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Abstract— We develop an upperbound on the capacity region
of an isotropic fading vector broadcast channel in terms of the
capacity region of a scalar fading broadcast channel. Usingthis
upperbound we prove the optimality of the Alamouti scheme
[1] in a broadcast setting and extend the recent results [2] on
the capacity region of the fading scalar non-degraded broadcast
channel to fading vector non-degraded broadcast channels.The
upperbound is fundamental in that it makes no assumption
regarding the distribution of the users’ channel magnitudes, the
distribution of the additive noise, or the amount of channel
information available at the receiver. The scalar upperbound
explicitly characterizes the loss of degrees of freedom in avector
broadcast channel when the transmitter has no information about
the “direction” of the users’ channel vectors.

I. I NTRODUCTION

The capacity region of the fading vector broadcast channel
(BC) without channel state information at the transmitter
(CSIT) is unknown, except for the special case when all users
have identically distributed channels and identically distributed
additive noise. In this case all points in the capacity region
can be achieved by simply transmitting to only one user at a
time and using time-division multiplexing to support multiple
users. Thus the system throughput is as if there was only
one user in the system. Caire and Shamai’s observation [3]
that “channel degrees of freedom depend critically upon the
availability of channel knowledge at the transmitter” forms
the central idea for our work in this paper. In this paper we
consider the capacity region of a vector Gaussian BC with�

antennas at the transmitter and� users with a single
receive antenna at each user. We assume that the transmitter
does not have perfect channel state information. However,
the transmitter does have perfect knowledge of the ergodic
random process governing the successive realizations of the
channel fade. We allow memory in the fading process, but we
impose one constraint. We consider onlyisotropic distributions
in this paper. By isotropic we mean the following: For the
vector BC, since each users’ channel can be viewed as an�

-dimensional vector, it can be described by a “magnitude”
and a “direction”. Our assumption of isotropic fading means
that the transmitter has no knowledge of the “direction”
of any user’s channel vector. In other words, all directions
are equivalent from the transmitter’s standpoint. Under fairly
general assumptions we show that the capacity region of this
vector Gaussian BC is bounded above by the capacity region

of a scalar Gaussian BC. The scalar Gaussian BC has only
one transmit antenna and the channel gains from the single
transmit antenna to each users’ receive antenna are given by
the Frobenius norm of the original vector channel between the
multi-antenna transmitter and that user, scaled by a factorof��� . The actual upperbound is presented in Theorem 1. We
will refer to this upperbound as the “scalar upperbound”. The
scalar upperbound is a fundamental result and therefore applies
to many system models such as when no CSIR is available,
when the transmitter and receiver can only track the users’
channel magnitudes [4], with feedback, or when a peak power
constraint is assumed. We will start with a very general system
model. Additional assumptions for various system models will
be specified in later sections.

II. SYSTEM MODEL

We are interested in the class of channels that can be
described by the following system model.

A. Broadcast Channel Model BC-V

Consider a fading vector broadcast channel with
�

transmit
antennas at the base station and� users with a single receive
antenna at each user given by the input/output relationship

� ���� 	 
 ���� � �  � ����
... (1)� �� �� 	 
 �� �� � �  � �� ��

where for user� at time instant�, 
 ���� is the � � �
channel

vector,
� ���� is the received scalar signal and� ���� is additive

noise.�� is the
� � � complex vector symbol transmitted by

the base station at time instant�.
Let the average transmit power be� , so that

E �Tr��� � �� � � � (2)

Figure 1 shows the channel model forBC-V with two
users. The channel fade and noise processes are ergodic
and stationary. We allow the channel fade process to have
memory. Thus, successive realizations of the channel and/or
the noise may be correlated. For simplicity, the time index is
suppressed. The precise definition of isotropic fading channels
is as follows:
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Fig. 1. BC-V

Isotropic Fading: We consider the class of channels that can
be described as


 ��� 	 � ���� ���
(3)

where � ��� is a � � �
isotropically random complex unit

vector and

� ��� 	 ��
 ��� ��� (4)

the norm of the instantaneous channel vector is a non-negative
scalar random variableindependent of � ��� . It is important to
note that each users’ channel norm and noise may have a
completely different distribution.

