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Abstract—The benefits of partial and full transmitter cooper-
ation are evaluated for a two user interference channel under
finite precision channel state information at the transmitters
(CSIT), using the generalized degrees of freedom (GDoF) metric.
Under finite precision CSIT, the benefits of interference alignment
are completely lost, so that the X channel obtained by partial
transmitter cooperation does no better than the underlying inter-
ference channels. Full transmitter cooperation produces a vector
broadcast channel (BC) which has a strict GDoF advantage
over partial cooperation (X channel) and whose GDoF are fully
achieved by interference enhancement.

I. INTRODUCTION

Cooperation is widely regarded as the panacea for counter-
ing interference in wireless networks. The benefits of coop-
eration are known to be quite powerful under ideal channel
knowledge assumptions, but are not as well understood in the
presence of channel uncertainty. This is especially critical for
transmitter side cooperation, because the quality of channel
state information at the transmitters (CSIT) is typically much
more limited in practice. It is therefore of great interest to
understand the fundamental limits of transmitter cooperation
under finite precision CSIT.

In spite of much research activity aimed at limited CSIT
settings (summarized in Section III-B), a fundamental under-
standing of the finite precision CSIT setting has remained
rather elusive. This is the case even from the very coarse,
degrees of freedom (DoF) perspective. As a representative
example, the 2005 conjecture of Lapidoth, Shamai and Wigger
(in short, the LSW conjecture) which predicts a collapse of the
degrees of freedom of a vector broadcast channel under finite
precision CSIT [1], remained open for nearly a decade, and
was finally settled (in the affirmative) only in 2014 [2].

In the settling of the LSW conjecture, there is cause for both
hope and despair. On the one hand, it takes away some of the
optimism behind transmitter cooperation, because it shows that
the benefits of transmitter cooperation are entirely lost from
a DoF perspective under finite precision CSIT. On the other
hand, it does so by introducing a new tool for finite precision
CSIT settings — a novel combinatorial argument limiting the
size of aligned image sets, i.e., the sets of codewords that
are distinguishable at one receiver but not at another receiver
— under all possible (including non-linear) coding schemes.
The new tool, if it can be generalized, offers hope of further
refining our understanding of the finite precision CSIT setting,
beyond the coarse DoF perspective. Specifically, it points the

way to the next logical step, a generalized degrees of freedom
(GDoF) characterization, which is goal of this paper.

A. Generalized Degrees of Freedom (GDoF)

Much of the recent progress on the capacity of wireless net-
works has come about from a progressive refinement approach
that pursues the path:

DoF → GDoF → O(1) gap → constant gap → capacity

The coarse DoF metric serves as the starting point, but suffers
from severe limitations, e.g., it essentially treats all non-zero
channels as equally strong (capable of carrying one DoF
each) in the high SNR limit. Distinctions in the strength of
various signals, which are extremely important in practice, are
essentially ignored in the DoF perspective. The GDoF perspec-
tive refines the picture by adopting a model that maintains
the ratio of signal strengths in the dB scale (essentially the
ratio of channel capacities) constant as the high SNR limit
is approached. It is therefore able to explore weak and strong
interference regimes, which are hidden in the DoF perspective,
and offer insights into optimal schemes for those regimes.
GDoF characterizations tend to be stepping stones to capacity
characterizations within an O(1) gap, i.e., a gap that does not
depend on SNR, but may depend on the channel realizations.
The next progressive refinement goal tends to be a capacity
characterization within a constant gap, i.e., a gap that does not
depend on SNR or channel realizations. Not surprisingly, the
ultimate refinement goal is the capacity itself.

Following this approach, since the DoF of the finite preci-
sion CSIT setting with transmitter cooperation are now settled,
the logical next goal is to pursue a GDoF characterization.

