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Abstract—A conjecture made by Lapidoth, Shamai and Wigger
at Allerton 2005 (also an open problem presented at ITA 2006)
states that the degrees of freedom (DoF) of a two user broadcast
channel, where the transmitter is equipped with 2 antennas and
each user is equipped with 1 antenna, must collapse under finite
precision channel state information at the transmitter (CSIT).
That this conjecture, which predates interference alignment,
has remained unresolved, is emblematic of a pervasive lack of
understanding of the degrees of freedom of wireless networks—
including interference and X networks—under channel uncer-
tainty at the transmitter(s). In this work we prove that the
conjecture is true in all non-degenerate settings (e.g., where
the probability density function of unknown channel coefficients
exists and is bounded). The DoF collapse even when perfect
channel knowledge for one user is available to the transmitter.
This also settles a related recent conjecture by Tandon et al.
Reminiscent of Korner and Marton’s work on the images of a set,
the key to our proof is a bound on the number of codewords that
can cast the same image (within noise distortion) at the undesired
receiver, while remaining resolvable at the desired receiver. We
are also able to generalize the result to arbitrary number of
users, including the K user interference channel. Remarkably,
for the K user interference channel, this work and the earlier
work by Cadambe and Jafar reveal two contrasting sides of the
same coin. Both works close a gap between the best previously
known DoF inner bound of 1 and the best previously known DoF
outer bound of K/2. However, while Cadambe and Jafar do so
in the optimistic direction, showing that K /2 is optimal under
perfect CSIT, here we close the gap in the pessimistic direction,
showing that 1 DoF is optimal under finite precision CSIT.

I. INTRODUCTION

Interference alignment studies [1] have spurred much inter-
est in the degrees of freedom (DoF) of wireless communication
networks. While much progress has been made under the
assumption of perfect channel knowledge, the degrees of
freedom under channel uncertainty at the transmitters have
remained mostly a mystery. A prime example is the, heretofore
unresolved, conjecture by Lapidoth, Shamai and Wigger from
the Allerton conference in 2005 [2], also featured at the “Open
Problems Session” at the Inaugural Information Theory and its
Applications (ITA) workshop in 2006, which claims that the
DoF collapse under finite precision channel state information
at the transmitter (CSIT). Specifically, Lapidoth et al. con-
jecture that the DoF of a 2 user multiple input single output
(MISO) broadcast channel (BC) with 2 antennas at the trans-
mitter and 1 antenna at each of the receivers, must collapse
to unity (same as single user) if the probability distribution
of the channel realizations, from the transmitter’s perspective,

is sufficiently well behaved that the differential entropy rate
is bounded away from —oo. The condition excludes not only
settings where some or all channel coefficients are perfectly
known, but also scenarios where some channel coefficients
are functions of others, even if their values remain unknown.
The best DoF outer bound under such channel uncertainty, also
obtained by Lapidoth et al., is %. Deepening the mystery is the
body of evidence on both sides of the conjecture. On the one
hand, supporting evidence in favor of the collapse of DoF is
available if the channel is essentially degraded, i.e., the users’
channel vector directions are statistically indistinguishable
from the transmitters’ perspective [3], [4]. On the other hand,
the idea of blind interference alignment introduced by Jafar
in [5] shows that the 2 user MISO BC achieves % DoF
(which is also an outer bound, thus optimal), even without
knowledge of channel realizations at the transmitter, provided
that one user experiences time-selective fading and the other
user experiences frequency-selective fading. Since the time-
selective channel is assumed constant across frequency and the
frequency-selective channel is assumed constant across time,
it makes some channel coefficients functions of others (they
are equal if they belong to the same coherence time/bandwidth
interval), so that the model does not contradict the conjecture
of Lapidoth et al. Thus, quite remarkably, this conjecture of
Lapidoth, Shamai and Wigger, which predates interference
alignment in wireless networks, has remained unresolved for
nearly a decade.