Recall that an isotropically random vector is one whose
distribution is not affected by multiplication with a unitary
matrix. It is the mathematical way to capture the notion
that the vector is equally likely to point in any direction in
the

�
dimensional vector space. An example of a channel

that belongs to this class is the Rayleigh fading channel
with additive white Gaussian noise (AWGN) where each
users’ channel vector
 ��� consists of i.i.d. complex Gaussian
elements
 ��� � � �� � ��� � � � � 	 � �

. Isotropic fading is a
fairly general and realistic assumption, capturing all fading
models where the transmitter does not have enough infor-
mation to discriminate between various transmit directions.
The generality of this model is captured in the fact that it
applies to any distribution for the channel norm

� ���. Also,
it can be argued that over sufficiently long intervals any
wireless channel may be modeled as isotropically random in
the absence of any side information.

Since we do not assume any specific distribution for the
channel norm

� ��� or the additive noise� ���, theBC-V fading
vector broadcast channel model is not degraded (stochastically
or physically), more-capable or less-noisy in general.

We relate the capacity region of the class of vector
broadcast channels represented byBC-V to the capacity
region of the class ofscalar broadcast channels presented
next.
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Fig. 2. BC-S

B. Broadcast Channel Model BC-S

Associated with the broadcast channel BC-V, we define
another channel model, BC-S, with input/output relationship�� ��� 	 � ��� ��  � ���

(5)
...�� �� � 	 � �� � ��  � �� �

Notice that the input
��

is a scalar, and each users’ channel is
also a scalar equal to the norm of the corresponding original
vector channel. The new transmit power constraint is

E�� �� �� � � �� � (6)

Figure 2 shows the channel model forBC-S with two users.

III. T HE VECTORBC WITH NO CSIT AND PERFECTCSIR

The first system model we consider is where the transmitter
has no channel state information while the receiver has perfect
channel state information. The following theorem presentsthe
scalar upperbound in this context.

Theorem 1: [The Scalar Upperbound]: The capacity re-
gion of the vector fading broadcast channelBC-V with no
CSIT and perfect CSIR is contained within the capacity region
of thescalar fading broadcast channelBC-S with no CSIT and
perfect CSIR.
Thus the capacity region ofBC-S upperbounds the capacity

region of BC-V. Note that Theorem 1 does not assume that
the channels are degraded in any fashion. Also, the theorem
does not assume any specific distribution for the additive noise
or the channel magnitudes.

Proof of Theorem 1: We start with the following lemma:
Lemma 1: The capacity region of the broadcast channel

BC-V is unaffected by the assumption

� ��� 	 � ��� 	 � � � 	 � �� � 	 � (7)

where� is an isotropically distributed complex random vector.
Cover proved in [5] that the capacity region of a broadcast
channel depends only on the marginal distributions. Since
the assumption (7) does not affect the marginal distributions� �� ��� ���, � �� ��� ��� � � � � � � �� �� � ��� of the users’ channels,



the capacity region is unaffected by this assumption. Hence-
forth, in this section we assume that (7) is true, i.e. the users’
channel vectors are parallel.

We need the following definitions:
� �� � � � � � � (8)� � � ��� � � ��� �� (9)

Thus,
� ��

is a complex scalar random variable representing
the projection of the transmitted vector symbol� along the
direction of the instantaneous channel� .

� �
is anon-negative

real scalar random variable representing themagnitude of the
projection of the transmitted vector symbol� along the null
space of the channel. Note that the projections do not depend
on the particular user because the assumption (7) implies all
instantaneous channel realizations are parallel. The power in
the transmitted symbol� is related to

� ��
and

� �
as

Tr ��� �� 	 ��� ��� 	 �� �� ��  � ��
(10)

Lemma 2:

E� ��� �� ��	 	 �� Tr��� � � � (11)
In other words, regardless of the input distribution, the
average transmitted poweralong the channel is always a
fraction �
� of the overall transmit power. The proof is
quite straightforward. Since the transmitter has no channel
knowledge, the transmitted vector symbol� is independent
of the instantaneous channel direction� . Consider an

� ��
isotropically distributed random unitary matrix� independent
of � . Without loss of generality we can assume that successive
realizations of� are the successive realizations of the first
column of� . Each column of� is an isotropically distributed
random unit vector. Since each column is identically dis-
tributed the expected power in the transmitted signal projected
along each column is identical. However, together all columns
span the entire space of possible transmit signals. Thus the
total transmit power� is split equally among the directions
corresponding to each column of the random matrix� . This
proves the result of Lemma 2.