II. SYSTEM MODEL

A. Interference Channel: IC(W11,W22)

As the underlying channel model, consider the 2 user
interference channel defined by the input-output equations:

Y1(t) =
√
Pα11G11(t)X1(t) +

√
Pα12G12(t)X2(t) + Z1(t) (1)

Y2(t) =
√
Pα21G21(t)X1(t) +

√
Pα22G22(t)X2(t) + Z2(t) (2)

Here, over the tth channel use, Xk(t) is the symbol sent from
transmitter k, normalized so that it is subject to unit power
constraint. Yk(t) is the symbol observed at receiver k. Zk(t) ∼
N (0, 1) is the zero mean unit variance additive white Gaussian



noise. Gij(t) is the channel coefficient from transmitter j to
receiver i, whose value is assumed to be bounded away from
zero and infinity, i.e., there exist constants 0 < ∆1 < ∆2 <∞
such that |Gij(t)| ∈ [∆1,∆2], ∀i, j ∈ {1, 2},∀t ∈ N.

Remark: While we assume all symbols are real for simplicity
here, our results extend to complex channels as well. The
generalization is relegated to the full paper.

The 2 user interference channel has messages Wkk that
originate at transmitter k and are intended for receiver k,
k = 1, 2. Since codebooks, probability of error, achievable
rate tuples (R1, R2), and capacity region C, are all defined in
the standard Shannon theoretic sense, their definitions will not
be repeated here.

The channel model is parameterized by P . The GDoF region
is defined as

D = {(d1, d2) : ∃(R1(P ), R2(P )) ∈ C(P ) (3)

s. t. d1 = lim
P→∞

R1(P )

Co(P )
, d2 = lim

P→∞

R2(P )

Co(P )

}
where Co(P ) is the baseline reference capacity of an additive
white Gaussian noise channel Y = X + N with transmit
power P and unit variance noise. For real settings it is
1/2 log(P ) + o(log(P )) = log(P̄ ) + o(log(P )) where for
notational convenience we define

P̄ ,
√
P .

Remark: Note that unlike DoF, the scaling with P in the
GDoF framework does not correspond to a physical scaling
of powers in a given channel, because of the different power
scaling exponents αij . Rather, each P value defines a new
channel. Intuitively, this class of channels belong together
because, normalized by log(P ), they have (approximately) the
same capacity, so that a GDoF characterization simultane-
ously characterizes the capacity of all the channels in this
class within a gap of o(log(P )).

For the interference channel, quantities of interest for user
k include the signal (interference) to noise power ratio, SNRk
(INRk) defined here (in logarithmic scale) as follows.

log SNRk = αkk log(P̄ ) + 2 log(|Gkk|)
log INRk = αkk̄ log(P̄ ) + 2 log(|Gkk̄|)

where k̄ is defined to be 1 if k = 2, and 2 if k = 1. Note that

αkk = lim
P→∞

log SNRk
log(P̄ )

(4)

αkk̄ = lim
P→∞

log INRk
log(P̄ )

(5)

B. Partial Cooperation: X Channel

A partial cooperation scenario of interest is to allow each
transmitter to serve independent messages to both users. This
produces the X channel setting, with four independent mes-
sages: W11,W12,W21,W22, such that message Wij originates
at transmitter j and is intended for receiver i.

C. Full Cooperation: MISO BC

Allowing full cooperation between the two transmitters
produces the MISO BC (multiple input single output broadcast
channel) setting where the effective transmitter has two anten-
nas, and there are two independent messages W1,W2 intended
for receivers 1, 2, respectively, each of which is equipped with
one antenna.

