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Abstract— We explore the optimality of transmit beamforming
for a vector channel with multiple transmit antennas and a
single receive antenna. Perfect channel information is assumed
to be available at the receiver while the transmitter only has
partial/limited knowledge of the user’s channel vector based on
feedback. Without limiting the kind of partial/limited feedback
or the type of channel distribution, we derive a general necessary
and sufficient condition for the optimality of beamforming in such
channels. The condition we obtain is universal - applicable to all
partial/limited feedback scenarios in all ergodic fading channel
distributions regardless of the number of transmit antennas or
transmit power. Considering different types of partial/limited
feedback, we show how our conditions can be employed to obtain
previous results on the optimality of beamforming. With Monte
Carlo simulations, we provide numerical results comparing
different partial/limited feedback schemes.

I. INTRODUCTION

The fundamental tradeoff in a multiple antenna system
between the improvement in system throughput and the
amount/quality of channel state information (CSI) at the
transmitter (CSIT) and receiver (CSIR) is well documented
[1]. While pilot symbols and training techniques can be used
to obtain CSI at the receiver, it is impractical to feedback
complete and accurate channel information to the transmitter
due to the multitude of time-varying channel coefficients.
However, even small amounts of channel knowledge at the
transmitter can provide significant performance gains com-
pared to systems without any CSIT. This is the stimulus behind
the exploration of partial/limited feedback strategies, some of
the popular ones being mean/covariance information feedback
[2]–[8], magnitude feedback [9], [10] and the more recent
quantized direction feedback [11]–[23].

In many of the feedback schemes put forth over the re-
cent years, beamforming is chosen as the transmit strategy.
Beamforming is a desirable strategy because it significantly
simplifies implementation both at the transmitter and at the
receiver. Moreover, it allows for the use of well known scalar
codes for the multiple antenna channel by converting the
vector channel into a scalar channel. However, in partial
CSIT scenarios, subject to the kind and quality of channel
information at the transmitter, beamforming may or may not
be optimal, i.e., higher rates may be achievable by using
more complex strategies. For example, with channel mean
information at the transmitter, it has been shown [2]–[4], [24]
that when the feedback quality is poor or the SNR is high,
capacity is achieved by distributing part of the power along the
mean vector and the rest in directions orthogonal to the mean

vector. Therefore, in a partial CSIT scenario, the optimality of
transmit beamforming determines whether one can obtain the
dual benefits of maximum throughput and the low complexity
of the beamforming scheme.

Previous work on partial/limited feedback systems [3]–
[5], [17]–[19] has explored the optimality of beamform-
ing for different feedback strategies (magnitude feedback,
mean/covariance feedback, quantized direction feedback) in
some well known fading channel models. In many of these
cases, conditions specifying if and when beamforming is op-
timal have been provided. Such results are very useful for the
specific systems that they consider, however, their scope is lim-
ited by the underlying assumptions about the feedback scheme
and the channel fade distribution. They do not accommodate
any changes to the underlying channel assumptions and/or
feedback strategies and are therefore not directly applicable to
general partial/limited feedback systems. The main motivation
for this work is to provide a unified treatment of the optimality
of beamforming for a general partial/limited feedback system.
To this end we consider a partial/limited feedback system with
multiple transmit antennas and a single receive antenna. We
derive a single universal necessary and sufficient condition
for the optimality of beamforming (ergodic capacity) that is
applicable to all feedback schemes - partial or limited - in all
kinds of ergodic fading channel models. We begin with the
system model in Section II.

II. SYSTEM, CHANNEL AND FEEDBACK MODEL

Our system model consists of a multiple transmit antenna
base station communicating with a single antenna receiver as
shown in Figure 1. The complex received signal at the receiver
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Fig. 1. System Model

is given by the input-output equation:

Y = 〈H,X〉 + Z = H†X + Z, (1)
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where X ∈ C
M is the (M × 1) transmitted vector of com-

plex symbols, Y ∈ C is the received scalar signal, and
Z ∼ CN (0, 1) is the complex additive white Gaussian noise
(AWGN) at the receiver. The time varying narrowband fading
channel channel is represented by the (M × 1) complex vector
H = [H1 H2 · · · HM ]T ∈ CM , where Hm denotes the
channel gain from the mth transmit antenna to the receiver.
In order to be as exhaustive as possible, we do not restrict H
to any specific distribution.

We assume that there is perfect channel state information
at the receiver (CSIR), i.e, the receiver has perfect knowledge
of the channel vector H. Based on the kind of scheme, the
transmitter obtains partial/limited channel information, usually
through a feedback channel.