Following in the footsteps of Lapidoth et al., subsequent
works have made similar, sometimes even stronger conjec-
tures, as well as partial attempts at proofs. For instance, the
collapse of DoF of the MISO BC was also conjectured by
Weingarten, Shamai and Kramer in [6] under the finite state
compound setting. However, this conjecture turned out to be
too strong and was shown to be false by Gou, Jafar and
Wang in [7], and by Maddah-Ali in [8], who showed that,
once again, 4« DoF are achievable (and optimal) for almost all
realizations of the finite state compound MISO BC, regardless
of how large (but finite) the number of states might be. Since
the differential entropy of the channel process is not defined
(approaches —oo) for the finite state compound setting, this
result also does not contradict the conjecture of Lapidoth et
al. A related refinement of the conjecture, informally noted
on several occasions (including by Shlomo Shamai at the ITA
2006 presentation) and mentioned most recently (although in
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the context of i.i.d. fading channels) by Tandon, Jafar, Shamai
and Poor in [9] — is that the DoF should collapse even in
the “PN” setting, where perfect (P) CSIT is available for one
of the two users, while no (N) CSIT is available for the other
user.

A. Overview of Contribution

The main contribution of this work is to prove the conjecture
of Lapidoth, Shamai and Wigger, thereby closing the ITA 2006
open problem, as well as the “PN” conjecture of Tandon et al.,
for all non-degenerate forms of finite precision CSIT, which
includes all settings where density functions of the unknown
channel realizations exist and are bounded. For all such set-
tings, we show that the DoF collapse to unity as conjectured.
Remarkably, this is the first result to show the total collapse of
DoF under channel uncertainty without making assumptions
of degradedness, or the (essentially) statistical equivalence of
users.

Our approach, which is reminiscent of Korner and Marton’s
work on the images of a set in [10], is based on estimating
the size of the images of the set of codewords as seen by
the two users. Specifically, we bound the expected number
of codewords that are resolvable at their desired receiver
whose images align (within bounded noise distortion) at the
undesired receiver under finite precision CSIT. We show that
this quantity is ~ O((log(P))™) where n is the length of
codewords, and P is the power constraint which defines the
DoF limit as P — oo. This is negligible relative to the total
number of resolvable codewords, which is ~ O(P"%/?) when
the desired information is sent at rate g log(P), i.e., with DoF
d > 0 (normalization by 3 log(P) is because we deal with real
channels). The difference between the entropy contributed by
any set of codewords at their desired receiver (desired DoF)
and the entropy contributed by the same set of codewords
at the undesired receiver (DoF consumed by interference)
tends to zero in the DoF sense. Under finite precision channel
uncertainty, it is not possible to utilize the DoF at the desired
receiver without sacrificing the same number of DoF at the
undesired receiver due to interference. Therefore, the DoF are
bounded above by unity, the same as with a single user.

In the full paper posted on ArXiv [11] the result is further
generalized to the K user MISO BC, which also settles the
DoF of the K user interference channel under finite precision
CSIT. Remarkably, the best known outer bounds for K user
interference channel under finite precision CSIT prior to this
work was % (same as with perfect CSIT). Thus, this work
on finite precision CSIT and the work of Cadambe and Jafar
in [12] where perfect CSIT was assumed, reveal a surprising
contrast between the two sides of the same coin. In both
cases the best previously known DoF outer bound was K/2
and the best previously known DoF inner bound was 1. Both
works close this large gap. However, whereas under perfect
CSIT, Cadambe and Jafar close the gap in the optimistic
direction, showing that K/2 is optimal, in this work under
finite-precision CSIT, we close the gap in the pessimistic
direction, showing that 1 DoF is optimal.

B. Notation

We use the Landau O(+), o(-), and ©(-) notations as follows.
For functions f(x),¢(x) from R to R, f(z) = O(g(x))

denotes that limsup,_,. EE;”;, < o0. flx) = o(g(x))

denotes that limsup,, _, . ‘Jf('”)‘ =0. f(z) = O(g(x)) denotes
. > Jg(@)] ™

that there exists a positive finite constant, M, such that
a79(x) < f(w) < Mg(z), Vz. We use P() to denote the
probability function Prob(-). The index set {1,2,--- ,n} is
represented compactly as [1 : n] or simply [n] when it would
cause no confusion. X¥ represents {X(¢) : t € [s]}. For
example, X" = {X (1), X(2),---, X (n)}. With some abuse
of notation we use {X} to denote the set of values that can
be taken by the random variable X. The cardinality of a set
A is denoted as |A].

II. 2 USER MISO BC wITH PERFECT CSIT FOR 1 USER

To prove the collapse of DoF in the strongest sense possible,
let us first enhance the 2 user MISO BC by allowing perfect
CSIT for user 1. We will use the following canonical form of
the channel model.