III. BACKGROUND

A. Perfect CSIT

The perfect CSIT assumption implies that the channel
knowledge at the transmitters is infinitely precise, instan-
taneous, and globally available.1 In terms of DoF results
(αij = 1,∀i, j ∈ {1, 2}), with perfect CSIT, full cooperation
(BC) enables 2 DoF, partial cooperation (X channel) enables
4/3 DoF [3], whereas no cooperation (interference channel)
allows only 1 DoF. GDoF region characterizations are also
known under perfect CSIT. For ease of exposition in this
section, let us focus on sum-GDoF in the symmetric setting,
and compare the interference channel without cooperation,
with partial cooperation (X), and with full cooperation (BC).

symmetric setting: α11 = α22 = 1
α12 = α21 = α

(6)

If perfect CSIT is assumed to be available, then the sum-
GDoF of the 2 user interference channel are represented by
the so-called “W” curve [4], shown in Fig. 1 by the green
line segments. Starting from the left, the different segments
correspond to very weak, weak, moderately weak, strong, and
very strong interference scenarios.

The most interesting aspect of partial cooperation, i.e., the
X channel setting, is the possibility of interference alignment,
which does not arise in the 2 user interference channel. In the
symmetric setting (6) with perfect CSIT, the GDoF of the X
channel [5] are represented in Fig. 1 by the red line segments.
To identify the gains from interference alignment in the X
channel, as opposed to the GDoF of the underlying interfer-
ence channel, it is important to note that the X channel con-
tains another interference channel, with messages W12,W21,
whose sum-GDoF in the symmetric setting are shown in Fig.
1 in blue. From Fig. 1, it is evident that the X channel
has a GDoF advantage over the best of the two underlying
interference channels only in the regime 2

3 < α < 3
2 (shaded

in Fig. 1) [5]. This is the regime where the red plot strictly
dominates the best of blue and green plots — the regime where
interference alignment is useful. Outside this regime, in order
to achieve the optimal sum-GDoF, it suffices to operate the
X channel as the weak interference channel. Remarkably, the
GDoF characterization for the X channel has also been further
refined all the way to an exact capacity characterization in the
very weak (also known as “noisy”) interference regime [5].

With full cooperation, if perfect CSIT is available, then zero
forcing suffices to achieve the sum-GDoF of the resulting

1For all the discussion in this paper, please note that perfect channel
knowledge is always assumed at the receivers.



BC, which, in the symmetric setting, are easily seen to be
2 max(1, α), and are shown in Fig. 1 at the top of the figure.
Clearly, the benefits of full cooperation are quite significant
under perfect CSIT.

B. Limited CSIT

Given the difficulty of achieving near perfect channel
knowledge at the transmitters in practice, there has been much
work aimed at relaxing this assumption. It is known that under
no CSIT (isotropic fading) the DoF of the BC setting collapse
[6], so there is no DoF benefit of cooperation. If channels
are drawn from generic sets of finite cardinality, with the
specific realization unknown to the transmitter, then under this
limited CSIT model (also known as the compound setting),
the DoF of the BC setting collapse to those of the X channel
[7]. Remarkably, the X channel in the compound setting does
not lose any DoF relative to perfect CSIT. Thus, under the
compound channel uncertainty model full cooperation does not
allow any more DoF benefits beyond that of partial cooperation
as represented by the X channel. Other models of limited CSIT
include delayed CSIT [8] where full cooperation allows 4/3
DoF, while the optimal DoF of partial cooperation (X channel)
remain open. The DoF of mixed CSIT models where imperfect
current CSIT and perfect delayed CSIT are both available,
have been characterized for the full cooperation scenario (BC)
in [9]. The DoF of alternating CSIT models where CSIT can
vary across users between perfect, delayed and none, have
been explored in [10] which also identifies synergistic benefits.

C. Finite Precision CSIT

Under the finite precision CSIT model, the transmitters are
assumed to be aware of the αij values, i.e., the coarse channel
strength parameters, but not the precise Gij values. For the Gij
the transmiters are only aware of the joint probability density
function (PDF). Define the set of channel coefficient variables
G = {Gij(t) : t ∈ N, i, j ∈ {1, 2}}. Finite precision CSIT
corresponds to the existence of bounded density functions.
Precisely, the finite precision CSIT model assumes that there
exists a finite positive constant fmax,

0 < fmax <∞
such that for all finite cardinality disjoint subsets G1,G2 of
G,

G1 ⊂ G,G2 ⊂ G,G1 ∩G2 = φ, |G1| <∞, |G2| <∞
the conditional PDF

∀G1, G2, fG1|G2
(G1|G2) ≤ f |G1|

max .