We denote the feedback information mathematically by the
random variable F. The channel feedback F is a function of
the time varying channel state H or the time varying statistics
of H. We define the feedback set F as the set of all possible
realizations of the feedback information F. We now represent
some common feedback schemes using these definitions.

1) Perfect feedback [1]: F = H, F = CM .
2) Magnitude Feedback [9], [10]: f (H) = ‖H‖, F = R.
3) Mean Feedback [2]–[8]: f (H) = EH [H], F = CM .
4) Covariance Feedback [2]–[8]: f (H) = EH

[
HH†], F ={

Positive definite Hermitian matrices in CM×M
}

.
5) Quantized Feedback [11]–[21]: Described in Section V-D

The complex correlation matrix of the input given the feedback
F can be written as K (F) = EX|F

[
XX†]. The power

constraint at the transmitter is given by

EX|F
[
X†X

]
= Tr (K (F)) ≤ P F ∈ F . (2)

The transmit power for all decision regions is the same,
equal to P . We emphasize here that while this makes the
analysis simpler, our results are still applicable even when
the transmitter can choose a different transmit power PF for
each feedback F. This simply introduces another optimization
problem above the problem statement, where the optimal
transmit powers P ∗

F for feedback F need to be determined.
Ignoring power adaptation is also motivated by several practi-
cal considerations as discussed in [19]. We therefore assume
the power constraint given by equation (2).

III. CAPACITY EXPRESSION AND PROBLEM STATEMENT

In this section, we consider the capacity optimization
problem for the partial/limited feedback system presented in
Section II.. The topic of beamforming capacity is discussed
leading to the problem statement.

A. Capacity Expression

The capacity Cfeedback of the partial/limited feedback sys-
tem is given by

Cfb = EF

[
max

Tr(K(F))≤P
EH|F

[
log

(
1 + H†K (F)H

)]]
(3)

The capacity is achieved by transmitting independent complex
circular Gaussian symbols along the eigenvectors of K∗ (F),

the optimal input covariance matrix. The powers in the Gaus-
sian symbols are the corresponding eigenvalues of K∗ (F).

B. Beamforming Capacity

Suppose we constrain the input covariance matrix to be
unit ranked, i.e, fix the transmit strategy to be beamforming.
Let the beamforming vector q (F) be determined from the
feedback variable F ∈ F . The transmit vector is then given
by X = q (F) x, where x is a scalar code word symbol
and q (F) is the beamforming vector. To satisfy the transmit
power constraint, we set ‖q (F) ‖ = 1 ∀ F ∈ F and
E

[|x|2] = P . The input covariance matrix will then be
K (F) = Pq (F)q† (F). The capacity with this additional
constraint is called the beamforming capacity and can be
expressed as

Cbf = EF

[
EH|F

[
log

(
1 + PH†q (F)q (F)† H

)]]
(4)

With the definitions and expressions obtained above, we now
state the problem definition.

C. Problem Definition

The problems we take on in this work are the following:
For a general partial CSIT model,

• When does beamforming achieve capacity, i.e., when
is the optimal input covariance matrix K∗ (F) =
Pq (F)q (F)† ?

• What is the optimal beamforming direction, i.e., given F,
what is q (F) ?

IV. OPTIMALITY OF BEAMFORMING

In this section, we introduce the general conditions for
the optimality of beamforming for a partial/limited feedback
MISO system with partial/limited feedback. Corresponding
conditions for the MIMO case are provided in [25].

A. Universal Conditions for the Optimality of Beamforming

We provide a mathematical statement of the necessary and
sufficient condition for the optimality of beamforming in the
following Theorem.

Theorem 1: Beamforming along q(F) is the optimal trans-
mit strategy if and only if

β − λmax [Λ] ≥ 0, (5)

where β and Λ are defined as

β = EH|F

[ |H‖|2
1 + P |H‖|2

]
, (6)

Λ = EH|F

[
HH†

1 + P |H‖|2
]

. (7)

H‖ is the projection of the channel H along the beamforming
vector q (F), i.e, H‖ = H†q(F). λmax [· ] denotes the
maximum eigenvalue.

Proof: Proof in [25].
The necessary and sufficient condition presented above is uni-
versal - applicable to a wide variety of partial/limited feedback
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strategies regardless of the distribution of the channel, the
amount/quality of feedback, the number of transmit antennas
or the amount of transmit power.

However, the condition of equation (5) can be split into two
simplified conditions that are intuitive and straightforward to
work with. We now introduce these conditions.

