterization of the DoF of a general multiuser MIMO
IC has been elusive so far. The case where every node has
the same number of antennas was solved in [1], where it was
shown that MIMO operations are not needed to achieve the
optimal DoF. The question whether the same remains true
in asymmetric MIMO IC has been answered in some special
cases only.

In [2] Jafar and Fakhereddin fully characterized the DoF
of the 2-user MIMO IC with arbitrary number of antennas
at each node. Their result has served as a fundamental outer
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bound for the K-user MIMO IC where each transmitter has
M antennas, each receiver has N antennas, and M # N,
indicated as the (M x N)X IC [3], [4], [5], [6], [7], [8].
The idea is to partition both the set of transmitters and the
set of receivers into two groups, let the users in each group
perfectly cooperate and thus outer bound the performance
of the original IC by that of the so obtained 2-(super)user
IC. For the (M x N)X IC, MIMO operations are needed
in order to attain the optimal DoF; however it was observed
that, except for some values of M /N, either M or N can be
reduced without affecting the DoF [3], [5]. For this (M X
N)& model, both the achievability and converse proofs relied
on the the symmetry of antennas across users and it is not a
priori clear how to generalize them to settings that lack this
symmetry.

The case where K MIMO users share the same channel
and each node can have different number of antennas has not
received so much attention as of yet, to the best of our knowl-
edge. The reason may lie in the fact that known bounds for
“almost symmetric” ICs do not seem to be tight in the general
case. In this work we study the class of general asymmetric
MIMO ICs with square direct link channel matrices, that is,
each transmitetr and its corresponding receiver have the same
number of antennas, but different transmitter-receiver pairs
can have different number of antennas. Although this setting
is not fully general yet, it is a first step towards understanding
the impact of heterogeneous devices in ad-hoc networks.

The main contribution of the paper is a full DoF char-
acterization for the proposed setting. First we show that
existing cooperation-based outer bounds are insufficient to
characterize the DoF and derive a novel DoF outer bound.
The novel bound reveals that two distinct operating regimes
exist. With a dominant user, i.e., a user that has more antennas
than all the other users combined, it is optimal to let that
user transmit alone on the IC. Otherwise, it is optimal to
decompose and operate the MIMO IC as a multiuser single-
input-single-output (SISO) IC where the number of users is
given by the total number of transmit antennas. This rather
surprising result indicates that MIMO operations are useless
from a DoF perspective in systems without a dominant user
if the direct link channel matrices are square.

The paper is organized as follows. Section II presents the
channel model and summarizes known bounds. Section III
highlights the main ingredients in the converse proof by
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means of a simple 3-user example. The rigorous proof for
the general K -user case is provided in Section IV. Section
V concludes the paper.

II. CHANNEL MODEL AND KNOWN BOUNDS
A. Channel model

We consider a specific multiuser asymmetric MIMO IC
that consists of K transmitter-receiver pairs sharing the same
wireless channel and thus interfering with one another. We
let M, be the number of antennas at Tx, and at Rx,, u €
[1: K], where without loss of generality My > My > ... >
My > 1. The channel input-output relationship is

> HyXie+ Z;eCMXiel: K],  (la)
ke[1:K]

X; e CM>XL ||| X,]12] < P (1b)

Z; e CMxL . 7~ N(0,1), (1c)

where Flij € CM:xM; s the channel matrix from Tx; to
Rx;, (i,7) € [1 : K] Tx; has a message W, of rate
R;(P), where P is the transmit power, for Rx;, i € [1 : K].
Achievable rates and capacity region are defined in the usual
way [9].

In this work we are interested in the high-SNR regime,
ie., P > 1, and will use the DoF as performance metric.
The (sum) DoF dy; is defined as

ds :=sup Y d;, )

i€[1:K]

where the supremum is over all achievable rate vectors
(R1(P),...,Rx(P)) and where d; is the DoF of i-th user
defined as d; := limp_, 4 o % forie[l: K].

B. Inner bound

An achievable scheme is as follows. By ‘disabling’ MIMO
operations, i.e., treating each pair of antennas as a separate
user, we can transform the MIMO IC into a SISO IC with
>_iep.x) Mi users; by interference alignment we can achieve
1/2 DoF per user [1], [10]. We shall refer to this simple
achievable scheme as the decomposition inner bound [11].

Another simple achievable scheme is to let only Tx;
(the user with the largest number of antennas) transmit, and
achieve dy = My, d; =0, i € [2: K].

