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Abstract— We develop an upperbound on the capacity region of a scalar Gaussian BC. The scalar Gaussian BC has only
of an isotropic fading vector broadcast channel in terms of ke  one transmit antenna and the channel gains from the single
capacity region of a scalar fading broadcast channel. Usindhis  yrangmit antenna to each users’ receive antenna are given by

upperbound we prove the optimality of the Alamouti scheme . ..
[1] in a broadcast setting and extend the recent results [2] o the Frobenius norm of the original vector channel between th

the capacity region of the fading scalar non-degraded broagast Multi-antenna transmitter and that user, scaled by a fauftor
channel to fading vector non-degraded broadcast channelfhe ——. The actual upperbound is presented in Theorem 1. We
upperbound is fundamental in that it makes no assumption il refer to this upperbound as the “scalar upperbound’e Th
regarding the distribution of the users’ channel magnitudss, the - g.1ar ynperbound is a fundamental result and therefoleapp
distribution of the additive noise, or the amount of channel . .
information available at the receiver. The scalar upperbound to many system mOdels such "_is when no CSIR is available,
explicitly characterizes the loss of degrees of freedom ineector When the transmitter and receiver can only track the users’
broadcast channel when the transmitter has no information @out  channel magnitudes [4], with feedback, or when a peak power
the “direction” of the users’ channel vectors. constraint is assumed. We will start with a very generalesyst
model. Additional assumptions for various system models wi
be specified in later sections.

The capacity region of the fading vector broadcast channel
(BC) without channel state information at the transmitter Il. SYSTEM MODEL
(CSIT) is unknown, except for the special case when all userswe are interested in the class of channels that can be
have identically distributed channels and identicallyriisited  described by the following system model.
additive noise. In this case all points in the capacity regio
can be achieved by simply transmitting to only one user atfa Broadcast Channel Model BC-V

time and using time-division multiplexing to support mplé  Consider a fading vector broadcast channel wifttransmit
users. Thus the system throughput is as if there was omliftennas at the base station ddisers with a single receive

one user in the system. Caire and Shamai's observation &lenna at each user given by the input/output relationship
that “channel degrees of freedom depend critically upon the

I. INTRODUCTION

availability of channel knowledge at the transmitter” farm Yt[l] = Hgl]Xt + Zt[l]

the central idea for our work in this paper. In this paper we

consider the capacity region of a vector Gaussian BC with : @)
M antennas at the transmitter add users with a single Yt[K] = HLK]Xt + Zt[K]

receive antenna at each user. We assume that the transmitter . oF
does not have perfect channel state information. Howev&{ €€ fo[rk]tjseﬂc at time instant, H; " is thel >,:]M channel

the transmitter does have perfect knowledge of the ergodfector,Y;  is the received scalar signal aut}! is additive
random process governing the successive realizationseof fPiS€-X: is the M x 1 complex vector symbol transmitted by
channel fade. We allow memory in the fading process, but &€ base station at time instant

impose one constraint. We consider oisgtropic distributions L€t the average transmit power % so that

in this paper. By isotropic we mean the foIIowin.g: For the E [Tr(Xxf)] <P )
vector BC, since each users’ channel can be viewed as an

M-dimensional vector, it can be described by a “magnitude’Figure 1 shows the channel model f&C-V with two

and a “direction”. Our assumption of isotropic fading meanssers. The channel fade and noise processes are ergodic
that the transmitter has no knowledge of the “directiordnd stationary. We allow the channel fade process to have
of any user’s channel vector. In other words, all directiomaemory. Thus, successive realizations of the channel and/o
are equivalent from the transmitter’s standpoint. Undétyfa the noise may be correlated. For simplicity, the time index i
general assumptions we show that the capacity region of teisppressed. The precise definition of isotropic fading nkén
vector Gaussian BC is bounded above by the capacity regisras follows:
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B. Broadcast Channel Model BC-S
Isotropic Fading: We consider the class of channels that can Associated with the broadcast channel BC-V, we define

be described as another channel model, BC-S, with input/output relatiomsh
HIF = @kl pl#] (3) v = x4 Z0 )
where ®l* is a1 x M isotropically random complex unit YL = pKIX 4 71K
vector and Notice that the inpufX is a scalar, and each users’ channel is
(%] 4] also a scalar equal to the norm of the corresponding original
R = [ HM, (4)  vector channel. The new transmit power constraint is
~ P
2 _
the norm of the instantaneous channel vector is a hon-wegati BlIXTT < M’ ©)

scalar random variablidependent of ®[*!. It is important to

note that each users’ channel norm and noise may have #igure 2 shows the channel model ®€-S with two users.
completely different distribution.