With the definitions (8) and (9), we can represent the
broadcast channelBC-V input/output relationship as

� ��� 	 � ���� ��  � ���
� ��� 	 � ���� ��  � ���

(12)
...� �� � 	 � �� �� ��  � �� �

Notice the similarity betweenBC-S and (12), and the implied
power constraint from Lemma 2 and (2)

E� � ��� �� ��	 	 �� � (13)

Note that forBC-V since the transmitter does not know� it
cannot choose

� ��
, i.e, the transmitter can only choose� and

the channel realization determines
� ��

. The transmitter does
not know the channel inBC-S either, but becauseBC-S is
a scalar broadcast channel there is no uncertainty about the

direction of the channel vector. Thus the difference between
BC-V and BC-S is that in BC-S we allow the transmitter
to code directly over

� ��
. Theorem 1 states that this can

only enhance the capacity region. In light of the observations
pointed out above, the result of Theorem 1 may already seem
intuitive at this point. A formal argument is presented next.

In order to prove Theorem 1 we will show that any vector
codebook designed forBC-V can also be used on the scalar
broadcast channelBC-S with the same resulting performance.
Thus, any rate vector achievable inBC-V is also achievable
in BC-S.

Let the users’ messages be denoted by the respective
indices � � and the users’ rates be denoted by� � so that
� � � � � �� �� where � is the length of the codeword
measured in number of channel uses. Consider any codebook� �� � �� � � � � � ��� � for the original fading vector broadcast
channelBC-V. The codebook maps each message tuple to
an

� � � codeword matrix� �� � �� � � � � � ��� � such that
the ��� column of the matrix represents the

�
-dimensional

complex vector symbol that is transmitted on the
�

base
station transmit antennas at time instant�. We denote the
��� column of the codeword matrix� �� � �� � � � � � ��� � as
�� �� � �� � � � � � ��� ����.

We wish to use the same codebook on the fadingscalar
broadcast channelBC-S where the base station has only
one transmit antenna. So we need to map the columns of� �� � �� � � � � � ��� � onto scalar inputs ofBC-S,

��
. This

is done as follows. We assume that along with the codebooks,
the transmitter and the receiver are provided with identical
copies of a pre-generated sample path of i.i.d. realizations of
isotropically distributed unit vector� before the beginning of
communication. So the transmitter and receiver use the same
sequence of i.i.d. isotropically distributed unit vectors� �. At
the ��� channel use, the transmitter ofBC-S uses this� � and
computes the projection of the corresponding transmit symbol
�� �� � �� � � � � � ��� ���� onto� � to obtain the scalar complex
transmit symbol

�� �. That is,�� � 	� �� �� � �� � � � � � ��� ���� � � � � � (14)

This is where we need Lemma 2, as it guarantees that the
power constraint forBC-S is satisfied.

E
�� �� � ��	 � �� � (15)

For the��� channel use onBC-S, plugging (14) into (5) gives
us the input/output relationship,

�� ���� 	 � ���� � � �� �� � �� � � � � � ��� ����  � ���
�� ���� 	 � ���� � � �� �� � �� � � � � � ��� ����  � ���

(16)
...�� �� �� 	 � �� �� � � �� �� � �� � � � � � ��� ����  � �� �

But this is identical to the input/output forBC-V when the
same codebook is used and when theactual channel for user
� at time � is 
 ���� 	 � ���� � �, and the channel is known to the



receiver. Since the codebook is designed for the same channel
distribution, it must perform at least as well onBC-S as it
does onBC-V. In other words, the probability of error for
this codebook is the same whether it is used onBC-V or BC-
S. Thus, any rate vector achievable onBC-V is also achievable
on BC-S. This completes the proof of Theorem 1.

Next, while staying with the assumption of no CSIT and
perfect CSIR, we present a few interesting cases where the
upperbound of Theorem 1 is achievable, i.e. the capacity
regions ofBC-V andBC-S are identical.

IV. OPTIMALITY OF ALAMOUTI SCHEME

In this section we consider a specific sub-class of fading
broadcast channels within the class represented byBC-V. In
particular, we impose the following additional assumptions on
the vector broadcast channelBC-V:

1)
� 	 �, i.e. the base station has two transmit antennas.

2) We assume that the additive noise is Gaussian and the
noise process is memoryless.