B. Simplified Universal Conditions

Let U = {u1 = q (F) , u2, · · · , uM−1, uM} be any set
of orthonormal vectors. Let H⊥k be the projection of the chan-
nel H along uk, i.e, H⊥k = H†uk. Let H‖ be the projection
of the channel H along the beamforming vector q (F), i.e,
H‖ = H†q(F). Note that H⊥1 = H‖. Simplification of the
necessary and sufficient condition of Theorem 1 leads to the
two conditions listed below:

1) Condition 1:

EH|F

[
H⊥kH∗

⊥l

1 + P |H‖|2
]

= 0, 1 ≤ k < l ≤ M. (8)

2) Condition 2:

EH|F

[ |H‖|2 − |H⊥j |2
1 + P |H‖|2

]
≥ 0, 1 ≤ j ≤ M. (9)

Associated with the simplified conditions of equations (9) and
(8), we have the following corollaries:

Corollary 1: [Sufficient Condition] Beamforming along
q(F) is the optimal transmit strategy if both Condition 2 and
Condition 1 are satisfied.

Corollary 2: [Necessary Condition] Beamforming along
q(F) is the optimal transmit strategy only if Condition 2 is
satisfied.

Proof: Proofs for both corollaries in [25].
The corollaries presented above are general in their scope

- they are applicable to a variety of partial/limited feedback
strategies regardless of the distribution of the channel, the
amount/quality of feedback or the number of transmit anten-
nas. Using these corollaries, we now test the optimality of
beamforming for different kinds of channel feedback.

V. APPLICATIONS

In the previous section, we have provided universal con-
ditions for the optimality of beamforming for partial/limited
feedback systems. In this section we consider some existing
feedback strategies and demonstrate that the conditions for the
optimality of beamforming in such scenarios can be obtained
as special cases of the two conditions of Section IV-B. For
each of the feedback scenarios, the corresponding optimal
transmit strategies are well known [1], [3], [17], [18]. In
order to prove/disprove the optimality of beamforming in these
cases, we employ corollaries 1 and 2 and make use of the
knowledge of the channel distribution given the feedback to
test for conditions (9) and (8).

A. Perfect Feedback

Recall that for the case of perfect feedback beamforming
along the direction of the channel is optimal [1]. From Section
II, we have F = H and F ≡ {H}. Note that H‖ = ‖H‖
and H⊥k = H†uk = 0 for k ≥ 2. Consequently, Condition
2 is always satisfied. Condition 1 reduces to ‖H‖2

1+P‖H‖2 ≥ 0
which holds for all H. Since both the conditions are satisfied,
from corollary 1, with perfect feedback beamforming is always
optimal.

B. Magnitude Feedback

We assume the magnitude feedback model of [10] in an
isotropic fading channel. Mathematically, we can represent
the feedback by F = ‖H‖. Since the channel is isotropic
and no particular beamforming direction is preferred, any
beamforming vector can be chosen to test for optimality.
Regardless of the choice of the beamforming vector, the
capacity of the system remains the same. For simplicity, we
assume that q (F) = [1 0 · · · 0]†. We then have H⊥k = Hk

and H‖ = H1. Since H1 and Hj (∀ j ≥ 2) are independent,
condition 1 reduces to (assuming E

[|Hi|2
]

= 1)

EH1

[
1

1 + P |H1|2
]
≤ 1

1 + P
, 1 ≤ j ≤ M. (10)

From Jensen’s inequality, we have EH1

[
1

1+P |H1|2
]

> 1
1+P ,

which does not satisfy condition 1. Since condition 1 is not
satisfied, from corollary 2 beamforming is never optimal with
magnitude feedback.

C. No Feedback

In a no CSIT scenario in isotropic fading, the optimal
strategy is not beamforming, but equal power allocation along
each of the M dimensions [1]. The no feedback scenario is
very similar to the magnitude feedback case, and it can be
shown that beamforming is never optimal.

D. Quantized Direction Feedback

Quantized direction feedback strategy [11]–[21] is a type
of limited feedback scheme where the feedback contains
information only about the quantized ‘direction’ of the user’s
channel, and no information about the channel ‘magnitude’.
A predetermined set Q = {q1, q2, · · · ,qN} of N = 2B

(M × 1) unit norm quantization vectors is available to both
the transmitter and receiver. The receiver feeds back the index
n∗ of the quantization vector closest to the instantaneous
channel, i.e., n∗ = arg max

qn∈Q
∣∣H†qn

∣∣. The transmitter then

uses this quantized channel information to adapt its transmit
strategy. We define the ‘quantization region’ Dn for qn as
Dn �

{
H : |H†qn| > |H†qj | ∀ j 
= n, 1 ≤ j ≤ N

}
.

In terms of the feedback model of Section II, we have F =
n∗ = arg max

qn∈Q
∣∣H†qi

∣∣ is the index of the quantization vector

qk closest to the channel H. The feedback set is consequently
finite and is given by F = {1, 2, · · · , N}.