By combining these two schemes, the DoF of our asym-
metric MIMO IC satisfies

max (Ml, Zjle[;“) <ds. 3)

C. Outer bound

The DoF of 2-user MIMO IC with arbitrary number of
antennas at each node was derived in [2]. This result is widely
used in DoF converse proofs (see for example [3], [4]) where
the main idea is to reduce a K -user MIMO IC to a 2-user one
by either ‘silencing’ all but two users, or by using cooperation
to obtain a 2-user MIMO IC. Therefore, by partitioning the

K users into two groups so as to form two ‘super users’ and
by applying the result of [2], we immediately obtain that the
DoF of our asymmetric MIMO IC satisfies

ds < M, ST M; 4
< e (ST 0). e

where S¢ is the complement of S in [1 : K]. We shall refer
to this bound as the cooperation outer bound.

D. Systems with a dominant user

When one user has more antennas than all the other users

combined, i.e.,
> > M, )
1€[2: K]

we say that the IC has a dominant user (user 1 in our channel
setting). In this case the left hand side of (3) and the right
hand side of (4) coincide, and thus the DoF is completely
characterized. Therefore, for systems with a dominant user,
the cooperation outer bound is tight and is achieved by letting
only the dominant user transmit.

E. Systems without a dominant user

When there is no dominant user, the inner bound in (3)
and the outer bound in (4) do not coincide in general unless
there exists a set S C [1 : K] such that

M= M,

i€S i€Se
in which case the decomposition inner bound matches the
cooperative outer bound. So in general either the cooperative
outer bound or the decomposition inner bound is not tight.

In order to understand which bound might be loose, we

next consider a specific 3-user IC example. Through this
example we will show that the decomposition inner bound
in (3) is tight. This will provide the necessary intuition for
the extension of the proof to the general K-user case in
Section IV.

III. EXAMPLE: THE (M1, M2, M3) = (2,2,1) CASE

For the case (M, Ma, M3) = (2,2,1), the outer bound
in (4) gives dy < 3 while the inner bound in (3) gives
dy, > 5/2. In this section we aim to demonstrate that the
outer bound is loose. Intuitively, 3 DoF appears to be too
optimistic since it is well known that the 3-user MIMO IC
with (My, Ma, M3) = (2,2,2) has 3 DoF [4]. Therefore, if
the outer bound were tight, it would indicate that removing
one antenna at each terminal of the the third transmitter-
receiver pair does not impact the DoF. Cases of ‘antenna
redundancy’ are known in [3], [5], but we shall show that
this is not the case for our asymmetric MIMO IC when no
dominant user exists.

In Section III-A we start by transforming the IC in (1)
into an equivalent IC in which the channel matrices contain
zeros in carefully chosen positions. In Section III-B we give
a ‘dimension counting argument’ to show that no more than
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5/2 DoFs are achievable in the equivalent IC. Finally in
Section III-C, we give an information theoretic proof of this
intuitive argument and show the outer bound dy, < 5/2.
With this, the tightness of the decomposition inner bound
is proved. The example highlights the key steps for the proof
of optimality of the lower bound in (3) for the general K -user
case without a dominant user.

A. Channel transformation

In general, we can set X; = V,;X; and construct Y; =
U,Y; in the channel in (1), where the beamforming matrices
V, and the shaping matrices U, are full-rank / invertible
square matrices of dimension M;, ¢ € [1 : K] that do
not depend on P. Since invertible transformations preserve
DoF, the channel in (1) and the transformed one have the
same DoF. The input-output relationship of the transformed
channel reads

Y;= > HyXp+Z; € CMir, (6a)
ke[1:K]
Hyp, := U;Hyp Vy, € CMXMe (5 kY e [1: K]2,  (6b)

where in (6a) we neither specify the input power constraints
on the inputs Xy, k € [1: K], nor the covariance matrix of
the noise terms, as they do not impact the DoF.

In the following we assume that all channel coefficients
are generic, i.e., randomly chosen from a continuous distri-
bution. Under this assumption, the goal is to show how to
find invertible beamforming and shaping matrices such that
the transformed channel for our (M, M2, M5) = (2,2,1)
example is

_h(ll) h(ll) h(lz) 0 h(13)

Yi - 1111 1121 Xl + 11 12 X2 + |: 11 :| X37
5 R hiy) 0
_h(21) 0 h(zz) h(22) h(23)

Y'Q — 11 01 X1—|- 1212 1222 X2_|_|: 11 :|X3,
U h? he 0

Ys = 1D 0] Xi+ 1 0 Xz + bV X,

where hglbj ) is the scalar channel gain from the b-th antenna of
Tx; to the a-th antenna of Rx;, and where we no longer write
the noises for notation convenience. To show that indeed such
a transformed channel can be found, we proceed along a
number of steps.

