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Abstract— We explore the capacity of an isotropic fading vector
channel with multiple transmit antennas at the base station and a
single antenna at the mobile receiver. Perfect channel knowledge
is assumed to be available at the receiver while the transmitter
has only partial knowledge of the direction of the user’s channel
vector based on quantized feedback. We determine a necessary
and sufficient condition for optimality of beamforming, which
turns out to be a precise relationship between the optimality
of beamforming and the symmetry of the quantizer. For the
cases where beamforming is not optimal, we develop upper and
lower bounds. Numerical results are provided to help estimate
the capacity.

I. INTRODUCTION

The amount of channel state information at the transmitter
(CSIT) is a decisive factor governing data rates of wireless
links with multiple antennas at the transmitter. This is espe-
cially true for typical cellular downlink scenarios where the
base station can accommodate multiple (M ) transmit antennas
while the size-constrained mobile unit is restricted to one
receive antenna. However, perfect channel knowledge at the
transmitter (CSIT) is not practical, owing to the large number
of time-varying channel coefficients in vector channels that
have to be fed back to the transmitter. Perfect beamforming is
therefore not feasible for most wireless channels. As a result,
recent research efforts have focused on the performance of
multiple antenna channels under limited feedback. A partial
feedback scheme may be designed to convey some information
about the “magnitude” and/or the “direction” of the channel
to the transmitter. The knowledge of only the user’s channel
vector direction at the transmitter is much more useful than
the knowledge of only the channel magnitude [1] because
direction feedback allows the transmitter to direct its transmit
power along the channel. Therefore at least partial knowledge
about the channel direction is necessary for efficient use of
the channel. Of late, partial direction feedback systems have
attracted much research activity [2]–[7]. Especially relevant to
this paper are [2]–[4], which concentrate on the performance
of systems where a quantized version of the channel direction
is fed back to the transmitter.

Previous work [2]–[4] on quantized feedback schemes
assume beamforming as the transmit strategy. However, it
is not known whether beamforming is the optimal (in the
capacity sense) strategy with quantized direction feedback.
This paper is motivated by a need to determine the capacity
of these systems. In particular we seek to determine whether
beamforming along the quantized direction is optimal for the
capacity of the quantized direction feedback channel.

II. SYSTEM AND CHANNEL MODEL

We consider a point to point communication system con-
sisting of a transmitter with M transmit antennas and a single
antenna receiver. The input/output relationship is given by
Y = 〈H,X〉+Z = H†X+Z, where X ∈ C

M is the (M × 1)
transmitted vector of complex symbols, Y ∈ C is the received
scalar signal, and Z ∼ CN (0, 1) is complex additive white
Gaussian noise (AWGN). The M × 1 complex channel vector
H = [H1 H2 · · · HM ]T represents a narrowband isotropic
fading channel [1]. Hm is the channel gain from the mth

transmit antenna to the receiver. It is assumed that there is
perfect channel state information at the receiver (CSIR). The
receiver sends channel information to the transmitter by means
of an error-free, limited capacity, zero-delay feedback channel.
The limited data rate feedback allows B bits of quantized
channel state information at the transmitter.

We assume that the B feedback bits are used to quan-
tize the channel vector direction. A predetermined set Q =
{q1, q2, · · · ,qN} of N = 2B unit norm quantization
vectors is available to the transmitter and receiver. We will
assume that M ≤ N throughout this paper with the excep-
tion of Section V where the case M > N is examined.
Through the feedback channel the receiver sends only the
index k of the quantization vector qk which is ‘closest’ to
the channel vector H. The transmitter uses the quantized
channel information to adapt its transmit strategy. We use
the following definition of distance between any two vectors:

d(v1,v2) �
√

1 −
∣∣∣〈 v1,v2

||v1||||v2||
〉∣∣∣2 = sin(θ1,2). Given Q, we

define dmin(Q) as the minimum distance between any two
vectors in Q as dmin(Q) = min