A. Canonical Form

Without loss of generality, for the purpose of deriving a DoF
outer bound the channel model is reduced to the following
form, which is preferable due to the consolidation of channel
parameters (See Appendix B in [11] for justification).

| Y1 (t) = X1(t) + Z1(t)

Ya(t) = G(1) X1 (t) + Xo(t) + Z2(t)

Fig. 1. 2 user MISO BC with perfect CSIT for user 1.

The channel model, shown in Fig. 1 has outputs
Y1(t),Ya(t) € R, and inputs are X (t), X2(t) € R, so that:

0 = (o V][0 (260 Jo

The channel coefficient G(t) is bounded away from zero and
infinity, i.e., there exists finite positive M, such that |G(t)| €
(ﬁ, M ) The power constraint is expressed as

%Z[(Xl(t))gﬂxz(t))g] < P 2)
t=1

B. Messages, Rates, Capacity, DoF

The messages Wy, W5 are jointly encoded at the transmitter
for transmission over n channel uses at rates R1, Rs, respec-
tively, into a 2"f1+7R2 » p codebook matrix over the input
alphabet. For a given power constraint P, rate vector [R1, Ro]
is said to be achievable if there exists a sequence of codebooks,
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indexed by n, such that the probability that all messages
are correctly decoded by their desired receivers approaches
1 as n approaches infinity. The closure of achievable rate
vectors is the capacity region C(P). The DoF tuple (d1, ds) is
said to be achievable if there exist (R;(P), R2(P)) € C(P)
such that d; = 1111[119%0%}’;),612 = limp_yoo %f))
The closure of all achievable DoF tuples (di,ds) is called
the DoF region, D. The sum-DoF value is defined as Dy =

max(dhdﬂep(dl —+ dg)

C. Non-degenerate Channel Uncertainty

By non-degenerate channel uncertainty we mean that the
probability density function (pdf) of the channel coefficients
exists and is bounded. While in the full paper we allow the
channel realizations to be correlated in time, for simplicity
here, let us assume that conditioned on all available CSIT,!
T, the channel realizations G(t) are independently generated
across time, although not necessarily identically distributed.
Then we only require that fi,,x as defined below is finite.

fmax = max (17 sup fG(t)|T(g(t))> 3)
g(t)EG(L),tEL 4

Since the receivers have full channel state information, 7~
is globally known. For compact notation, we will suppress the
conditioning, writing fa. (g™) directly instead.

III. MAIN RESULT

Theorem 1: For the 2 user MISO BC with non-degenerate
channel uncertainty, Dy < 1 .
The result settles the conjecture by Lapidoth et al. in [2] for
all non-degenerate channel uncertainty models. It also settles
the “PN” conjecture by Tandon et al. in [9] (see [11]). Further,
generalizations to the K user case presented in the full paper
[11] also settle the collapse of DoF for K user interference
channel as well as the M x N user X channel.

IV. ALIGNED IMAGE SETS

The main idea we want to illustrate intuitively is a ge-
ometrical notion of aligned images of codewords—Iloosely
related to Korner and Marton’s work on the images of a set
in [10] but under a much more specialized setting—which is
the key to our proof. As the proof in Section V will show, the
problem boils down to the difference of two terms when only
information to user 1 is being transmitted,

1
Dy, < 1+ limsuplimsup -

P—oo n—oo 210g(P)

(rriG) —neMicth) @

The first term, (Y™ |G[")), we wish to maximize because it
represents the rate of desired information being sent to user 1.
The second, h(V{™|GI") = (G x4+ x4 ZIM|Gin)
we wish to minimize, because it represents the interference

IFor example, G(t) = G(t) + G(t), where G(t) = T is the estimate
available to the transmitter and G/(¢) is the estimation error.

seen by user 2, due to the information being sent to user
1. With only statistical knowledge of G, zero forcing is
not possible. Indeed, the purpose of Xé"] is mainly to align
interference into as small a space as possible. However, instead
of consolidating interference in the sense of vector space
dimensions, as is typically the case in DoF studies involving
interference alignment, here the goal is for XQ["] to minimize
the size of the image, as seen by user 2, of the codewords that
carry information for user 1. This is the new perspective that
is the key to the proof.