Step 1: As a first step we neutralize at (the single
antenna of) Rxs the signal from the second antenna of Tx;
and from the second antenna of Tx5. We do so by carefully
choosing some columns of the matrices V; and V. Let

Vii=[vnn viz], Vo= v o),

where vy; indicates the i-th column of the matrix V. We
choose (v12,v22) such that

Hszjv1a = 0, Hsovoe = 0.

Since Hsy and Hsp are generic 1 X 2 matrices, vi2 and vg;
(which are 2 x 1 matrices) can be chosen from the (one
dimensional) right null space of Hss and Hsq, respectively.

Step 2: As a second step we neutralize the signal from
the second antenna of Tx; at the first antenna of Rx», and
from the second antenna of Txy at the first antenna of Rx;.

We let
U11 U21
U, = , Ug = ,

where uy; indicates the i-th row of the matrix Uy. In order
to achieve our goal, we impose

u11Hi2v92 = 0, uz1 Ha1v12 = 0.

Since v12 and vao have been decided already based on Hs,
and Hso, we have that Hy5v99 and Hyjvyo are generic 2 x 1
matrices almost surely. Therefore, w17 and wo; (which are
1 x 2 matrices) can be chosen from the (one dimensional)
left null space of Hiov99 and Hojvyo, respectively.

Step 3: As a third step, we neutralize the signal from
(the single antenna of) Txs at the second antenna of Rx;
and at the second antenna of Rxy. We thus impose

u12H13V3 = 0, ugaH23V3 = 0.

Since V3 is a non-zero scalar, we choose uj2 and ugo as
rows in the (one dimensional) left null space of H3 and
Hoys, respectively.

Step 4: As a last step, we neutralize the signal received
at the second antenna of Rx, from the first antenna of Tx;
and the one received at the second antenna of Rx; from the
first antenna of Txs. For this we impose

u12H12v21 = 0, uzaHa1v11 = 0.

Since u12 and w92 have been decided already based on Hys
and H,s, the vectors uioHio and ugsHo; have dimension
1 x 2 and are generic. Therefore, we choose v2; and vy to
be columns in their respective (one dimensional) right null
spaces.

By the above operations, V1, V5, Uy, Us have been de-
cided. V3 and Uj are scalars and can be set to one without
loss of generality. Also all transform matrices were decided
based on generic channel coefficients, so they do not have
dependence or special structure. Thus all transform matrices
are full rank and invertible almost surely, and the transfor-
mation preserves the DoF.

B. An intuitive dimension-counting argument

We start with a ‘dimension counting’ argument to give an
intuitive reason as to why the decomposition inner bound
ds. > 5/2 should be tight. Without loss of generality, we can
assume d; = dy = d and d3 = d'.

Since Rxs has a single antenna, the total DoF of its own
and the interference signal cannot be larger than one. This
implies that the interference at Rxs must have less than 1 —
d" DoF.

Now consider Txy that must achieve d DoF. Since the part
of its signal that causes interference at Rxs must have less
than 1 — d’ DoF, the part of its signal that does not interfere
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at Rx3 must have at least d — (1 — d’') DoF. This is to say,
Txg controls d — (1 — d') dimensions to be neutralized at
Rx3 and these dimensions are therefore decided.

Now consider Rx;, which has two antennas. By the generic
setting, the decided d — (1 — d’) dimensions at Txs do not
align automatically with the interference from Txs; therefore
we have the bound

A +d—(1—d)+[d]<2e=dtd < g (7a)
From the outer bound in (4) and from d; < M;, i € [1: 3],
we know

2d <2, d <1. (7b)

It is easy to see that the bounds in (7) define a pentagon with

vertices (d,d’) = (1,1/2) and (d,d’) = (1/2,1). Therefore
the largest DoF can be at most 2d + d’ = 5/2. Since a DoF
of g is achievable by (3), we conclude that the cooperation
outer bound in (4) might be loose.

C. An information theoretic proof

We define the differential entropy of the noisy signal as in
[12]

h(X™) = h(X™ + Z"), (8)

where h is standard differential entropy. X™ is a signal vector
power constrained to P and Z™ ~ AN(0,) is independent
noise vector. Joint and conditional differential entropies are
defined in the same manner [12].

