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Abstract- We obtain an eMJcient algorithm for computing the 
sum capacity of vector broadcast channel. This algorithm utilizes 
the duality between broadcast and multiple access channels and 
the Kuhn-Tucker conditions of sum power multiple access chan- 
nel. 

I. INTRODUCTION 

A vector broadcast channel is a one-to-many channel, where the 
channel between the central transmitter and the receiver i out of K 
receivers is given by matrix H;. Mathematically, such a channel is 
given by y; = H;x + na, where y; and n; are respectively the re- 
ceived signal vector and the additive Gaussian noise vector at receiver 
i, and 2 is the transmitted signal vector. 

Recently, an achievable region of this channel, known as the dirry 
paper region, was characterized [I], and the region was shown to 
achieve sum capacity by many research groups simultaneously (See 
joumal version of [ l]  and the references therein). The dirty paper 
characterization in [ l ]  is in terms of transmit covariance matrices 
{&*}E1, where Qi corresponds to user i. This characterization, 
however, tums out to be non-convex in {&a}. In this paper, our aim is 
to find an efficient algorithm to compute the optimal {Q;} such that 
the sum capacity of the broadcast channel can be computed. 

Simultaneously, a duality result was obtained in [2] showing that 
the capacity region of the vector multiple access channel (MAC) with 
sum power constraint on the transmitters is equal to the dirty pa- 
per achievable region. Moreover, an explicit transformation connects 
the optimal transmission scheme for the MAC with the {Q;} above. 
Thus, we obtain an efficient algorithm to solve the convex dual MAC 
problem given by 

I 

and then transform the solution using duality to obtain {Q;}. An 
algorithm to compute the optimal transmit policy for a MAC with 
per-user power constraints on the transmitters was obtained in [3]. 
However, this algorithm cannot be directly applied to the dual MAC 
due to the difference in the power constraint. 

11. THE ALGORITHM 

The iterative algorithm converges to a fixed point which satisfies 
the Kuhn-Tucker conditions of ( l ) ,  and hence obtains the solution. 
Let S,(l) denote the Z’th iteration of Sa. Then the algorithm can be 
summarized as follows: 

1. Initialize covariance matrices to zero: Si(0) = 0 V i. 

2. For iteration 2 : Generate efective channels Hi‘’’ = H j ( I  + 
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3. Treating these effective channels as parallel, non-interfering 
channels, obtain covariance matrices Mi by waterfilling with 
total power P. 

over the set A; 2 O,c:, Tr(A;) = P 
This maximization is equivalent to waterfilling the block diag- 
onal channel with diagonals equal to Hjeff. 

4. Compute the new S;(Z) = !2-i)si(1-1)+Mi(1) K for all a. 

5 .  Return to Step 2 until desired accuracy is reached. 

111. CONVERGENCE AND OPTIMALITY 
Here, we provide an outline for convergence and optimality. First, 

convergence is considered. Define function f as below: 

Then, the following can be shown. 

? 

(K - 1 ) S K  ( 2  - 1 )  + M K  ( I )  
K 

The inequality given by Equation (2) is due to the optimality of 
single-user waterfilling in step 3, and the inequality given by Equation 
(3) is due to the concavity of f ( . )  and Jensen’s inequality. Jensen’s 
inequality guarantees a strict increase of the function value when 
any of S,(l) is different from S,(l - 1). Therefore, the function 
value monotonically increases. However, the function value is up- 
per bounded, and we can conclude that the algorithm converges to a 
fixed point. Note that no loop can exist due to the strict inequality for 

Also, 5’; can be shown to converge to an optimal point. Due to the 
concavity of the problem, Kuhn-Tucker conditions are necessary and 
sufficient for optimality. The Kuhn-Tucker conditions can be derived 
in a similar way as in [3], and can be shown to be satisfied by the 
limit of {S i}  due to steps 2 and 3 of the algorithm. 
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