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Abstract—By introducing a novel outer bound, we find a
sufficient condition for optimality of

∑K
k=1 Mk/2 degrees of

freedom (half the cake per user) for a K-user multiple-input-
multiple-output (MIMO) interference channel (IC) where the
cross-channels have arbitrary rank constraints, and the kth trans-
mitter and receiver are equipped with Mk antennas each. The
result consolidates and significantly generalizes results from prior
studies by Krishnamurthy et al., of rank-deficient interference
channels where all users have M antennas; and by Tang et al.,
of full rank interference channels where the kth user pair has
Mk antennas.

I. INTRODUCTION

Degrees of freedom (DoF) studies of wireless interference
networks have produced a diverse array of new insights into
the accessibility of signal dimensions under a variety of
channel models. In order to consolidate these insights and to
build upon them, it is important to make progress on unifying
the underlying channel models. The motivation for this work,
summarized in Fig. 1, is to pursue such a generalization of the
results from [1], [2], [3]. Specifically, in this work our goal
is to consolidate the key insights regarding the optimality of
half-the-cake (the “cake” refers to each user’s interference-
free DoF, cf. [1]) for the K-user MIMO interference channel
settings where the number of antennas at each receiver is equal
to the number of antennas at the corresponding transmitter, i.e.,
all the desired channels are square matrices.1
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Fig. 1: The motivation of this paper.

A. Everyone gets half the cake
It was shown by Cadambe and Jafar in [1] that in a K-

user M ×M MIMO interference channel where each node is
1Rectangular channels present a significantly different set of challenges,

and generally allow more than half-the-cake per user, so they remain outside
the scope of this paper.

equipped with M antennas, the optimal DoF value is KM/2.
Since each user achieves half of his interference-free DoF, the
result is often paraphrased as “everyone gets half the cake”.
Generalizations of this result have been explored in various
directions, in particular to find out when the optimal solution
may allow even more than half-the-cake. Indeed rectangular
interference channels (cf. [4], [5], [6], [7], [8]), and multi-
hop settings (cf. [9]) have shown that more than half-the-cake
is possible. Of particular interest to us in this work are the
generalizations in [2], [3].

B. Optimality of half-the-cake: Key insight from [2], [3]

The generalization in [2] concerns rank deficient channels.
Rank deficient interference channels (cf. [10], [11], [12])
are frequently encountered due to poor scattering, keyhole
effects, as well as underlying topological and structural con-
cerns in single-hop abstractions of multihop networks with
linear forwarding at intermediate nodes. Cross-channel rank-
deficiencies have the potential to be helpful as the scope of
zero forcing schemes is enhanced (although the scope of in-
terference alignment schemes is limited by rank-deficiencies),
opening the possibility that more than half-the-cake may be
achievable. Exploring this possibility in [2], Krishnamurthy
and Jafar establish that for the K-user M × M MIMO
interference channel where all the cross channels are rank-
deficient with the same rank D ≤M and direct channels are
full rank, KM/2 DoF (half-the-cake) are optimal if the sum
of all interference ranks at each user, is greater than or equal
to the number of antennas at the user, (K − 1)D ≥ M . In
other words, every signal dimension is accessible by at least
one interfering user. For K = 3 users, [2] considers a bit more
general setting, so that at each receiver the interfering channel
from the preceding transmitter is of rank D1 and the interfering
channel from the next transmitter (with wrap around) is D2.
For K = 2 users the setting is fully general with all interfering
channel ranks allowed to take arbitrary values. Remarkably, in
all cases, the key insight remains the same:

Original Insight: “Half-the-cake is optimal if at every
transmitter and receiver, the sum of interfering channel ranks
is greater than or equal to the number of antennas at that
transmitter and receiver, respectively.”

Finally, Liu, Tuninetti and Jafar in [3] consider a different
generalization, to the K-user Mk ×Mk MIMO interference



channel with full rank generic channels, where the kth user
has Mk transmit and Mk receive antennas. For this setting
[3] showed that half-the-cake is optimal provided there is no
dominant user (a user with more antennas than all the rest
of the users combined). Interestingly, this condition is also
identical to the insight from [2] — once again, half-the-cake
is optimal if the sum of interfering channel ranks is greater
than or equal to the number of antennas at each user.