We next formalize the intuitive argument from Sec-
tion III-B. In the transformed channel, let Xj; be the signal
sent by the first antenna of Txy, and X2 be one sent by the
second antenna of Txy, k € [1 : 2]. By Fano’s inequality, we
have

n(Rs — €n) (%a)
< T(Ws;Y3') = h(Y5") — h (Y3 [Ws) (9b)
< h(Y3') = h(Y3'[Ws, Wh) (%)
< n(1-log(P) + o(log(P))) — A (Y5'|W5, W1)  (9d)
=n (1-log(P) + o(log(P))) — h(X3}), (%)

where the inequality in (9d) follows because Rxs has only
one antenna, and the one in (9¢e) since in the transformed
channel

n (v 1w, m)

= n(R$ X7 + R X + R Xg 4 25 W, W)
32 n n n

= h(hg1 )X21 + Z3) =: (X3),

which implies that Rx3 can recover X3, up to noise distortion
of the order o(log(P)). Hence, the bound in (9) implies

h(X%) <n(l-log(P)— R3s+ €, +o(log(P))). (10)

Moreover, the bound in (10) together with

n(Ry —ep) < T(Was YY) < I(X35Y3")
= h (X3, X55) = (X31) + h (X3 X31),

implies

h(X5%|X5) > n(Ry —1-log(P) + Rs — 2¢, + o(log(P))) .

(11)

Now consider
n(R1 — Gn) S I(Yln;Wl) (123)
<h(Y(") = h (YY" W1, X3,) (12b)

< n(2-log(P) + o(log(P))) — h (X5, X3'|XT', X))

(12¢)

=n(2-log(P) + o(log(P))) — h (X3) — h (X35]X3;)
(12d)
< n(3-log(P) — 2R3 — Ra + 3e, + o(log(P))), (12e)

where the inequality in (12c) follows since Rx; has two
antennas, the one in (12d) since X§ and XJ = (X3, X%)
are independent, and finally (12e) comes from (11) and
n(Rs — e) < I (V{5 X5) < h(X}).

Therefore, from (12) and for n > 1, we conclude that

Ry + Ry + 2R3
— <3 1
log(P) <3+0(1),

or equivalently that d+d’ < 3/2 (recall Ry = Ry = dlog(P)
and R3 = d’log(P) without loss of optimality for DoF).

The argument at the end of Section III-B shows that the
novel bound d+d’ < 3/2, together with known outer bounds,
implies dy, < 5/2. Since the outer bound is achievable by
the decomposition inner bound, we have dyx = 5/2. This
completes the proof for this specific example.

13)

IV. SuM DOF FOR THE GENERAL K -USER CASE

In the previous section, through suitable invertible trans-
formations we could rewrite the original IC into a new
one with a special structure in the channel matrices; this
structure suggested how to provide genie side information
to the receivers in the outer bound proof. We extend here
the proof for the example in Section III in two ways. First
we give a DoF outer bound for the general 3-user IC with
number of antennas specified by the vector (M7, Ma, M3) in
Section IV-A. Then we generalize the result to the K-user
case in Section IV-B.

A. The 3-user case

Without loss of generality let M7 > My > Ms. We assume
there is no dominant user, that is, M, < M, + Mj. By the
invertible transformations X; = V,;X;, ¥; = U;Y;, i € [1:
3], we aim to obtain an equivalent channel where the inputs
are partitioned as Xl = (Xll,Xlg,Xlg), X2 = (X21,X22),
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and X3 = (X31, X32), and similarly for the outputs. Let
| X;;| indicate the size / number of antennas in X;;. We want

| X11| = Vi3] = [X32| = |Y32| = My — Mo,

| X13] = [Y11] = [Xaa| = [Yoo| = My — M3,

| X12| = V12| = | Xo1| = [Yai|

= |X31| = |Y31| = My + M3 — M.