∀qi,qj∈Q, i �=j
d(qi,qj). Similar to

[2] and [4], we assume that the quantization set Q is designed
such that the distance between the two closest vectors in the
set is maximized, i.e., the design criterion for the quantization
set is max

q1, q2, ··· ,qN

min
1≤i<j≤N

d(qi,qj). We define the ‘decision

region’ Di for qi as

Di � {H : d(H,qi) < d(H,qj) ∀ j �= i, 1 ≤ j ≤ N}. (1)

The name decision region follows from digital modulation
nomenclature, if the channel H ∈ Di, the receiver feeds back
a ‘decoded’ index i. We define the covariance matrix of the
input as Ki � E

[
XX†∣∣H ∈ Di

]
and state our transmit power

constraint as

Tr (Ki) ≤ P, ∀i ∈ {1, 2, · · · , N}. (2)
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Notice that the transmit power is the same for all decision re-
gions. While this power constraint makes the analysis simpler
by ruling out power adaptation at the transmitter, the results
of our analysis are applicable even when the transmitter can
choose a different transmit power Pi for each decision region
Di. Allowing power adaptation simply introduces another
optimization problem on top of our problem statement, where
the optimal transmit powers P �

i for each decision region need
to be determined. Ignoring power adaptation is also motivated
by several practical considerations as discussed in [8]. So, in
this paper we assume the power constraint of (2).

III. CAPACITY EXPRESSION AND PROBLEM STATEMENT

In this section, we will consider the capacity optimization
problem for the quantized direction feedback system presented
in Section II. We introduce the following definitions.

1) Define K as the set of input covariance matrices given
by K � {K1,K2, · · · , KN}.

2) Define the set of decision regions by D �
{D1,D2, · · · , DN}.

3) Define C(K,S) as

C(K,S) � EH∈S

[
log

(
1 + H†KH

)]
(3)

The following theorem describes the capacity of the quantized
direction feedback system:

Theorem 1: The capacity CQF of the quantized feedback
system is

CQF = max
K:Tr(Ki)≤P

N∑
i=1

C (Ki,Di) Prob(H ∈ Di) (4)

The capacity is achieved by transmitting independent complex
circular Gaussian symbols along the eigenvectors of Ki when
H ∈ Di. The powers in the Gaussian symbols are the
corresponding eigenvalues of Ki.

Proof: Since the channel knowledge at the transmitter
(H ∈ Di) is a deterministic function of the CSIR (H), it
follows from Proposition 1 of [9] that the capacity of the vector
channel with direction feedback described in Section II is

CQF =
N∑

i=1

Prob (H ∈ Di) max
p(X|H∈Di)∈P

I(X;Y |H,H ∈ Di)

(5)
where P is the set of input distributions p(X|H ∈ Di)
that satisfy the power constraint (2). Notice that for each
i in {1, 2, · · · , N}, the capacity computation involves the
following maximization.

max
p(X|H∈Di)∈P

I (X;Y |H,H ∈ Di)

= max
Pi(X)∈P

EH∈Di
I (X;Y |H = H) (6)

= max
Pi(X)∈P

EH∈Di
[H (Y |H = H) −H (Y |X,H = H)]

= max
Ki:Tr(Ki)≤P

EH∈Di
log

(
1 + H

†KiH
)

(7)

= max
Ki:Tr(Ki)≤P

C (Ki,Di) (8)

where Pi (X) = p (X|H ∈ Di). (7) results from the following
observations. H(Y |X,H = H) = H(Z). Given that the
input covariance matrix of X is Ki and the channel is H,
the covariance of Y can be expressed as H

†KiH. Given the
covariance matrix of Y the entropy is maximized when Y
is a circularly symmetric complex Gaussian, which happens
when X is also a circularly symmetric complex Gaussian.
Thus (8) follows and capacity is achieved by transmitting
independent complex circular Gaussian symbols along the
eigenvectors of the covariance matrix of X, Ki. The only
remaining optimization is to find the optimal Ki. Combining
(5) and (8) we have the result of Theorem 1.
We notice from (4) that the capacity computation requires an
optimization over the set of input covariance matrices K. The
following corollary states that the optimization can be broken
down into individual optimizations over each Ki.