Despite being investigated extensively over the past decade,
the DoF with transmitter cooperation remained an open prob-
lem under finite precision CSIT, until recently it was shown
that there is no DoF advantage of full or partial cooperation,
i.e., the BC (and therefore also the X channel) has only 1 DoF
under finite precision CSIT [2]. In fact, this was shown to be
true even if perfect CSIT for one of the two users, say user
1, was consistently available to the transmitter.

IV. RESULTS: GDOF UNDER FINITE PRECISION CSIT

In this section, we provide an overview of the results of this
work and place them in perspective with prior work.

A. Main Result

The main result of this work is a complete GDoF char-
acterization for full transmitter cooperation (BC) under finite
precision CSIT as stated in the following theorem.

Theorem 1: The GDoF region of the 2 user MISO broadcast
channel under finite precision CSIT is:

D =

(d1, d2) ∈ R+
2 :

d1 ≤ A,
d2 ≤ B,

d1 + d2 ≤ min(A+ C,B +D)

 (7)

where

A = max(α11, α12) (8)
B = max(α21, α22) (9)
C = max((α21 − α11)+, (α22 − α12)+) (10)
D = max((α11 − α21)+, (α12 − α22)+) (11)

Note that Theorem 1 provides a full GDoF region (as
opposed to only sum-GDoF) characterization, and for all
values of αij (as opposed to only symmetric setting).

B. Comparison: Perfect vs Finite Precision CSIT

For ease of comparison with other related GDoF charac-
terizations, we focus on the sum-GDoF under the symmetric
setting as illustrated in Fig. 1. For the MISO BC with finite
precision CSIT, the sum-GDoF value is max(2 − α, 2α − 1)
and is shown in black in the figure.
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Fig. 1. Sum-GDoF in the symmetric case α11 = α22 = 1, α12 = α21 = α.

Here we list the key observations.
1) [No cooperation (IC) – No loss]: It is not difficult to

show that the GDoF of the interference channel under
finite precision CSIT are the same as with perfect CSIT.
This is also true for the other interference channel with



messages W12,W21. Since the proof is quite straightfor-
ward (follows closely the case with perfect CSIT), we
relegate it to the full paper.

2) [Full Cooperation (BC) – Loss of min(1, α)]: As long
as α 6= 0, there is always a loss in the BC GDoF due
to finite precision CSIT compared to perfect CSIT, and
the loss is equal to min(1, α).

3) [Partial Cooperation (X) – Reduced to Trivial]:
Recall that the X channel had a strict advantage over
the underlying interference channels only in the regime
2/3 < α < 3/2 where interference alignment allowed
higher GDoF under perfect CSIT. Under finite precision
CSIT, the sum-GDoF of the X channel are bounded
above by that of the BC under finite precision CSIT
in the regime 2/3 < α < 3/2, and by the X channel
GDoF under perfect CSIT everywhere outside. However,
these bounds always correspond to one of the underlying
interference channels. Thus, there is no benefit of partial
cooperation relative to using the best of the underlying
interference channels under finite precision CSIT.

4) [Interference Alignment Benefits Disappear]: Consider
the regime where interference alignment was useful
under perfect CSIT and partial cooperation (X channel),
i.e., 2/3 < α < 3/2. Under finite precision CSIT,
the sum GDoF (even with full cooperation) in this
regime collapse to the best of the underlying interference
channels. In other words, the benefits of interference
alignment are entirely lost under finite precision CSIT.