A. Toy Setting to Introduce Aligned Image Sets

For illustrative purposes, let us start with a rather extreme
over-simplification, by considering the case with n = 1, ignor-
ing noise, and using the log of the cardinality of the codewords
as a surrogate for the entropy. With this simplification, the
quantity that we are interested in is the difference:

log {X1}| —log {GX1 + X2} )

averaged over G. |{A}| means the cardinality of the set of
values taken by the variable A. The codebook is the set of
(X1, X>) values. Note that [{X;}|, the number of distinct
values of X, is the number of distinct “codewords” as seen by
user 1, who (once noise is ignored) only sees Y; = X7, so that
his “rate” is log [{ X1 }|. Given the set of X values, we would
like to associate each X; value with a corresponding X5 value,
such that the number of distinct values of Yo = GX; + X5
is minimized. In other words, we wish to minimize the image
of the set of codewords as seen by user 2, by choosing X5 to
be a suitable function of Xj.

/
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Fig. 2. Two codewords, v and +, and their equivalence classes, S, and Sy
under channel realizations G and G’.

Consider two codewords (Xi,X3) = (x1,22) and
(X1,X2) = (af,24). If 1 # z} then these codewords are
distinct from user 1’s perspective, and thus capable of carrying
information to user 1 via the transmitter’s choice to transmit
one or the other. Suppose the channel is G. Then for these
two codewords to “align” where they cause interference, they
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must have the same image as seen by user 2. This gives us
the condition for aligned images that is central to this work.

Gr1+122 = G+ b (6)

$l271'2
G=)

In other words, G must be the negative of the slope of the line
connecting the codeword (z1,z2) to the codeword (z7,x%)
in the X7, Xs plane. For a given channel realization G, all
codewords that align with (z1,22) (i.e., whose images align
with the image of (x1,x2)) as seen by user 2, must lie on
the same line that passes through (z1,z2) and has slope —G.
Conversely, all codewords that lie on this line have images that
align with the image of (x1,x2) at user 2. Thus, these lines
of the same slope, —G, partition the set of codewords into
equivalence classes, such that codewords that lie on the same
line have the same image at user 2. Also note that a different
channel realization, G’, gives rise to a different equivalent
class partition, corresponding to lines with slope —G’. This
is illustrated in Fig. 2. Since the Xy values are functions of
X, values, in the figure we label the codewords only on the
X, axis. The codeword v belongs to the equivalence class
S, (G) under the channel realization G and to the equivalence
class S, (G’) under the channel realization G’.

=G =

B. Sketch of Proof

From the perspective of DoF studies, the presence of noise
essentially imposes a resolution threshold, e.g., d, such that
the codewords with images that differ by less than ¢, are
unresolvable. As the first step of the proof, this effect is
captured by discretizing the input and output alphabet and
eliminating noise, as is done in a variety of deterministic
channel models that have been used for DoF studies [13], [14],
[15], [16], so that instead of differentlal entropies we now need
to deal only with entropies I ( |G[”]) and H (Y["]|G[”])
Here Xl,Xg represent the dlscretized inputs, Yl,Yg the dis-
cretized outputs, and Y; = X;. Next step is to note that we
are only interested in the maximum value of the difference
HY™M |Gy — B ™MGM). 1t then follows that without
loss of generality, X £ can be made a function of X 1[ I and
therefore ¥, becomes a function of Y G["] This implies
that H (Y, ’%|G[”]) (Y[”],Y["]|G”) = HYM|GM) +

H(Y] v \Y[n] GM). Thus, the difference of entropies is equal
to H( vl |Y[”] Gy = H(XIMy[M GM). Now, condi-
tioned on an Gl the set of feasible values of X{n] is
precisely an aligned image set S(G[” ), i.e., all these XW
produce the same value of Y2[ ") for the given channel realiza-
tion G, Since entropy is maximized by a uniform distribu-
tion, H(X[" 74", GI") < Egu v, [iog [|5X£n](atnl)|“ <

log (EGn vy [|S gl (G "])|l) where the last step followed
from Jensen’s 1nequahty Thus, the difference of entropies is
bounded by the log of the expected cardinality of the aligned
image sets. The most critical step of the proof then is to
bound the expected cardinality of aligned image sets. This