Corollary 1: The capacity optimization problem (4) can be
solved as N separate optimizations

max
Ki:Tr(Ki)≤P

C (Ki,Di) , i ∈ {1, 2, · · · , N}. (9)

While the optimal transmit strategy is given by the solution
to the optimization problems (4) (9), we are specifically
interested in the beamforming strategy.

A. Beamforming

For the beamforming strategy, whenever H ∈ Di, the
transmit vector X = qix, where x is a scalar codeword symbol
and qi, the quantization vector, is also the beamforming vector.
In that case the input covariance matrix is constrained as
Ki = Pqiq

†
i . The capacity with this additional constraint is

called the beamforming capacity and is given by

CBF =
N∑

i=1

C(Pqiq
†
i ,Di)Prob(H ∈ Di) (10)

Using the definitions and expressions obtained above, next we
state the problem definitions.

B. Problem Definition

Corollary 1 states that the N optimization problems in (9)
can be solved separately. Without loss of generality we will
consider the following case:

1) i = 1, i.e., H ∈ D1.
2) We choose a co-ordinate system such that q1 =

[1 0 · · · 0]T .

This leads to the following problem statements.

• Determine the optimal input covariance matrix K1 to
maximize C(K1,D1).

• When is beamforming the optimal transmit strategy?

IV. OPTIMALITY OF BEAMFORMING

For the problem definition of Section III-B, we start with
a mathematical statement of the necessary and sufficient
condition for optimality of beamforming in the following
Theorem. The significance of these mathematical results will
be explained in the following sections.

2675



Theorem 2: Beamforming along q1 is the optimal transmit
strategy if and only if λmax(Λ1) ≤ Λ1[1, 1], where we define

Λ1 � EH∈D1

[
HH†

1 + P |H1|2
]

(11)

and Λ1[1, 1] is the element in the first row and first column
of Λ1.

Proof: We start with the following Lemma:
Lemma 1: Given an (M × 1) unit vector q and any

(M × M) positive semidefinite matrix K, there exists a pos-
itive semidefinite matrix K

′
with rank(K

′
) ≤ (M − 1) such

that K can be expressed as K = ρqq† + K
′

for some value
of ρ ≥ 0.

Proof: Consider any arbitrary positive semidefinite ma-
trix K of size (M×M). When K is singular, i.e., rank (K) ≤
(M − 1), then we set ρ = 0, K

′
= K and Lemma 1 is

trivially true. Therefore we assume that K is non-singular,
and rank(K) = M . For any unit vector u, we have uKu† ≥
λmin (K) > 0 where λmin (K) is the smallest eigenvalue of
K. Since q is a unit vector, the M×M matrix qq† is positive-
semidefinite with unit rank and the only eigenvalue is unity.
Therefore, for any unit vector u, we have u†(ρqq†)u ≤ ρ.
Consequently, for all unit vectors u,

u† (
K − ρqq†)u ≥ λmin (K) − ρ > 0 (12)

for all ρ < λmin(K). Thus the matrix K − ρqq is a positive
definite matrix for ρ < λmin (K). However, as ρ → ∞
u† (K − ρqq)u is negative for u = q. Choose the smallest
value of ρ, say ρ∗, for which K−ρqq becomes singular. Then
defining K−ρ∗qq† to be our K ′ we have rank(K ′ ≤ M −1)
and K = ρqq† + K

′
.

According to Lemma 1 any input covariance matrix K1 can be
represented as K1 = (P−p)q1q

†
1+pK

′
., where p ∈ [0, 1] and

rank (K ′) ≤ (M − 1). Since Tr (K1) = P and Tr
(
q1q

†
1

)
=

1, we have Tr (K ′) = 1. The optimality of beamforming is
then equivalent to the following condition.