Let the channel matrix from Xy, to Yj, in the original
channel be denoted as 1)), with size |Yiq| x [X;3-

We now derive the channel input/output relationship of the
transformed channel. As before, the beamforming matrices in
(6a) are denoted as
Vi=[oi1 vz wvis], Vo= [vs1 v22], Vs =[vs1 w3

where v, has size M, x | Xgp

u21
; Ug = , Ug =
=[] v

, and the shaping matrices as

U3y
us2 |’
where gy has size |Yop| X M,.
We first choose the beamforming matrices by imposing
Hayviy =0, Hzviz =0,
7(12) (12
[h§1 ) h§2 )} v21 =0,
7 (13
[R5
Under the generic channel gain assumption, the matrices
Hay, Hs, [ﬁglf) B%z)] and Bgllg) h%‘:’;} have right null
space of rank M; — NMs, My — Ms, My + Mz — My,
and My + M3 — M, respectively, almost surely. Thus we
can pick columns from these right null spaces to form
the beamforming matrices vi1, vi3, v21, v31, which are
therefore of size My x (My; — Ms), My x (My — Ms),
Mg X (Mg + M3 — Ml), and M3 X (M2 + M3 — Ml),
respectively, and are still generic almost surely. The matrices
V12, U2, and v3o are randomly chosen so that they are full-
rank and with no specific relation with the previously chosen

matrices.
We then choose the shaping matrices by imposing

uizHi2 =0, wui1Hi3 =0,

Uil
U12
Uu13

U, =

Bélz?))} v31 = 0.

5(12) B(l?))'
) ()| _

w2 | hyy ' hyy | =0,
i i
22D (23]

U1 [h%gl) =0, ux ]—1%213) =0,
23 21 |
hﬁ”] [hﬁ?)'

U31 | +(31 = 0, U32 |+ (32 =0.
[hél : nsy |

Under the generic channel gain assumption, all channel
matrices are full rank almost surely; the shaping matrices
can thus be chosen as rows is the respective right null spaces
and are still generic almost surely. Us is full rank matrix,

since ug1 and wos are chosen from independent null spaces,
thus are independent. Similarly, we claim Us is full rank. We
then show that U; is also full rank. It is easy to see that u;;
and wu;3 are independent. If U; is not full rank, there must
exist non-zero row-vectors g1 of size 1 x (2M; — My — M3)
and gy of size 1 x (My + M3 — M) such that

U
g1 [ 11} = gau12,

Uu1s
that is
7(12) 713
Ry Ry
0 = gou1z hé122) hélzg)
7(12) (13
Ry R
) 7(12)  7(13
Uil iL§122; fL§123§
s H ha,
hsy” hay
_ e -
By
U1l hglf) 0
~(i2
=g h§)2 ) —(13)
h
0 *%123)
u13 | hgy
7 (13
_ hg ] |
= glF

Since w11 is independent of Hys and uqs is independent of
His, F is a full rank square matrix almost surely. Then G; =
0, which contradicts our initial assumption. Therefore we
claim U; is full rank almost surely.

With the chosen beamforming and shaping matrices, the
transformed channel has input/output relationship

11 11 11
L e N O
O A e S
h31 h’32 h33 0 0
0 0
13
+ a8 0 | xs
0 ALY
21 22 22
2= 0 héglz ((2)1) X1+ h§212; h§222; X
0 h22 h23 h21 h22
23 23
L[ ey
0 A3
0 B g L32 62)
Ys=| 1 X+ U () | X2
33 33
+ héfsls; hil?%;] X3
h21 h22

where hl(;b]) represents the transformed channel matrix from
Xjp to Y;,, which has size |Y;q| x |X,p|. Since the beam-
forming and shaping matrices are full rank almost surely,
we performed an invertible transformation that preserves the
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DoF. Therefore we obtained a new channel that is not fully
connected and whose structure suggests which genie side
information to provide to the receivers in the converse proof.

We shall consider different choices of side information at
the various receivers. The idea is to start as usual by Fano’s
inequality, by providing side information S); to receiver u,
and by bounding the entropy of the output as a function of
the number of antennas at receiver u, so as to obtain

n(Ry — en) < n(M,log(P) + o(log(P))) — h(Y,'[Wa, 57).

The entropy term h(Y,"|W,, S,) depends on the distribution
of the interference at receiver u (since X can be cancelled
thanks to the knowledge of W, ) conditioned on the side
information S7; if such an entropy term, which appears with
a negative sign, cannot be single-letterized, then we proceed
to provide side information to another receiver in such a way
that the same entropy term appears with positive sign; by
adding the two bounds we ‘get rid’ of the entropy terms
that cannot be single-letterized. We continue in this fashion
until we obtain a single-letter outer bound. For the general
asymmetric 3-user MIMO IC the steps are as follows.
Ist bound: message side information: By providing Rxs
with side information W3 we have
n(Ry —en) < h(Y5") = h(Y3'|W2, Ws)
< n(M;log(P) + o(log(P))) — A(Xy, X7 X3, X5)
= n(Mzlog(P) + o(log(P))) — h( X1y, X13), (14)
where the inequality follows since Rxs does not receive X7;.
Similarly, by providing Rx3 with W5 we obtain
n(Rs — en) < n(Mslog(P) + o(log(P))) — (X1, X1).
15)
By adding (14) and (15) and since
A(XTy, X15) + (X5, X{5)
> (X1}, XT5) + (XT3 XTo, XT1) + h(XTh)
= h(XT1, X1, XT15) + "(XT1y)
> n(Ry — e,) + h(X7y),
we obtain