C. Overview of the contribution of this work

In order to further refine the key insight from [2], [3] and
to identify its limitations, it is important to continue to test its
validity under generalized settings. To this end, in this work we
unify the channel models of [2] and [3] into the rank-deficient
K-user Mk ×Mk MIMO interference channel, and study the
optimality of half-the-cake under arbitrary (no assumptions of
symmetry) rank constraints on the cross-channels.

Surprisingly, we discover that the original insight fails in
this generalized setting. Indeed, as a counterexample consider
the 3-user MIMO interference channel with M1 = 10,M2 =
8,M3 = 6, where the channel from Transmitter 1 to Receiver
2 has rank 5 and the channel from Transmitter 2 to Receiver
1 has rank 6. All other channels have full rank. Even though
in this channel, the sum of interfering channel ranks at every
user is greater than or equal to the number of antennas at that
user, it is possible to achieve more than half-the-cake (half-
the-cake is 12, but 12.5 DoF are achievable, as explained in
Section VIII). Therefore, a new outer bound is necessary for
the K-user Mk ×Mk MIMO interference channel.

Define MΣ = Σk∈IKMk. A key contribution of this work is
a novel outer bound argument that shows that the DoF cannot
exceed half-the-cake if the overall MΣ×MΣ channel matrix H̄
where all desired channels have been set to zero, has full rank.
In light of our outer bound, the counterexample mentioned
above implies that the 24× 24 matrix

H̄ =


10 8 6

10 0 H12 H13

8 H21 0 H23

6 H31 H32 0

, with ranks


10 8 6

10 0 6 6
8 5 0 6
6 6 6 0


cannot have full rank for any possible realization. Indeed, this
is the case because the 24×18 sub-matrix formed by its first 18
columns is rank-deficient (sum of row ranks cannot be more
than 6 + 5 + 6 = 17).

The new outer bound leads us to a more precise understand-
ing of the original insight, so that we are able to refine it to
the following form for generic rank-deficient channels.

Refined Insight: “Half-the-cake is optimal if at every trans-
mitter and receiver, the sum of reduced interfering channel
ranks equals the number of antennas at that transmitter and
receiver, respectively.”

So according to the refined condition, we are allowed
to reduce the ranks of the cross-channels, but the reduced
interference channel ranks must then add up at each transmitter
and receiver to precisely equal the number of antennas at
that transmitter and receiver, respectively. The counterexample

presented earlier does not satisfy the refined condition. Indeed,
it is not possible to assign any (possibly reduced) rank values
that add up to the row and column index for every row and
every column.

On the other hand, consider a different H̄ with ranks


10 8 6

10 0 8 3
8 5 0 4
6 6 2 0

 which can be reduced to


10 8 6

10 0 8 2
8 4 0 4
6 6 0 0


so that the reduced ranks add up to the row and column
index for every row and column. Therefore, any realization of
H̄ channels with these (unreduced or reduced) ranks cannot
achieve more than half-the-cake. Also, as we show, for generic
channels half-the-cake is always achievable, so it is optimal.

As a “sufficient” condition for optimality of half-the-cake,
the additional requirements in the refined condition may
appear to weaken its impact. This is not the case, however,
as we note that the refined condition still recovers all prior
results on the optimality of half-the-cake from [1], [2], [3] as
special cases of the K-user Mk ×Mk rank-deficient MIMO
channel model.

Notation: We denote the set {1, ...,K} by IK for a
positive integer K. For l ∈ IK , we have IK\l =
{1, ..., l − 1, l + 1, ...,K}. Indexing is interpreted in a circular
wrap-around manner, modulo the number of users, e.g., the
Kth user is same as the 0th user.