Recall that an isotropically random vector is one whosH!-
distribution is not affected by multiplication with a unija  The first system model we consider is where the transmitter
matrix. It is the mathematical way to capture the notiohas no channel state information while the receiver hasperf
that the vector is equally likely to point in any direction inchannel state information. The following theorem presémts
the M dimensional vector space. An example of a channstalar upperbound in this context.
that belongs to this class is the Rayleigh fading channelTheorem 1: [The Scalar Upperbound] The capacity re-
with additive white Gaussian noise (AWGN) where eachion of the vector fading broadcast chann®C-V with no
users’ channel vectd*! consists of i.i.d. complex GaussianCSIT and perfect CSIR is contained within the capacity regio
elementsHI¥l ~ A(0,02), 1 < i< M. Isotropic fading is a of thescalarfading broadcast channBC-S with no CSIT and
fairly general and realistic assumption, capturing alliigd perfect CSIR.
models where the transmitter does not have enough infoThus the capacity region dC-S upperbounds the capacity
mation to discriminate between various transmit diredionregion of BC-V. Note that Theorem 1 does not assume that
The generality of this model is captured in the fact that the channels are degraded in any fashion. Also, the theorem
applies to any distribution for the channel nowit!. Also, does not assume any specific distribution for the additiiseno
it can be argued that over sufficiently long intervals angr the channel magnitudes.
wireless channel may be modeled as isotropically random in
the absence of any side information. Proof of Theorem 1: We start with the following lemma:

Since we do not assume any specific distribution for the Lemma 1: The capacity region of the broadcast channel
channel nornh!*! or the additive nois€Z[*!, theBC-V fading BC-V is unaffected by the assumption
vector broadcast channel model is not degraded (stochgtic
or physically), more-capable or less-noisy in general.

We relate the capacity region of the class of vectavhere® is an isotropically distributed complex random vector.
broadcast channels represented B¢-V to the capacity Cover proved in [5] that the capacity region of a broadcast
region of the class ofcalar broadcast channels presentedhannel depends only on the marginal distributions. Since
next. the assumption (7) does not affect the marginal distrilmstio

p(YIUIX), p(YP|X),--- ,p(YTE]|X) of the users’ channels,
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the capacity region is unaffected by this assumption. Henadrection of the channel vector. Thus the difference between
forth, in this section we assume that (7) is true, i.e. thesiseBC-V and BC-S is that in BC-S we allow the transmitter

channel vectors are parallel. to code directly overX!l. Theorem 1 states that this can
We need the following definitions: only enhance the capacity region. In light of the observatio
| a pointed out above, the result of Theorem 1 may already seem
Xl =2 <X,® > [€) — hi : ¢ | _ )
LA f intuitive at this point. A forma argum_ent is presented next
X- = [[X-Xlo| 9) In order to prove Theorem 1 we will show that any vector

Thus, X! is a complex scalar random variable representin
the projection of the transmitted vector symiXlalong the s : !
direction of the instantaneous chanfelX * is anon-negative | NUS, any rate vector achievable BC-V is also achievable
real scalar random variable representing thagnitude of the " BC-S. )
projection of the transmitted vector symbKl along the null  Let the users’ messages be denoted by the respective
space of the channel. Note that the projections do not depdR@ices Wi and the users’ rates be denoted By so that

. . . NR H
on the particular user because the assumption (7) implies &S Wi < 277+ where NV is the length of the codeword
instantaneous channel realizations are parallel. The pawe Measured in number of channel uses. Consider any codebook

%odebook designed f@C-V can also be used on the scalar
roadcast chann@&C-S with the same resulting performance.