5) [Interference Enhancement offers the only Robust
Advantage]: Remarkably, while the regime where in-
terference alignment was useful sees a collapse to
underlying interference channels, the opposite happens
everywhere interference alignment was not useful. Ev-
erywhere outside the regime 2/3 < α < 3/2, note that
the sum-GDoF of the BC under finite precision CSIT
strictly dominate the best of the interference channels.
Since in this regime there was no additional advantage
of partial cooperation even with perfect CSIT, the BC
with finite precision CSIT also dominates the X channel
(even with perfect CSIT!) in this regime. Indeed, as
we will see, the advantage is not due to interference
alignment, but rather due to interference enhancement2

[11], i.e., strengthening the interference so that it can be
decoded and subtracted by the undesired receiver. Thus,
remarkably, under finite precision CSIT, interference
enhancement emerges as the only scheme with a robust
GDoF advantage relative to the underlying interference
channels, and this advantage is accessible only through
full cooperation (not through partial cooperation).

V. PROOF OF THEOREM 1: OUTER BOUND

Outer bounds d1 ≤ A and d2 ≤ B are trivial bounds
for single user capacity. We will prove the remaining bound

2Interference enhancement is also sometimes referred to as “interference
forwarding” [11] when relays are involved. We prefer the terminology
interference enhancement for the broadcast channel without relays per se.

d1 + d2 ≤ min(A + C,B + D). Note that the outer bound
argument is a generalization of the combinatorial argument
introduced in [2]. To avoid repetition, and due to space
limitations, we will omit some of the detailed explanations
for similar steps in [2].
Step 1: Deterministic Channel Model. The deterministic
channel model has inputs X̄1(t), X̄2(t) ∈ Z and outputs
Ȳ1(t), Ȳ2(t) ∈ Z, defined as

Ȳ1(t) = bP̄α11−max(α11,α21)G11(t)X̄1(t)c
+bP̄α12−max(α12,α22)G12(t)X̄2(t)c (12)

Ȳ2(t) = bP̄α21−max(α11,α21)G21(t)X̄1(t)c
+bP̄α22−max(α12,α22)G22(t)X̄2(t)c (13)

such that

X̄1(t) ∈ {0, 1, · · · , dP̄max(α11,α21)e},∀t ∈ N (14)
X̄2(t) ∈ {0, 1, · · · , dP̄max(α12,α22)e},∀t ∈ N (15)

Recall that P̄ =
√
P .

Step 2: Fano’s Inequality.

n(R1 +R2) ≤ nmax(α21, α22) log(P̄ )

+
[
H(Ȳ

[n]
1 |W2, G

[n])−H(Ȳ
[n]
2 |W2, G

[n])
]

+n o log(P̄ )) + o(n) (16)

Step 3: Functional Dependence. As in [2], without loss of
generality

(X̄
[n]
1 , X̄

[n]
2 ) = f(Ȳ

[n]
1 ,W2, G

[n]
11 , G

[n]
12 ) (17)

⇒ Ȳ
[n]
2 = f(Ȳ

[n]
1 ,W2, G

[n]) (18)

where a = f(b) denotes that a is some function of b.
Step 3: Aligned Image Sets. For given W2 and channel
realization G[n], define S

Ȳ1
[n](G[n],W2) as the set of all

codewords (X̄
[n]
1 , X̄

[n]
2 ) that produce the same output, Ȳ2

[n],
at receiver 2, as is produced at receiver 2 by the codeword
that produces Ȳ [n]

1 at receiver 1.

H(Ȳ1
[n]
, S
Ȳ1

[n] |W2, G
[n]) (19)

= H(Ȳ1
[n]|W2, G

n) +H(S
Ȳ1

[n] |W2, G
[n], Ȳ1

[n]
) (20)

= H(Ȳ1
[n]|W2, G

n) (21)

= H(S
Ȳ1

[n] |W2, G
[n]) +H(Ȳ1

[n]|S
Ȳ1

[n] ,W2, G
[n])

= H(Ȳ2
[n]|W2, G

[n]) +H(Ȳ1
[n]|S

Ȳ1
[n] ,W2, G

[n])(22)

≤ H(Ȳ2
[n]|W2, G

[n]) + E[log |S
Ȳ1

[n] |] (23)

≤ H(Ȳ2
[n]|W2, G

[n]) + log
(

E[|S
Ȳ1

[n] |]
)

(24)

From (21) and (24) we have

H(Ȳ1
[n]|W2, G

n)−H(Ȳ2
[n]|W2, G

[n]) ≤ log
(

E[|S
Ȳ1

[n] |]
)

So it only remains to bound the average size of an aligned
image set E[|S

Ȳ1
[n] |].