n(Rl + Ry + R3 — 3En)
< n((Mz + Ms)log(P) + o(log(P))) —

2nd bound: “signal pieces” side information: Next, we
provide (X7, X%,) as side information to Rxs and obtain

n(Ry —en) < h(Y5') = h(Y5'[Wa, X1, X35)
< n(Mylog(P) + o(log(P))) — (X3, X7 [Wa, X1, X55)
= n(Mzlog(P) + o(log(P))) — h(X31|X35) —

R(XTy).  (16)

a7
Similarly, we provide (X7, X7,) as side information to Rxs

and obtain

n(Rs —en) < n(Mzlog(P) + o(log(P)))

— I(X51 | X55) — (XT3 |XT5). (18)

(X 15]XT).

By adding (17) and (18) we obtain

Tl(Rl + RQ + R3 - 3671) S TL((MQ + Mg) log(P)
+ o(log(P))) + h(XTy) — h(X3[X35) — h(X3 [ X35).
(19)

3rd bound: MAC bounds: Now, we provide Rx; with
enough side information to enable the decoding of all mes-
sages. After Rx; has decoded its own message / removed
X7 from the received signal, it is left with M; linear
combinations of My 4+ M3 interfering symbols; if we we
provide Rxy with Ms+ Ms— M7 extra observations / antenna
outputs, it will be able to decode all interfering symbols. Next
we derive two such ‘MAC-bounds’ by providing either X3}
or X3, to Rx;. We have

n(R1 + Ra + R — 3ey,) < I(Wy, Wo, Wi Y', X3))
= h(Y]", X31) — o(log(P))

< h(Y7") + R(X31]X35) — o(log(P))
= h(Y7") + R(X31, X35) — M(X35) — o(log(P))
< n(M log(P) 4+ o(log(P))) + n(R2 — &,,) — A(X35).
(20)

Similarly

n(Ri1 + Ry + Rs — 3ey,) < I(Wy, Wo, Wi Y7", X3))

< n(Milog(P) + o(log(P))) + n(R3z — &) — h(X3,).
2D

Final bound: By adding (16), (19), (20), (21), and by
taking n — oo, we obtain

ARy 4+ 4Ry + 4R3 < 2(M; + My + M3)log(P) + o(log(P)),

and therefore the DoF is outer bounded by

2(M; + M3 + M3)log(P) + o(log(P))
41og (P)

ds; < lim

P—oo
My + My + Ms
T Ea—

This concludes the proof for the general 3-user asymmetric
IC in the case where there is no dominant user.

B. The general K -user case

We are now ready to extend our 3-user result to the general
K-user asymmetric MIMO IC. Our main result is

Theorem 1. For almost all channel realizations the asymmet-
ric K-user MIMO IC, in which the i-th user has M; antennas
at both the transmitter and the receiver, i € [1 : K|, the DoF
is

(22)

dy, = max Z M;/2, max]M

i€[1:K] i€k

Proof: As per our discussion in Section II-D, when there
is a dominant user (whose has more antennas than the rest
of the users combined) it is optional to let only that user
transmit. When there is no dominant user, we can always

1265



partition the users into three groups such that no group has
more antennas than the the other two groups combined. Then
we allow the users in the same group to fully cooperate and
apply our bound for 3-user IC, which shows that the DoF
is half the sum of number of the total number of antennas.
This concludes the proof. ]

V. CONCLUSION

In this paper we studied a special class of K-user asym-
metric MIMO interference channels in which a transmitter
and its receiver are equipped with the same number of
antennas, while different users may have different number of
antennas. We showed that existing cooperation-based outer
bounds are loose and gave a novel outer bound. Our result
indicates two operating regimes. For systems with a dominant
user (a user who has more antennas that the other users
combined), the optimal DoF is achieved by inactivating all
but the dominant user. For systems without a dominant user,
the decomposition inner bound turns out to be tight, that is,
the MIMO operations do not help in the DoF perspective. The
characterization of the DoF of arbitrary asymmetric K-user
MIMO interference channels is part of ongoing investigation.
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