the transmitted symbdX is related toX !l and X1 as X(Wy,Ws,,--- ,Wk) for the original fading vector broadcast
channelBC-V. The codebook maps each message tuple to
Tr [(XXT] = |X])? = |x1I]? + X2 (10) an M x N codeword matrixX (Wy, Ws, - - - , Wg) such that
Lemma 2: the t** column of the matrix represents thHe -dimensional
1 complex vector symbol that is transmitted on thé base
Es || X!2| = =Tr(XXH). (11) station transmit antennas at time instantWe denote the
In other words, regardiess of the input distribution, the t** column of the codeword matriX (Wi, Ws, - -- ,Wk) as
average transmitted powelong the channel is always a[X(W1, Wa,---, Wk)],;.

fraction 1/M of the overall transmit power. The proof is We wish to use the same codebook on the fadicajar

quite straightforward. Since the transmitter has no chiand¥oadcast channeBC-S where the base station has only
knowledge, the transmitted vector symtXl is independent one transmit antenna. So we need to map the columns of
of the instantaneous channel directi®nConsider am\/ x M X(W1,Wa,--- ,Wk) onto scalar inputs oBC-S, X. This
isotropically distributed random unitary matfiX independent is done as follows. We assume that along with the codebooks,
of X. Without loss of generality we can assume that successi€ transmitter and the receiver are provided with idehtica
realizations of® are the successive realizations of the firgtopies of a pre-generated sample path of i.i.d. realizatafn
column ofU. Each column ol is an isotropically distributed isotropically distributed unit vecto® before the beginning of
random unit vector. Since each column is identically digommunication. So the transmitter and receiver use the same
tributed the expected power in the transmitted signal ptee sequence of i.i.d. isotropically distributed unit vectds At
along each column is identical. However, together all calamthet** channel use, the transmitter BC-S uses this®, and
span the entire space of possible transmit signals. Thus @gnputes the projection of the corresponding transmit gyfmb
total transmit powetP is split equally among the directions[X (W1, Wa, - - -, Wk)],, onto®;, to obtain the scalar complex
corresponding to each column of the random maliixThis transmit symbolX;. That is,

proves the result of Lemma 2.

With the defintione (8) and (9), we can represent the Xi =< [X(W1,Wa, -+ , WK)],, &> (14)
broadcast chann®C-V input/output relationship as This is where we need Lemma 2, as it guarantees that the
vyl = plixll i power constraint foBC-S is satisfied.
2] _ 2 2 X
vPl = plixll 4z (12) E[|Xt|2] < % (15)

VK] B WK x| 4 ZIK] For thet*® channel use oBC-S, plugging (14) into (5) gives

us the input/output relationship,
Notice the similarity betweeBC-S and (12), and the implied ~ 1 1
power constraint frB(/)m Lemma 2 and ((2) : P }jt; - héi@t X (W1, Wa, oo, Wiy + Z[:
o] P Vi© = hg @ [X(Wi,Wa, -+, Wk, + 2 (16)
Enx [|X12] = - (13) :
Note that forBC-V since the transmitter does not knalvit yt[K] _ th](}t [X(Wy, W, -, Wi)],, + 7IK]

cannot choos& !/, i.e, the transmitter can only chooXeand

the channel realization determinds!. The transmitter does But this is identical to the input/output fd8C-V when the
not know the channel iBC-S either, but becausBC-S is same codebook is used and when #etual channel for user
a scalar broadcast channel there is no uncertainty about khat timet is H,Ek] = hEk]Qt, and the channel is known to the



receiver. Since the codebook is designed for the same charfrar the scalar fading BC under these conditions, the cap@acit
distribution, it must perform at least as well &C-S as it known [2]. Note that these conditions do not make the fading
does onBC-V. In other words, the probability of error for broadcast channel degraded. The following theorem states o
this codebook is the same whether it is usedB@V or BC- main result in this section:
S. Thus, any rate vector achievable B&-V is also achievable = Theorem 3: Whenever condition 1 or condition 2 is satis-
on BC-S. This completes the proof of Theorem 1. m fied, the capacity region of theector fading broadcast channel
Next, while staying with the assumption of no CSIT an®C-V with two users, additive white Gaussian noise, no CSIT
perfect CSIR, we present a few interesting cases where e perfect CSIR isdentical to the capacity region of the
upperbound of Theorem 1 is achievable, i.e. the capac#galarfading broadcast channBC-S with two users, AWGN,

regions ofBC-V andBC-S are identical. no CSIT and perfect CSIR.
We prove Theorem 3 in [4] by showing that with Gaussian
IV. OPTIMALITY OF ALAMOUTI SCHEME codebooks the vector broadcast chanB€V achieves the