3) Coherence time� � �.
The following theorem presents our main result in this section:

Theorem 2: The capacity region of thevector fading
broadcast channelBC-V with no CSIT, perfect CSIR and
assumptions 1, 2, and 3 listed above isidentical to the capacity
region of thescalar fading broadcast channelBC-S with no
CSIT, perfect CSIR and assumptions 2 and 3. Also, in this
case, the Alamouti scheme can be used to achieve capacity on
the vector broadcast channel using scalar codes.
The full proof of Theorem 2 is provided in [4], where we
show that applying the Alamouti space-time coding scheme
[1] transforms the channel fromBC-V to BC-S .

Interestingly, we do not even need the assumption (7). So,
even if all users’ channels are independent, applying Alamouti
space time coding transforms the vector fadingBC-V into
the scalar fadingBC-S with half the transmit power. Thus,
clearly for this sub-class of fading broadcast channels, the
upperbound of Theorem 1 is tight, and the two capacity regions
are identical. This is true without any assumptions on the
distribution of the channel magnitudes, i.e. the channel may
be non-degraded in general.

V. TWO USER FADINGGAUSSIAN CHANNEL

Our main aim in this section is to extend the recent scalar
Gaussian BC results of Shamai et. al. [2] to vector Gaussian
BC. Starting with the system modelsBC-V and BC-S we
make the following additional assumptions:

1) � 	 �, i.e., there are two users.
2) We assume AWGN.

Let � ��� �� � and � ��� �� � denote the single user capacities of
users 1 and 2 respectively, when the total transmit power is� .
So the single user capacities forBC-V are� ��� �� � and� ��� �� �
respectively. Define the following two conditions:
Condition 1: � �� � 	 � ��� ��� � � � ��� ��� � is a non-negative
function for all � � �� � ��.
Condition 2: � �� � � � ��� for all � � �� � ��.

For the scalar fading BC under these conditions, the capacity is
known [2]. Note that these conditions do not make the fading
broadcast channel degraded. The following theorem states our
main result in this section:

Theorem 3: Whenever condition 1 or condition 2 is satis-
fied, the capacity region of thevector fading broadcast channel
BC-V with two users, additive white Gaussian noise, no CSIT
and perfect CSIR isidentical to the capacity region of the
scalar fading broadcast channelBC-S with two users, AWGN,
no CSIT and perfect CSIR.
We prove Theorem 3 in [4] by showing that with Gaussian
codebooks the vector broadcast channelBC-V achieves the
entire capacity region of the corresponding scalar broadcast
channel BC-S. Since the latter is an upperbound on the
capacity region ofBC-V, the scalar upperbound is shown to
be tight and the two capacity regions are identical.

VI. T HE VECTORBC WITH NO CSIT AND NO CSIR

In this section we consider the vector fading broadcast
model BC-V when channel state information is available to
neither the transmitter nor any of the receivers. For a single
user Rayleigh fading channel with additive White Gaussian
noise at the receiver the case of no CSIT and no CSIR has been
explored by Marzetta and Hochwald [6]. Their work shows
that the degrees of freedom corresponding to multiple transmit
antennas depend dramatically upon the channel coherence time
and the channel state information at the receiver. Specifically,
they show that with no CSIR or CSIT, increasing the number
of transmit antennas beyond the coherence time� � does not
increase capacity. The following theorems state our main
results for this case:

Theorem 4: The capacity region of the vector fading
broadcast channelBC-V with no CSIT and no CSIR is
contained within the capacity region of the scalar fading
broadcast channelBC-S with no CSIT and no CSIR.
The proof is nearly identical to the proof of Theorem 1.
The details are in [4]. Also, in [4] we show that the scalar
upperbound is loose in the following case.

Theorem 5: The scalar upperbound is not tight for a single
user channel with

� � � transmit antennas, i.i.d. Rayleigh
fading, no CSIT , no CSIR and coherence time� � 	 �.
This example is treated in detail in [4]. The scalar upperbound
only captures the loss of degrees of freedom due to lack of
CSIT. Lack of CSIR is a greater limitation and as shown
by [6] it also affects the transmitter in that some transmit
antennas may be redundant. By eliminating the redundant
transmit antennas before applying the scalar upperbound, a
better upperbound is readily obtained [7]. In [7] the results
of [6] for Rayleigh fading point-to-point vector channel are
extended to the more general case of isotropic fading non-
degraded broadcast channels. It is not known if the improved
upperbound obtained in this manner is tight.