E[|S
ȳ
[n]
1
|] =

∑
ȳ′n1∈{Ȳ1

[n]}

P
(
ȳ′
n
1 ∈ Sȳ[n]

1

)
(25)



Step 4. Probability that Images Align. Given G
[n]
11 , G

[n]
12 ,

consider two distinct realizations of user 1’s output sequence
Ȳ

[n]
1 , denoted as λ[n] and ν[n], which are produced by the

corresponding two realizations of the codeword (X
[n]
1 , X

[n]
2 )

denoted by (λ
[n]
1 , λ

[n]
2 ) and (ν

[n]
1 , ν

[n]
2 ), respectively.

λ(t) = bP̄α11−max(α11,α21)G11(t)λ1(t)c
+bP̄α12−max(α12,α22)G12(t)λ2(t)c (26)

ν(t) = bP̄α11−max(α11,α21)G11(t)ν1(t)c
+bP̄α12−max(α12,α22)G12(t)ν2(t)c (27)

We wish to bound the probability that the images of these two
codewords align at user 2, i.e., ν[n] ∈ Sλ[n] . For simplicity,
consider first the single channel use setting, n = 1. For ν ∈ Sλ
we must have

bP̄α21−max(α11,α21)G21ν1c+ bP̄α22−max(α12,α22)G22ν2c
= bP̄α21−max(α11,α21)G21λ1c+ bP̄α22−max(α12,α22)G22λ2c

So for fixed value of G22 the random variable
P̄α21−max(α11,α21)G21(ν1 − λ1) must take values within
an interval of length no more than 4. If ν1 6= λ1, then G21

must takes values in an interval of length no more than
4

P̄α21−max(α11,α21)|ν1−λ1|
, the probability of which is no more

than 4fmax

P̄α21−max(α11,α21)|ν1−λ1|
. Similarly, for fixed value of

G21 the random variable P̄α22−max(α12,α22)G22(ν2 − λ2)
must take values within an interval of length no more than
4. If ν1 = λ1 then, because ν 6= λ, we must have ν2 6= λ2,
then the probability of alignment is similarly bounded by

4fmax

P̄α22−max(α12,α22)|ν2−λ2|
.

Next we will bound the max of P̄α21−max(α11,α21)|ν1−λ1|
and P̄α22−max(α12,α22)|ν2 − λ2|. From (26) and (27) we have

|λ− ν| ≤ 2 + P̄α11−max(α11,α21)|G11||λ1 − ν1|
+P̄α12−max(α12,α22)|G12||λ2 − ν2| (28)

≤ 2 + 2∆2P̄
max(α11−α21,α12−α22,0)

×max(P̄α21−max(α11,α21)|ν1 − λ1|,
P̄α22−max(α12,α22)|ν2 − λ2|) (29)

So, if |λ− ν| > 2, the probability of ν ∈ Sλ is no more than

8∆2fmaxP̄
max(α11−α21,α12−α22,0)

|λ− ν| − 2
(30)

Now let us return to the case of general n, where we similarly
have,

P(λ[n] ∈ Sν[n]) ≤ (8∆2fmax)nP̄max(α11−α21,α12−α22,0)

×
∏

t:|λ(t)−ν(t)|>2

1

|λ(t)− ν(t)| − 2
(31)

Step 5. Bounding the Expected Size of Aligned Image Sets.