Lemma 2: Beamforming is the capacity achieving strategy
if and only if, for all M × M positive semidefinite matrices
K ′ with rank (K ′) < M and Tr (K ′) = 1, the function

f (p) � C
(
(P − p)q1q

†
1 + pK

′
,D1

)
(13)

defined for p ∈ [0, 1], takes its maximum value at p = 0.
The proof of Lemma 2 is straightforward because p = 0
corresponds to beamforming along q1 [8]. Since rank (K ′) ≤
(M − 1), let the eigenvalues of K

′
be α1, α2, · · · , αM−1 and

let u1,u2, · · · ,uM−1 be the corresponding unit norm eigen-
vectors. Clearly, the αi are all nonnegative and sum to unity.
Recall that q1 = [1 0 · · · 0]T . From Lemma 2 a necessary
condition for optimality of beamforming is d

dpf (p) |p=0 ≤ 0.
This is also a sufficient condition because f (p) is a concave
function in p, as seen from the second derivative.

d

dp
f (p) = EH∈D1

∑M−1
j=1 αjH†uju

†
jH − |H1|2

1 + (P − p)|H1|2 + p
∑M−1

j=1 αjH†uju
†
jH

d2

dp2
f (p) = −EH∈D1

[
M−1
j=1 αjH†uju

†
j
H−|H1|2

1+(P−p)|H1|2+p
M−1
j=1 αjH†uju

†
j
H

]2

< 0.

Thus, beamforming is optimal if and only if:

0 ≥ max
K′∈K′

d

dp
f (p) |p=0 (14)

= max
α,u

EH∈D1

∑M−1
j=1 αjH†uju

†
jH − |H1|2

1 + P |H1|2 (15)

= max
α,u

M−1∑
j=1

αju
†
jΛ1uj − EH∈D1

[ |H1|2
1 + P |H1|2

]
(16)

= λmax(Λ1) − Λ1[1, 1] (17)

where Λ1 = EH∈D1

[
HH†

1+P |H1|2
]

as defined in (11) and

Λ1[1, 1] = EH∈D1

[
|H1|2

1+P |H1|2
]

is the first diagonal element
of Λ1. (17) follows from the Rayleigh-Ritz theorem [10] and
because a convex combination of terms is less than or equal
to the maximum term. This completes the proof of Theorem
2.
Simplifications of the necessary and sufficient condition (2) of
Theorem 2 lead to the following conditions.

1) Condition 1:

EH∈D1

[
1 + P |Hk|2
1 + P |H1|2

]
≤ 1, 1 ≤ k ≤ M. (18)

2) Condition 2:

EH∈D1

(
HiH

∗
j

1 + P |H1|2
)

= 0, 1 ≤ i < j ≤ M. (19)

In terms of these simplified conditions, we have the following
corollaries.

Corollary 2: [Sufficient Condition] Beamforming along q1

is the optimal transmit strategy if both Condition 1 and
Condition 2 are satisfied.

Corollary 3: [Necessary Condition] Beamforming along
q1 is the optimal transmit strategy only if Condition 1 is
satisfied.

Proof: We provide a sketch of the proof. Detailed proof is
available in [8]. Given the result of Theorem 2 the corollaries
2 and 3 follow directly once we interpret conditions 1 and 2.
Condition 2 implies that Λ1 is a diagonal matrix. Condition
1 requires that the first diagonal element of Λ1 is the largest
diagonal element of the matrix. Clearly, when both conditions
hold, Λ1 is a diagonal matrix with largest diagonal element
equal to Λ1[1, 1]. Since the diagonal elements are also the
eigenvalues of a diagonal matrix, the beamforming optimality
condition 2 of Theorem 2 is satisfied and Corollary 2 follows.
Similarly, if Λ1[1, 1] < Λ1[k, k] for k �= 1 then a higher
capacity is achieved by transmitting power along the kth

transmit antenna. But beamforming along q1 implies putting
all the power along transmit antenna 1. Therefore, if condition
1 is violated, beamforming along q1 is not optimal, and
corollary 3 follows..
In [7], the necessary and sufficient conditions are used to
establish optimality of beamforming for several cases when
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the input, output and the noise are real valued. In particular,
optimality of beamforming is demonstrated for:

1) Two transmit antenna cases (M = 2) with any arbitrary
number N of quantization vectors.

2) Cases where the number of transmit antennas M is equal
to the number of quantization vectors N .

We will now look at specific scenarios where the input,
channel, output and noise are in the complex domain and
determine if beamforming is optimal for such cases. We will
use Corollary 2 to show that the sufficiency conditions are sat-
isfied in such situations, hence proving that beamforming is the
optimal transmit strategy. We will make use of the knowledge
of the structure of the optimal quantization vectors and the
inherent symmetry of the decision regions involved in order
to prove the conditions (18) and (19). The following theorem
considers the case where the number of transmit antennas
is equal to the number of quantization vectors involved, i.e,
M = N and establishes the optimality of beamforming for
this case.