II. SYSTEM MODEL

We consider a K-user MIMO interference channel where
there are Mi antennas at the i-th transmitter and receiver. Each
transmitter sends one independent message to its correspond-
ing receiver. At time slot t ∈ Z+, the received signal vector
at receiver j is given by

Yj(t) =

K∑
i=1

Hji(t)Xi(t) + Zj(t) (1)

where Xi(t) ∈ CMi×1 is the signal vector sent from
transmitter i which satisfies an average power constraint
E(‖Xi(t)‖2)≤ρ, Hji(t) ∈ CMj×Mi is the channel matrix
from transmitter i to receiver j, Zj(t) ∈ CMj×1 is the i.i.d.
circularly symmetric complex additive white Gaussian noise
(AWGN) at receiver j, each entry of which is an i.i.d. Gaussian
random variable with zero-mean and unit-variance. We assume
that perfect global channel knowledge is available at all nodes.

The achievable rates, capacity region and DoF of this
network are defined in the standard sense (see [1]). We define
the sum-DoF value as dΣ = limρ→∞RΣ(ρ)/ log(ρ), where
RΣ(ρ) is the maximum sum rate at Signal-to-noise ratio, ρ.

Without loss of generality, let M1 ≥ M2 ≥ · · · ≥ MK

throughout this paper. Unless stated otherwise, by default it is
assumed that channel coefficients are generic subject to rank
constraints and are ergodically fading. The desired channel
matrices Hii(t) are assumed to be full rank2 while the cross

2Similar to [2], the extension to rank-deficient desired channels is straight-
forward.



channels Hij are subject to rank constraint Dij . A rank-
constrained generic Mi × Mj channel matrix of rank Dij

is representable as a product of a Mi × Dij matrix with
a Dij × Mj matrix, all of whose entries are drawn from
continuous distribution.

III. RESULTS

The goal of this section is to state the main results of this
work. The proofs are presented in subsequent sections.

For the main inner bound, although a more sophisticated
proof that does not require ergodicity may be possible as
shown in [2], we will use the much simpler ergodic inter-
ference alignment [13] argument, also used as an alternative
proof in [2] to show that half-the-cake is achievable.

Theorem 1: For generic ergodic fading rank-deficient chan-
nels, regardless of interference rank-constraints

DoF ≥MΣ/2

Since achievability of half-the-cake is settled, the main
question of interest is, when is half-the-cake optimal? To
answer this we introduce a new outer bound argument that is
actually surprisingly simple and yet quite broadly applicable.
For our present purpose, the bound is presented below.

Theorem 2: For arbitrary channel realizations, if

rank(H̄) = MΣ then DoF ≤MΣ/2.

Note that the bound applies to any given channel realization.
The next result translates the rank-condition on H̄ to rank-

conditions on individual interfering channels.
Lemma 1: For generic channel realizations, rank(H̄) = MΣ

if and only if there exist reduced ranks D̄ij ≤ Dij which satisfy
the following condition,∑

j∈IK\i

D̄ji =
∑

j∈IK\i

D̄ij = Mi,∀i ∈ IK . (2)

Combined with Theorem 2, Lemma 1 directly proves the
following theorem.

Theorem 3: For a K-user generic rank-deficient MIMO in-
terference channel, if there exist reduced ranks D̄ij ≤ Dij for
each interference link, which satisfy the following condition,∑

j∈IK\i

D̄ji =
∑

j∈IK\i

D̄ij = Mi,∀i ∈ IK . (3)

then almost surely DoF =
∑K
k=1

Mk

2 .
For K = 3 users it may be useful to state the condition

more explicitly as follows. The 3-user generic rank-deficient
MIMO interference channel has DoF= MΣ/2, if

min {M1 +D32,M2 +D13,M3 +D21}+

min {M3 +D12,M1 +D23,M2 +D31} ≤M1 +M2 +M3.
(4)

IV. RECOVERING PRIOR RESULTS AS SPECIAL CASES

In this section, we will show that, the prior half-the-cake
DoF results in [2], [3] can be recovered as special cases of
Theorem 1.