E(|Sν[n] |) =
∑

λn∈{Ȳ1
[n]}

P (λn ∈ Sν[n]) (32)

≤ (8∆2fmax)nP̄nmax(α11−α21,α12−α22,0)

n∏
t=1

 ∑
λ(t):|λ(t)−ν(t)|≤2

1

+
∑

λ(t):2<|λ(t)−ν(t)|≤Qy

1

|λ(t)− ν(t)| − 2


≤ (8∆2fmax)nP̄nmax(α11−α21,α12−α22,0)

×
(
max(α11, α12) log(P̄ ) + o(log(P̄ ))

)n
(33)

where Qy ≤ (2∆2 + 2)dP̄max(α11,α12)e. Substituting these
bounds back into (16) we have

n(R1 +R2) ≤ nmax(α21, α22) log(P̄ )

+
[
H(Ȳ

[n]
1 |W2, G

[n])−H(Ȳ
[n]
2 |W2, G

[n])
]

+n o log(P̄ )) + o(n) (34)

≤ nmax(α21, α22) log(P̄ ) + log E|Sν[n] |+ n o log(P̄ )) + o(n)

≤ n (max(α21, α22) + max(α11 − α21, α12 − α22, 0)) log(P̄ )

+ n o log(P̄ )) + o(n) (35)

So that we obtain the GDoF bound

d1 + d2 ≤ B +D (36)

By symmetry we also have the GDoF bound

d1 + d2 ≤ A+ C (37)

Together these two bounds give us d1 +d2 ≤ min(A+C,B+
D), completing the proof of the outer bounds for Theorem 1.

VI. PROOF OF THEOREM 1: ACHIEVABILITY

The key idea for achievability is interference enhancement
[11]. Before presenting the general proof, let us convey
the main insights through a simple example. Consider the
symmetric setting with α = 0.5, where we wish to achieve
the sum-GDoF value of d1 + d2 = 1.5 through the tuple
d1 = 1, d2 = 0.5. To do this, let us split user 1’s message
as W1 = (Wc,W1p) and user 2’s message as W2 = W2p,
where W1p acts as a private sub-message to be decoded
only by user 1, W2p acts as a private sub-message to be
decoded only by user 2, while Wc acts as a common sub-
message that can be decoded by both users. Each sub-message
carries 0.5 GDoF. Messages Wc,W1p,W2p are encoded into
independent Gaussian codebooks Xc, X1p, X2p, with powers
E|Xc|2 = 1−P−0.5, E|X1p|2 = P−0.5 and E|X2p|2 = P−0.5.
From the first transmit antenna, we send X1 = Xc + X1p

and from the second transmit antenna, X2 = Xc + X2p.
Suppressing the time index for clarity, the received signals
are:

Y1 = P̄G11(Xc +X1p) + P̄ 0.5G12(Xc +X2p) + Z1

Y2 = P̄ 0.5G21(Xc +X1p) + P̄G22(Xc +X2p) + Z2



Receiver 1 first decodes the codeword Xc for the message
Wc, treating everything else as noise. The SINR value for this
decoding is

|P̄G11 + P̄ 0.5G12|2(1− P−0.5)

1 + P (P−0.5)|G11|2 + P 0.5P−0.5|G12|2
(38)

≥ P ((∆1 − P̄−0.5∆2)+)2(1− P−0.5)

1 + P 0.5∆2
2 + ∆2

2

(39)

and the achievable rate (for real channels) is 0.5 log(1 +
SINR) = 0.25 log(P ) + o(log(P )) = 0.5 log(P̄ ) + o(log(P )),
which gives us the GDoF value dc = 0.5.