is done by bounding the probability that two given X }"’]
are in the same aligned image set, i.e., the probability of
the set of channels for which the two produce the same
image }72["}. Recall that for two codewords to belong to
the same aligned set in the absence of noise, the channel
realization over each channel use must be the slope of the
vector connecting the corresponding codeword vectors. The
blurring of § around the two codewords also blurs the slope
of the line connecting them, but by no more than +46/A,
where A is the distance (difference in magnitudes) between
the two codeword symbols over that channel use. Thus, the
probability that the given two codewords that are resolvable
at user 1 cast the same image at user 2 is bounded above by
~ fmax%‘s. The power constraint of P implies that there are at
most ~ v/P/J resolvable codeword symbols per channel use.
Summing over all possible resolvable codeword symbols, gives
US & frmax ZAE[O VP/§] A fde(SlOg( ) —+ O(IOg(P))’ per
channel use, so that the average cardinality of an aligned
image set, F|S(G!|, turns out to be bounded above by

~ (fmaxd log(P))", and log (E [| g (GI")]]
above by =~ nlog(fmax0) + nlog(log(P)). Normalizing by
5 log(P) and sending first n and then P to infinity sends this
term to 0. Thus, combining with (4) produces the sum-DoF

outer bound value 1, giving us the result of Theorem 1.

) is bounded

V. PROOF OF THEOREM 1

For ease of exposition, the proof is divided into several
key steps. The first step is the discretization of the channel to
capture the effect of noise, leading to a deterministic channel
model, whose DoF will be an outer bound to the DoF of the
canonical channel model, which in turn is an outer bound on
the DoF of the general channel model.

1) Deterministic Channel Model

The deterministic ~channel model has inputs
X1(t),Xz2(t) € Z and outputs Yi(t),Ya(t) € Z,
defined as
i(t) = Xi(t) ®)
Ya(t) [G(t)X1(8)] + X2(t) ©9)

and the set of inputs that satisfy the per-codeword power
constraints defined as

& = {(x[, xL) ez x zZl

X1(t), Xa(t) € {0,1,--- ,[VP]}, Vte[1: n]}

The assumptions on the unknown channel coefficients
sequence G are the same as before.
Lemma 1: The DoF of the canonical channel model are
bounded above by the DoF of the deterministic channel
model.
The proof of Lemma 1 follows along the lines of similar
proofs by Bresler and Tse in [14] and is provided in
Appendix A of [11] for the sake of completeness.

2) Difference of Entropies Representing Desired Signal
and Interference Dimensions
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Starting from Fano’s inequality, we proceed as follows.

nRy < I(Wy; V"W, GIM) + o(n) (10)
= HYMW,, M) + o(n) (11)
nRy < I(Wa; V3" |GI) + o(n) (12)
— (LG[”])_(["]J+X["]|G[”)
—H( “Wa, G") + o(n) (13)
< 5 log(P) — H(¥{"| W, G1)
+n o(log(P)) + o(n) (14)

n(Ry + Ry) < 5 log(P) +n o(log(P)) + o(n)

3)

+[H (V" W, G — B (Y |5, Gl
= Dy < 1+ limsuplimsup (15)

- P—oco n—oo
[H (Y| Wa, G — BT W, a1

5 log(P)

< 1+ limsuplimsup max
P—oo n—oo wa€[l:2nF2]

[H(VM W = ws, GI) — HY) Wy = wa, GI))]
log(P)

n
2

< 1+4Da (16)

see [11] for more details. What remains is to bound the
difference of entropy terms:

Da £ lim sup lim sup max
Pooo n—oo  B(XIM Xl
(xi xihext
HXMGM) — H((GMXM] + X6
5 log(P)

a7

Functional Dependence X" (X")

Next we show that one can assume that Xén] is a
function of X "l Given the sets of codeword vectors
{X ["]} {X } define £ as the mapping from X;" [n]
to X£ L ie, XM = £(XI"). In general, because
the mapping may be random, £ is a random variable.
Because conditioning cannot increase entropy,

(LG["]X[”]J+£( i)
H (16X + £ (X))

G

%

G ) (18)

> min H (LGWX{"] |+ £(XM

> Gl L =1L)
Le{L}

Let L, € £ be the mapping that minimizes the entropy
term. Then, choosing

XX = LX) (19)
we have
Da < Da 2 lim sup lim sup max

P—oo  n—oo P(X[ )X["](X["])
(X["] X" )EX["

1671

4)

5)

6)

H(XMey — m(G x|+ x[(x[) e
5 log(P)

(20)

because the choice of the mapping function does not
affect the positive entropy term, and it minimizes the
negative entropy term. Henceforth, because X, "l s a
function of X1[ ], we will refer to codewords only
through X;" "] values.