1) Full rank case: In [3], half-the-cake DoF is shown to
be optimal in K-user Mk ×Mk MIMO interference channel
where there is no dominant user and all channels have full
rank. To prove that full rank K-user Mk × Mk MIMO
interference channels satisfy the condition in Theorem 1, it
is sufficient to show that for any M1 ≤ M2 + · · ·+MK , we
can always find a set of values for D̄ij ≤ min(Mi,Mj) that
satisfy the condition in Lemma 1.

To start, suppose ∀k ∈ IK , each transmitter k has Mk chips
and each receiver k has an empty bin that can hold Mk chips.
Transmitter 1 starts by dropping as many chips as possible into
receiver 2’s bin, and then if the bin is full and he still has chips
left over, he continues with receiver 3’s bin, and so on. After
Transmitter 1 is done, Transmitter 2 does the same, starting
with receiver 3’s bin. Transmitter 2 is followed by Transmitters
3, 4, · · · ,K, in that order. At the end, the number of chips in
receiver bin i from transmitter j is chosen to be the rank D̄ij .
Since there is no dominant user, the total capacity of all bins is
the same as the total number of chips, and users are arranged
as M1 ≥M2 ≥ · · · ≥MK , it is easy to see that this allocation
works.

2) Symmetric case: In [2], it is shown that for a K-user
rank deficient MIMO interference channel with M antennas
at each node, if all the direct channels have full rank, and all
cross channels have rank D, then half-the-cake DoF is optimal
when (K − 1)D ≥M . We now show that this result is also a
special case of Theorem 1.

Note that if M
K−1 is an integer, then we just need to reduce

D to the value M
K−1 . When M

K−1 is not an integer, we can

write M =
⌊

M
K−1

⌋
(K − 1) + ∆ for some positive integer

∆ < K−1. Now, assign reduced interference ranks as follows.

D̄ij =
⌊

M
K−1

⌋
+ 1 ≤ D, if i ∈ {j + 1, j + 2, · · · , j + ∆},

D̄ij =
⌊

M
K−1

⌋
≤ D, otherwise.

With these reduced ranks, the condition in Lemma 1 is always
satisfied. Thus, Theorem 3 applies and half-the-cake is DoF
optimal.

V. PROOF OF THEOREM 1

Each transmission takes 2 channel uses t1 and t2, where
all channel matrices of interference links remain the same
Hij(t1) = Hij(t2), i 6= j, and all channel matrices of direct
links change Hii(t1) 6= Hii(t2) in a generic sense, i.e., their
difference is also full rank. Thus by letting each transmitter
repeat its symbols over the 2 channel uses, each receiver can
eliminate interference by subtracting the output at t2 from the
output at t1, and obtain an Mk×Mk interference free channel,
over which Mk DoF are obtained. Since, this requires two
channel uses, effectively Mk

2 DoF per user are achieved.

VI. PROOF OF THEOREM 2

Given the K-user interference channel, we use Ĥij , ∀i, j ∈
IK , to denote each channel matrix. Now create a 2K-user
interference channel by adding an auxiliary user k′ for each



original user k, and choosing the new channels so that
∀i, j, i′, j′ ∈ IK , 1) Hi′j = Hij′ = Ĥij whenever i 6= j,
2) Hi′i′ = Hii = Ĥii, 3) Hi′j′ = Hij is the matrix of
zeros whenever i 6= j, and 4) Hi′i = Hii′ is the matrix of
zeros. Any coding scheme for the original channel still works
if each auxiliary user i′ uses the same codebook as user i.
Since users i and i′ in the new network achieve the same rates
as user i in the original network, the DoF value for the new
network is at least twice that of the original network. Now in
the new network, allow all original transmitters to cooperate,
all original receivers to cooperate, all auxiliary transmitters to
cooperate and all auxiliary receivers to cooperate, which can
only help. This creates a 2-user interference channel where
everyone has MΣ antennas, and where the interference matrix
is H̄. If this interference matrix is full rank, then each user,
after decoding its desired signal, can subtract it out and then
proceed to decode the interfering signal as well (subject to
noise distortion, inconsequential for DoF). Thus, the sum-
DoF of the interference channel cannot be more than MΣ,
and therefore the DoF of the original network cannot be more
than 1

2MΣ.