Theorem 3: Beamforming is optimal for M transmit an-
tennas when the system has N = M quantization vectors.

Proof: The optimal packing of N quantization vectors
in M = N dimensions is to have the vectors along the axes,
so that q1 = [1 0 · · · 0]T , q2 = [0 1 · · · 0]T and so on. If
H ∈ D1, we have |〈H,q1〉| ≥ |〈H,qj〉| ∀j ∈ {2, · · · , M}.
Therefore |H1| ≥ |Hj | for all j ∈ {2, · · · , M}. So if H ∈
D1

1 + P |Hj |2
1 + P |H1|2

≤ 1 ∀j ∈ {2, · · · , M} ,

and condition 1 is satisfied. To show that condition 2 is
satisfied, we make use of the symmetry of the decision
regions in the optimal packing. For every channel vector
H = [H1 H2 H3 · · · Hm · · · HM ]T ∈ D1 there exists a
corresponding H

′
= [H1 H2 H3 · · · − Hm · · · HM ]T ∈

D1 for all m ∈ {2, 3, · · · , M}. Also note that H
and H

′
both occur with equal probability. Similarly, if

H = [H1 H2 · · · Hi · · · Hj · · · HM ]T ∈ D1 there ex-
ists a corresponding equiprobable channel vector H

′′
=

[H1 H2 · · · Hi · · · − Hj · · · HM ]T ∈ D1. This gives us

EH∈D1

(
HiH

∗
j

1 + P |H1|2
)

= 0, 1 ≤ i < j ≤ M, (20)

so that condition 2 is satisfied. Since both conditions are
satisfied, beamforming is optimal.
The optimality of beamforming has been proved above for
the cases where M = N. It is also known that as N → ∞,
beamforming is optimal. With an increase in N , the decision
regions become smaller in size, and it is more likely that
condition 1 will be satisfied. In fact, it can be shown [8] that
for N ≥ 2M−1, condition 1 will always be satisfied. Optimal
packings tend to be symmetric, and one can hypothesize that
condition 2 will also be satisfied in most cases. This suggests
that beamforming is likely optimal for all N ≥ 2M−1.

V. CASES WHERE M IS GREATER THAN N

So far we have focused on cases where M ≤ N . We will
now consider cases where M > N and examine optimality
of beamforming in such scenarios. [7] discusses cases where
M > N and derives necessary and sufficient conditions for
optimality when the channel gains are i.i.d Rayleigh variables.
Although those conditions are derived in [7] for cases where
the input, channel and output are real valued, the same
conditions apply when the parameters are complex valued.
We recall here the necessary and sufficient condition for the
optimality of beamforming for the complex i.i.d channel [7]
when M > N :

EH


 1

1 + P max
1≤i≤N

|Hi|2


 ≤ 1

1 + P
. (21)

Based on this condition, the following theorem demonstrates
the optimality of beamforming for complex i.i.d Rayleigh
channels with M > N > 2 at high SNR.

Theorem 4: At high SNR, when the channel gains Hi are
i.i.d, beamforming is optimal for all M > N > 2.

Proof: At high SNR (P >> 1), when the channel gains
Hi are i.i.d with E

[
|Hi|2

]
= 1, the necessary and sufficient

condition for the optimality of beamforming when M > N is
(Equation (21))

EHi


 1

max
1≤i≤N

|Hi|2


 ≤ 1. (22)

Let s = max
1≤i≤N

|Hi|2. Since Hi are i.i.d Rayleigh distributed

variables, |Hi|2 are exponentially distributed with mean and
variance equal to 1. The cumulative distribution function
(CDF) of the maximum of N i.i.d exponential variables is
given by FS (s) = N (1 − e−s)N−1

e−s. Defining f (N) �
EHi

[
1

max
1≤i≤N

|Hi|2

]
, we have

f (N) = N

∫ ∞

0

(1 − e−s)N−1
e−s

s
ds

= N

N−1∑
k=0

(−1)N+k (
N−1

k

)
ln (N − k) , (23)

where equation (23) follows from [11] (p. 544; 4.267 41;
BI (123) (12)). Equation (23) yields the value 1.386 for N =
2 and 0.86 for N = 3. Since f (N) decreases with an increase
in N , for all N ≥ 3, we have f (N) ≤ 1. Consequently, for
high SNR, beamforming is optimal for all M > N > 2.