In this section we consider a specific sub-class of fadirtire capacity region of the corresponding scalar brastdca
broadcast channels within the class representeB®y. In channel BC-S. Since the latter is an upperbound on the
particular, we impose the following additional assumpsiom capacity region oBC-V, the scalar upperbound is shown to
the vector broadcast chanrigC-V: be tight and the two capacity regions are identical.

1) M =2, i.e. the base station has two transmit antennas. VI. THE VECTORBC WiTH No CSIT AND No CSIR

2) We assume that the additive noise is Gaussian and the ) ] ) i
noise process is memoryless. In this section we consider the vector fading broadcast

3) Coherence tim@ > 2. model BC-V when channel state information is available to
- neither the transmitter nor any of the receivers. For a singl
user Rayleigh fading channel with additive White Gaussian
noise at the receiver the case of no CSIT and no CSIR has been
. . ) . ..~ explored by Marzetta and Hochwald [6]. Their work shows
assumptions 1, 2, and 3 listed abovedientical to the capacity that the degrees of freedom corresponding to multiple inéins

réagll_?_n 0;;25??;‘??&ggazrste:‘gcgzagh; r;r:zIC?:SX\lnstg r:g thzlylsntennas depend dramatically upon the channel coherenee ti
' P . b N ' . and the channel state information at the receiver. Spelyfica
case, the Alamouti scheme can be used to achieve capacity,on : . .
the vector broadcast channel using scalar codes they show that with no CSIR or CSIT, increasing the number
The full proof of Theorem 2 is ?ovided in [4] .where Weof transmit antennas beyond the coherence tifneloes not
P . P . " increase capacity. The following theorems state our main
show that applying the Alamouti space-time coding SChenr]éasults for this case:
(1] transfqrms the channel froC-V to BC-S . . Theorem 4: The capacity region of the vector fading
Intgrestlngly, we do not even need the assumptlon (7.)' Soort)adcast channeBC-V with no CSIT and no CSIR is
even if a}ll users .channels are independent, applying Alamocontained within the capacity region of the scalar fading
space time coding transforms the vector fadBG-V into broadcast chann&C-S with no CSIT and no CSIR
the scalar fading8C-S with half the transmit power. Thus, The proof is nearly identical to the proof of Tr;eorem 1
clearly for this sub-class of fading broadcast channels, t :

o . . The details are in [4]. Also, in [4] we show that the scalar
upperbound of Theorem 1 is tight, and the two capacity regloﬂé)perbound is loose in the following case.

are identical. This is true without any assumptions on th ) : . :
o : . Theorem 5: The scalar upperbound is not tight for a single
distribution of the channel magnitudes, i.e. the channg} ma . : e :
be non-degraded in general. user channel withd/ > 1 transmit antennas., i.i.d. Rayleigh
fading, no CSIT , no CSIR and coherence tiffie= 1.

V. TWO USER FADING GAUSSIAN CHANNEL This example is treated in detail in [4]. The scalar uppertbu
only captures the loss of degrees of freedom due to lack of
_S:,ESIT. Lack of CSIR is a greater limitation and as shown
. . [6] it also affects the transmitter in that some transmit
BC. Starting W'Fh the §)_/stem models.C—V.and BC-S we antennas may be redundant. By eliminating the redundant
make the following additional assumptions: transmit antennas before applying the scalar upperbound, a

1) K =2, i.e., there are two users. better upperbound is readily obtained [7]. In [7] the result
2) We assume AWGN. of [6] for Rayleigh fading point-to-point vector channelear
Let cl(p) and CP?!(p) denote the single user capacities oéxtended to the more general case of isotropic fading non-
users 1 and 2 respectively, when the total transmit powgr isdegraded broadcast channels. It is not known if the improved

So the single user capacities B€-V areC['l(P) andC!?(P) upperbound obtained in this manner is tight.

respectively. Define the following two conditions:

Condition 1: d(e) = CM(aP) — C2(aP) is a non-negative VIl. L 0ss OFDEGREES OFFREEDOM

function for alla € [0, 1]. In this section we return to our starting point: the observa-
Condition 2: d(a) < d(1) for all a € [0,1). tion that “channel degrees of freedom depend criticallyrupo

The following theorem presents our main result in this secti
Theorem 2: The capacity region of thevector fading
broadcast channeBC-V with no CSIT, perfect CSIR and



the availability of channel knowledge” [3]. While [3] makes VIIl. CONCLUSION

this observation in the context of a Gaussian broadcasi&tan e present an upperbound on the capacity region of a
with no CSIT, perfect CSIR, and i.i.d. users, itis a fundatakn yector broadcast channel with/ transmit antennas and a
property of vector channels. Marzetta and Hochwald's t8sukingle receive antenna at each user. The bound is in terms
on the capacity of Rayleigh fading multiple antenna channgj the capacity region of a scalar broadcast channel where
with no CSIT or CSIR can be interpreted in the same lighfae transmit power is reduced by a facty and the scalar

For a fast fading channel (channel coherence tifae= 1), channel gains are the magnitudes of the correspondingvecto
the transmitter and receiver do not have sufficient infofamat channels. We call this bound the scalar upperbound.

about the channel and therefore capacity does notincretfse W The scalar upperbound is a fundamental result that applies
the number of transmit antennas. In other words, the maltigly 5 wide range of scenarios. It applies whenever, condition
spatial dimensions offered by the vector input channel agg the side information available at the transmitter thenclea
lost because the amount of channel knowledge is insufficiegistribution is isotropic: i.e., the transmitter has nooimhation

The scalar upperbound is a result along the same linesglout the relative spatial direction of each users channel
shows how the degrees of freedom corresponding to multiglgctor. Thus, the scalar upperbound is applicable irrdisgec
antennas are limited by the transmitter's inability to it§n of the noise distribution, each user's channel fade distidi,

and distinguish between the directions of different userghannel or noise memory, and the side information available
channels. In this section we consider the asymptotic limgg the receiver. In addition to the system models considered
of a large number of transmit antennas, . - co. The iy this paper, in [4] we use the scalar upperbound under
additional assumptions on tH&C-V model for this section yarious additional assumptions such as: perfect chanrubu

are: feedback, peak power constraint, magnitude feedback, and
1) Noise is AWGN. multiple receive antennas. In particular, we obtain theacép
2) Large number of transmit antenndd: — oc. region of a vector fading Gaussian BC with perfect CSIR
For any usek € {1,2,--- , K}, first note that with isotropic and magnitude feedback: i.e., when each user’s instanianeo
fading the power in each component of the vector chaEit€l channel norm is made available to the transmitter.
is the same. So let us define The scalar upperbound characterizes the loss of degrees of
5 5 freedom in a vector broadcast channel when the transmitter
E UHF]‘ ] =---=E |:‘H][\I;]‘ ] 2T k€ {1,2,---,K}. has no information about the “direction” of the users’ chan-

nels. It shows how the degrees of freedom corresponding to
The following Theorem presents our main result of thigyltiple users and multiple transmit antennas are lost ky th
section: transmitter’s inability to identify and distinguish betere the
Theorem 6: In the limit asM — oo, the capacity region of girections of different users’ channels. It underscoresrteed
the vector fading broadcast chanBC-V with no CSIT and for directional information at the BC transmitter.
AWGN is identical to the capacity region of the correspodin  The scalar upperbound is also a valuable tool for proving
scalar fading broadcast chanri2C-S. The asymptotic sum capacity results for isotropically fading vector broadasan-
rate capacityCs = maxge(1 2.k} log(1 + PTIH). nels. By reducing the vector broadcast channel to a scalar
The proof is provided in [4]. channel we are able to make use of the known capacity results
Theorem 6 states that as the number of antennas gfsscalar channels. Although the scalar upperbound may not
large, the total throughput is identical to that of a singlge tight in general, in many cases it is tight and this allows

user system. This is true regardless of the distribution g§ to determine the capacity region of the vector broadcast
the users’ magnitudes, whether the channel is degradedcREnnel.

non-degraded, and whether the CSIR or channel magnitude
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