VII. L OSS OFDEGREES OFFREEDOM

In this section we return to our starting point: the observa-
tion that “channel degrees of freedom depend critically upon



the availability of channel knowledge” [3]. While [3] makes
this observation in the context of a Gaussian broadcast channel
with no CSIT, perfect CSIR, and i.i.d. users, it is a fundamental
property of vector channels. Marzetta and Hochwald’s results
on the capacity of Rayleigh fading multiple antenna channel
with no CSIT or CSIR can be interpreted in the same light.
For a fast fading channel (channel coherence time� � 	 �),
the transmitter and receiver do not have sufficient information
about the channel and therefore capacity does not increase with
the number of transmit antennas. In other words, the multiple
spatial dimensions offered by the vector input channel are
lost because the amount of channel knowledge is insufficient.
The scalar upperbound is a result along the same lines. It
shows how the degrees of freedom corresponding to multiple
antennas are limited by the transmitter’s inability to identify
and distinguish between the directions of different users’
channels. In this section we consider the asymptotic limit
of a large number of transmit antennas, i.e.

� � �
. The

additional assumptions on theBC-V model for this section
are:

1) Noise is AWGN.
2) Large number of transmit antennas:

� � �
.

For any user� � �� � � � � � � �� �, first note that with isotropic
fading the power in each component of the vector channel
 �� �
is the same. So let us define

E

����� ���� ����� 	 � � � 	 E

����� ���� ����� � 	 ��� � � � �� � � � � � � �� � �
The following Theorem presents our main result of this

section:
Theorem 6: In the limit as

� � �
, the capacity region of

the vector fading broadcast channelBC-V with no CSIT and
AWGN is identical to the capacity region of the corresponding
scalar fading broadcast channelBC-S. The asymptotic sum
rate capacity
� 	 �� ���� � ��� � � ��� ��  � 	 ��� �.
The proof is provided in [4].

Theorem 6 states that as the number of antennas gets
large, the total throughput is identical to that of a single
user system. This is true regardless of the distribution of
the users’ magnitudes, whether the channel is degraded or
non-degraded, and whether the CSIR or channel magnitude
feedback is available. The loss of degrees of freedom is
evident as the sum rate capacity does not grow with the
number of users or the number of transmit antennas.

It has been pointed out by Shamai and Tuninetti [2] that
for scalar fading Gaussian broadcast channels it is not known
if the sum rate capacity is always achieved by transmitting
only to the user with the largest single user capacity. Through
Theorem 6 we have established that this is indeed true in the
limit of many transmit antennas. We have also shown that if the
transmitter does not have any information about the channel
direction, then at best the thoughput can not be more than
the largest single user capacity without fading. Neither more
users nor more transmit antennas can improve the throughput
beyond that.

VIII. C ONCLUSION

We present an upperbound on the capacity region of a
vector broadcast channel with

�
transmit antennas and a

single receive antenna at each user. The bound is in terms
of the capacity region of a scalar broadcast channel where
the transmit power is reduced by a factor

�� and the scalar
channel gains are the magnitudes of the corresponding vector
channels. We call this bound the scalar upperbound.

The scalar upperbound is a fundamental result that applies
to a wide range of scenarios. It applies whenever, conditioned
on the side information available at the transmitter the channel
distribution is isotropic: i.e., the transmitter has no information
about the relative spatial direction of each user’s channel
vector. Thus, the scalar upperbound is applicable irrespective
of the noise distribution, each user’s channel fade distribution,
channel or noise memory, and the side information available
at the receiver. In addition to the system models considered
in this paper, in [4] we use the scalar upperbound under
various additional assumptions such as: perfect channel output
feedback, peak power constraint, magnitude feedback, and
multiple receive antennas. In particular, we obtain the capacity
region of a vector fading Gaussian BC with perfect CSIR
and magnitude feedback: i.e., when each user’s instantaneous
channel norm is made available to the transmitter.

The scalar upperbound characterizes the loss of degrees of
freedom in a vector broadcast channel when the transmitter
has no information about the “direction” of the users’ chan-
nels. It shows how the degrees of freedom corresponding to
multiple users and multiple transmit antennas are lost by the
transmitter’s inability to identify and distinguish between the
directions of different users’ channels. It underscores the need
for directional information at the BC transmitter.

The scalar upperbound is also a valuable tool for proving
capacity results for isotropically fading vector broadcast chan-
nels. By reducing the vector broadcast channel to a scalar
channel we are able to make use of the known capacity results
for scalar channels. Although the scalar upperbound may not
be tight in general, in many cases it is tight and this allows
us to determine the capacity region of the vector broadcast
channel.
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