Note that we have assumed here that the quantization is
across the entire M -dimensional space. If we have complete
freedom in how the quantization vectors are selected, instead
of quantization over all the M dimensions, we may choose to
use the N vectors to cover only a smaller number (say m with
m < N ) of the M dimensions and still be able to achieve
a higher capacity. Whether there is a potential benefit from
straying away from quantization for all the M dimensions and
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instead using the feedback bits to more definitively identify the
projections of the channel in a smaller number of dimensions
is to be investigated.

VI. SIMULATIONS

In this section, we present numerical results obtained from
Monte Carlo simulations for the capacity of the quantized
direction feedback system. Note that the beamforming capacity
discussed in Section III is an achievable lower bound on the
capacity (unless beamforming is optimal). We will provide
plots for this lower bound and the upper bound explained in
[8]. Perfect channel knowledge capacity plots are also shown
for the sake of comparison. In all our simulations, we assume
that the channel is isotropic with i.i.d Rayleigh fading and
E

[
H2

i

]
= 1 ∀i ∈ (1, 2, · · · , M). We will use the best

known line packings provided by [12] for the quantization
vectors.
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PLOT C: M = 3 transmit antennas, (Real domain)
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PLOT D: M = N (Complex domain)

Fig. 1. Plots A-D show the average throughput (in bps/Hz) of the perfect
feedback bound (�), the upper bound (�) and the achievable lower bound
(♦) for different scenarios.

Plot A and Plot B of Figure 1 compares the upper and lower
bounds against the number of antennas with 8 and 64 beam-
forming vectors. As expected, for the same number of transmit
antennas, the upper bound becomes tighter as the number
of beamforming vectors increase. For the particular case of
N = 8 quantization vectors for 8 and higher dimensions, the
lower bound (beamforming capacity) does not change. This
is due to the fact that in uniformly distributing 8 vectors in
8 and higher dimensions, we are effectively utilizing only 8
transmit antennas.

Plot C of Figure 1 shows the capacity bounds against the
number of beamforming vectors with 3 transmit antennas. The
perfect feedback capacity does not depend on the number of
quantization vectors N . Consequently, given M , the perfect
feedback capacity is constant. The upper and the lower bounds
are expected to reach the perfect feedback bound as the
number of quantization vectors goes to infinity. However note
that the volume of the space increases exponentially with M .

As a result, for the same N , the gap between the upper bound
and the perfect feedback capacity increases with M . The
number of quantization vectors needed to have the same gap
between the upper bound and the perfect channel knowledge
capacity also grows exponentially in M .

Plot D of Figure 1 shows the capacity of quantized di-
rection feedback systems with M = N for complex i.i.d
Rayleigh channels. The optimal quantization vectors in this
case are along the M axes. Note that as the number of
dimensions M increases, the number of quantization vectors
needed to achieve a certain capacity increases exponentially.
Consequently, in the M = N plot, as M increases the gap
between perfect feedback capacity and partial feedback (log N
bits) capacity increases.

VII. CONCLUSION

We investigate the capacity of an isotropic fading vector
channel with quantized channel feedback. We derive a neces-
sary and sufficient condition for optimality of beamforming.
We use the necessary/sufficient conditions to determine the
precise relationship between the optimality of beamforming
and the symmetry of the channel quantization. Using the
necessary and sufficient condition, we then establish optimality
of beamforming for several practical cases. While we argue
that beamforming is optimal in ‘most’ cases, we also point out
scenarios where it is sub-optimal (e.g. i.i.d Rayleigh channels
with M > N = 2 at high SNR). Finally, we provide
simulation plots for the beamforming capacity and the upper
bound [8] for situations where the optimal vectors are known.
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