VII. PROOF OF LEMMA 1

In this section, we prove Lemma 1 by first showing that
condition (2) is sufficient for H̄ to have full rank, and then
showing that this condition is also necessary.

A. Sufficiency

To prove that H̄ is full-rank almost surely for generic rank-
deficient channels with given ranks, it suffices to show that its
determinant polynomial is not identically zero. To show this, it
suffices to find one realization of H̄ for which the determinant
is not zero. Such a realization is constructed as follows. At
Receiver i, starting from the first antenna, label the first set of
D̄i,i+1 antennas as SR(i, i+ 1), the next D̄i,i+2 as SR(i, i+
2), and so on, until the final set of D̄i,i+K−1 antennas is
labeled as SR(i, i+K−1). Similarly, at Transmitter j, starting
from the first antenna, label the first set of D̄j+1,j antennas as
ST (j+1, j), the next set of D̄j+2,j antennas as the set ST (j+
2, j), and so on until the last set of D̄j+K−1,j antennas is
labeled as ST (j+K−1, j). Now connect transmit antennas in
ST (i, j) with the receive antennas in SR(i, j) through identity
matrices. With this channel realization, each transmit antenna
is connected to exactly one undesired receive antenna, so that
H̄ has exactly one 1 in each row and each column, and is
therefore full rank. Increasing any of the ranks only introduces
additional variables into the polynomial which can be set to
zero to return to the same realization described above, thus
proving that the polynomial is not identically zero.

B. Necessity

If the following partitioned matrix H̄ has full rank,

H̄ =


M1 M2 · · · MK−1 MK

M1 0 H12 · · · H1(K−1) H1K

M2 H21 0 · · · H2(K−1) H2K

.

.

.

...
...

. . .
...

...
MK HK1 HK2 · · · HK(K−1) 0

 (5)

then the first observation is that each column of sub-matrix
and each row of sub-matrix must have full rank, i.e., the rank
of each sub-matrix must satisfy the following conditions.∑

j∈IK\i

Dji ≥Mi,
∑

j∈IK\i

Dij ≥Mi, ∀i ∈ IK . (6)

With the help of this observation, the necessity of condition
(2) can be proved as follows. Any sub-matrix Hij of rank Dji

can be represented as a sum of Dji matrices, each of which
has rank 1, i.e.,

Hij = a
[1]
ij v

[1]
ij u

[1]
ij + a

[2]
ij v

[2]
ij u

[2]
ij + · · ·+ a

[Dji]
ij v

[Dji]
ij u

[Dji]
ij

(7)

where v
[k]
ij and u

[k]
ij are Mi × 1 and 1 × Mj unit vectors,

respectively. Now let us consider the a[k]
ij as variables while

v
[k]
ij and u

[k]
ij are treated as constants. After all the Hij are

represented in the form as (7), we use A to denote the set of
all the a[k]

ij in H̄. Then we go through the following steps.
1) Step 1: Choose any one of the variables a[k]

ij from A.
We set this variable a

[k]
ij to zero, then we have reduced the

rank of corresponding sub-matrix Hij by 1.
2) Step 2: We check the determinant polynomial of H̄ with

the rank-reduced sub-matrix Hij . If det(H̄) is not the zero
polynomial, then H̄ is full rank almost surely, fix a

[k]
ij = 0.

And if det(H̄) is the zero polynomial, leave a[k]
ij as a generic

variable. Remove this a[k]
ij from the set A.

3) Step 3: If the set A is not an empty set, go back to
step 1. And if A is empty, i.e., all a[k]

ij have been tested, we
now have a situation that the remaining a[k]

ij must all be non-
zero for H̄ to have full rank MΣ. At this stage, the number of
remaining a[k]

ij variables for each sub-matrix define the reduced
rank value D̄ij for that matrix.