After decoding Wc, receiver 1 is able to reconstruct code-
word Xc and subtract its contribution from the received signal.
After this, receiver 1 decodes the codeword X1p for its desired
message W1, while treating the remaining signals as noise. The
rate that is supported for this message is:

=
1

2
log

(
P (P−0.5)|G11|2

1 + P 0.5(P−0.5)|G12|2
)

≥ 1

2
log

(
P 0.5∆2

1

1 + ∆2
2

)
=

1

4
log(P ) + o(log(P )) =

1

2
log(P̄ ) + o(log(P ))

which gives us the GDoF value d1 = 0.5. Receiver 2 proceeds
similarly, first decoding Xc for Wc while treating all other
signals as noise, which is feasible for dc = 0.5, and then
reconstructs and subtracts the contribution of Xc from its
received signal. It finally decodes X2p for W2 while treating
the remaining signals as noise, which is feasible for d2 = 0.5.
Thus, the GDoF achieved is (d1, d2) = (d1p + dc, d2) =
(0.5 + 0.5, 0.5) = (1, 0.5). Note the key role of interfer-
ence enhancement, in the encoding of Wc into Xc. This is
interference for receiver 2, and yet by also sending it from
the stronger antenna (antenna 2) for user 2, the power of the
interference at user 2 is enhanced enough so that it can be
decoded and subtracted by receiver 2, before proceeding to
decode its desired signal.

Now, for the general case of α11, α12, α21, α22 we present
the achievability scheme for the point d1 = A, d2 = min(A+
C,B+D)−A. Note that the other point d1 = min(A+C,B+
D) − B, d2 = B is derived similarly, and the whole region
is derived by time sharing. The four cases summarized below
cover all possibilities.

1) α12 ≤ α11 and α21 ≤ α22.
a) α11 ≤ α21. Here W1 = Wc,W2 = W2p. E|Xc|2 =

1−P−α11 and E|X2p|2 = P−α11 . X1 = Xc, X2 =
Xc +X2p. Achieves (d1 = α11, d2 = α22 − α11).

b) α21 ≤ α12 ≤ α22. Here W1 = (Wc,W1p), W2 =
(W2p). E|Xc|2 = 1 − P−α12 , E|X1p|2 = P−α12 ,
and E|X2p|2 = P−α12 . X1 = Xc+X1p and X2 =
Xc +X2p. Achieves (d1, d2) = (α11, α22 − α12).

c) α12 ≤ α21 ≤ α11. Here W1 = (Wc,W1p),W2 =
W2p. E|Xc|2 = 1 − P−α21 , E|X1p|2 = P−α21 ,
and E|X2p|2 = P−α21 . X1 = Xc + X1p, X2 =
Xc +X2p. Achieves (d1 = α11, d2 = α22 − α21).

d) α22 ≤ α12. Achieves (d1 = α11, d2 = 0) trivially.
2) (α11 ≤ α12 and α22 ≤ α21). This case is similar to

the case (α12 ≤ α11 and α21 ≤ α22) except the user
indices are switched.

3) (α11 ≤ α12 and α21 ≤ α22). In this case, DoF pair of
(d1 = α12, d2 = max(α12, α22) − α12) is achievable
as follows. If α22 ≤ α12 then (d1 = α12, d2 = 0) is
trivial. If α22 ≥ α12, it is similar to case α11 ≤ α21 of
(α12 ≤ α11 and α21 ≤ α22).

4) (α12 ≤ α11 and α22 ≤ α21). If α21 ≤ α11 then
(d1 = α11, d2 = 0) is trivial. If α21 ≥ α11, this case is
similar to the case (α11 ≤ α12 and α21 ≤ α22).

This completes the proof of achievability.

VII. CONCLUSION

The approach of [2] is developed further to fully charac-
terize the GDoF region of the two user interference channel
with partial (X channel) and full (BC) transmitter cooperation,
under finite precision CSIT. While the benefits of interference
alignment disappear, and along with it the non-trivial benefits
of partial cooperation, full cooperation shows a remarkable
benefit, which is shown to be due entirely to interference
enhancement. While interference alignment (under perfect
CSIT) was useful mainly when channels were of comparable
strength, interference enhancement becomes more powerful as
the disparity between channel strengths increases.
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