Definition of Aligned Image Sets

The aligned image set containing the codeword 71"l €
{X ["]} for channel realization G/ is defined as the set

of all codewords that cast the same image as 71! at user
2.

S, (G[n]) A {j[ln] c {Xr}} . LG[n]j[ln]J
+xE = |glpl | 4+ X ol

It is worthwhile to point out that the cardinality
1S, (GIM)] is a function of G, which is a simple
function, and therefore a measurable function [11].
Bounding Difference of Entropies, ﬁA, in Terms of
Size of Aligned Image Sets

H(XM Gy = H(XM, S (GG
= H(Sgm(GM)|GI) + H(X[M|S g (GIY), 1)
= (LG[”]X["]J + X30x |Gl

+H(X[”]|Sf (G, G[n]) 1)
< H(GMxM J+X["](X' el

+E [log(|S (G| )} 22)
< H(GMXP ]+ xPx)| e

+10g (E IS¢ (G ) @3)

where (22) follows because uniform distribution maxi-
mizes entropy, and (23) follows from Jensen’s inequality.
Rearranging terms, we note that

Dp < lim sup lim sup max
P—oo  n—oo P(X[")X" (X["])
(xi xrhextn

log (E [|S (G")])
gljg(P) @4)

Bounding the Probability of Image Alignment
Given two codewords 5:[1”] and D["], let us bound the
probablhty that their images align at user 2. Note that
for ml € S, (GI") we must have

[Ga) — LGt = ) - X )

= @M@y - o) e xP@E) - xbeh)
[n]

+A% ) (25)



Globecom 2014 - Communication Theory Symposium

where —1 < A(_q1y(t) < 1,Vt € [1 : n]. Thus, for all
t € [1: n] such that Z; (t) # 0(t), the value of G(¢) must
lie within an interval of length no more than W
Since the maximum value of the joint probability density
function of {G(zg such that Z; () 75 p(t),t €[1:n]}
is bounded by fi55 1 1@ (0#2() < fhrax> We can bound
the probability that the images of two codewords align
as follows.

( (n] c S (G[n])) < fl?lax H ﬁ

t:31 (t)#0(t) v
7) Bounding the Average Size of Aligned Image Sets

e [Jsw o]
= Y p(alTesm@) (26)

AIEGE)
= 1+ Y P(al e Sum(@) 7
zMe(xi™y
2 zpin]
1
< 9 o n T= /2y /|
< 1+ Q) > I [71(t) = 7 (t)]
j[17,,] E{Xin]} t:Zq (t) A0 (t)
j[171]7,517["]
) VP
S 2fmax H L+ Z A (28)
Pl Ar=1
< 2fmax n H (2 1og + 3) 29)

t=1
where (28) follows by recognizing that |Z,(¢) — U(¢)|
can only take integer values between 1 and [v/P], and
writing the sum of products as the product of sums.

8) Combining the Bounds to Complete the Proof
Combining (24) and (29) we have

Dp < lim sup lim sup
P—oo n—oo

log (1 4 (2fmax)" (2 log(vP) + 3) )
5 log(P)
=0 30)
Finally combining (30) with (16) and (20) we have the

desired outer bound, Ds. < 1 for the 2 user MISO BC
with non-degenerate channel uncertainty.

O

VI. DISCUSSION

Since CSIT is almost never available with infinite precision,
the collapse of DoF under finite precision channel uncertainty
is a sobering result that stands in stark contrast against the
tremendous DoF gains shown to be possible with perfect
channel knowledge [12], [17]. However, as evident from the
conjecture of Lapidoth, Shamai and Wigger, the pessimistic
outcome is not unexpected. In terms of practical implications,

just like the extremely positive DoF results, the extremely
negative DoF results should be taken with a grain of salt.
The collapse of DoF under finite precision CSIT is very much
due to the asymptotic nature of the DoF metric, and may not
be directly representative of finite SNR scenarios which are
of primary concern in practice. From a technical perspective,
the new outer bound technique offers hope for new insights
through the studies of more general forms of CSIT.
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