Now, based on the following two facts, it can be claimed
that the number of remaining a

[k]
ij variables cannot be more

than MΣ.
Fact 1: “Since setting any a[k]

ij to zero will make det(H̄)
the zero polynomial, then it must be true that every remaining
a

[k]
ij variable appears in every term of the polynomial.”
Fact 2: “Since each term in H̄ is linear in each a

[k]
ij

variable, each term of the determinant polynomial cannot
involve more than MΣ of a[k]

ij variables.”
Fact 1 says that every remaining a

[k]
ij must be present in

every term of det(H̄). Fact 2 says that there cannot be more
than MΣ remaining a[k]

ij that are presented in any given term
of det(H̄). Thus the two facts imply that the number of
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Fig. 2: Example for achieving more than half-the-cake DoF.

remaining a[k]
ij cannot be more than MΣ. i.e.,

∑
(D̄ij) = MΣ.

Since all the D̄ij must also satisfy condition (6) in order for H̄
to have full rank, all the inequalities in (6) must take equality.
In other words, for any full rank matrix H̄, there always exist
reduced ranks D̄ij ≤ Dij which satisfy the condition (2). This
completes the proof.

VIII. COUNTEREXAMPLE TO ORIGINAL INSIGHT

Here we briefly summarize how more than half-the-cake
DoF can be achieved in the 3-user setting shown in Fig. 2
where D12 = 6, D21 = 5 and all other links have full rank.

The transmission takes place over 2 channel uses, where all
cross channels remain the same, and all direct channels change
to different generic values. We use Vz

1 and Vz
2 to denote the

beamforming vectors at transmitters 1 and 2 that need to be
aligned at receiver 3 after being chosen from the null space
they see at each other. The symbols carried by Vz

1 and Vz
2

are different over two channel uses. Mathematically, we have

H21V
z
1 = 0,

H12V
z
2 = 0,

H31V
z
1 = H32V

z
2.
⇒

H21 0
0 H12

H31 −H32


24×18︸ ︷︷ ︸

A

[
Vz

1

Vz
2

]
︸ ︷︷ ︸

v

= 0.

Note that matrix A has rank 17, thus v can be chosen from
the right null space of A. In the same manner, we choose the
receive combining vectors Uz

1 and Uz
2 at receivers 1 and 2

satisfying the following equations

Uz
1H12 = 0, Uz

2H21 = 0, Uz
1H13 = Uz

2H23.

Next, we use Ve
k and Ue

k to denote the Mk × (Mk − 1)
and (Mk− 1)×Mk matrices at each transmitter and receiver,
respectively. These matrices carry the signals for ergodic
alignment (green area in Fig. 2), i.e. signals repeated over
the two channel uses. User 3 needs to choose its beamform-
ing/combining matrices to satisfy Ve

3 = span(null(Uz
2H23))

and Ue
3 = span(null(H32V

z
2)). And as s a result, each

receiver can eliminate interference by only subtracting the part
of received signals correspond to Ue

k of two time slots. Thus,
a total of 25 DoF is achieved over the two channel uses, or
equivalently, 12.5 DoF per channel use (half-the-cake is 12
DoF per channel use).

IX. CONCLUSION

We considered a K-user MIMO interference channel with
rank-deficient cross-channels, where there are Mi antennas at
i-th user pair, and all direct links have full rank. A novel outer
bound argument was proposed and it was shown that the DoF
cannot exceed half-the-cake if the overall MΣ ×MΣ channel
matrix H̄ where all desired channels have been set to zero, has
full rank. While it is easy to see that the new bounds presented
here are not necessary for optimality of half-the-cake, for
K = 3 we conjecture that combining them with existing
bounds based on cooperation and 2-user settings produces a
necessary and sufficient set of conditions. In particular, for
K = 3, Dij = Dji and generic channels, the condition
presented here is necessary and sufficient for optimality of
half-the-cake (almost surely). In the full paper, currently under
preparation, we are able to show that the novel outer bound
that we introduce here has broad applications, e.g., to DoF of
K-user M ×N MIMO settings as well.
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