Without loss of generality we consider the following case:
1) The index sent to the transmitter is n = 1, i.e., H ∈ D1.
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2) The co-ordinate system is chosen such that q1 =
[1 0 · · · 0].

In such a situation, if q (F) = q1, it can be seen that H‖,
the projection of the channel H along the beamforming vector
q reduces to H‖ = H†q1 = H1. Similarly we can consider the
orthogonal directions to be along the other axes, and H⊥k =
Hk. The conditions for the optimality of beamforming reduce
to:

1) Condition 1 [Symmetry Condition]:

EH∈D1

[
HkH�

l

1 + P |H1|2
]

= 0, 1 ≤ k < l ≤ M. (11)

2) Condition 2 [Angular Spread Condition]:

EH∈D1

[ |H1|2 − |Hj |2
1 + P |H1|2

]
≥ 0, 1 ≤ j ≤ M. (12)

Using the conditions, [19] presents several quantized feedback
scenarios of interest where beamforming is optimal.

E. Mean Feedback

In the mean feedback scheme, the transmitter has partial
knowledge of the channel distribution, in the form of the mean
of the channel vector [2], [4]. The channel, given the feedback,
is assumed to be to be white with a known magnitude, i.e.,
H ∼ (µ, αI). This kind of channel distribution can be thought
of as a mean vector µ superimposed on an isotropic zero mean
Gaussian vector. The results in [4] for the multiple transmit
antenna channel with multiple users mimic the results for the
MISO case in [2] - the optimality of beamforming depends on
the quality of the feedback.

For the mean feedback strategy [2], the instantaneous value
of the feedback is the statistical mean of the channel - F =
E [H] and F = CM . Since the channel is isotropic, it is easy
to see that Condition 2 will always be satisfied for the mean
feedback case. As for condition 1, it can be simplified to

Eω

[
1

1 + P |ω|2
]
≤ 1

1 + Pα
, (13)

where ω is distributed as CN (‖µ‖, α). Beamforming for the
mean feedback channel is optimal if equation (13) is satisfied.

F. Covariance Feedback

In some scenarios, the channel may be varying too rapidly
for the receiver to feedback even an estimate of the channel.
In such cases, mean of the channel in such cases is assumed to
be a zero vector and the covariance matrix can be calculated
and fed back to the transmitter. For the covariance feedback
scheme, F = Σ. Without any loss of generality, we assume
that the input covariance matrix is diagonal and that the
principal eigenvector is q = [1 0 · · · 0]†. Since the channel
is isotropic, condition 2 will be satisfied for all H. Also note
that since the covariance matrix is diagonal, the eigenvectors
are along the M dimensions. We then have H‖ = H1 and
H⊥k = Hk ∀ k ≥ 2. From the definition of the input
covariance matrix, we have E

[||Hk||2
]

= λk. Moreover Hj

and Hk are independent for j 
= k. Condition 1 can then be
written as

Eξ

[
1

1 + Pλ1ξ

]
≤ 1

1 + Pλk
, 2 ≤ k ≤ M, (14)

where ξ is an unit mean exponentially distributed variable.
Therefore equation (14) is the necessary and sufficient condi-
tion for the optimality of beamforming for covariance infor-
mation feedback.

VI. NUMERICAL RESULTS

We now compare quantized direction feedback and mean
feedback in an effort to determine how quantized direc-
tion feedback compares with other similar partial feedback
schemes. To analyze them on the same platform, the mean
information sent in the mean feedback case is also quantized.
For the mean feedback case the channel is quantized using
N = 2B quantization vectors and the B bit index of the
closest quantization vector is fed back to the transmitter once
every D (delay) channel uses. For the quantized direction
feedback case, the channel is quantized with B/D bits (N

1
D

quantization vectors) and fed back to the transmitter every
channel use. Therefore, on the average both the feedback
strategies receive the same amount of feedback (B = log2 (N)
bits). We consider an autoregressive model for the channel, so
that

H (t) = aH (t − 1) + σww,

where w ∼ N (
0, 1

M I
)
, a, (0 ≤ a ≤ 1) is the forgetting

factor and σw =
√

(1 − a2). We plot the average throughput
for different values of the forgetting factor a and the delay D.
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Fig. 2. Average throughput (in bits per transmission) of the perfect
feedback bound (�), quantized direction feedback upper bound (�),
quantized direction feedback achievable lower bound (♦), mean
feedback optimal capacity (◦), mean feedback beamforming capacity
(×) and no-feedback capacity (∗) for different values of the forgetting
factor a.

Figure 2 shows the average throughputs of the two schemes
with increasing delay in feedback for a = 0.1 and 0.9. The
number of transmit antennas considered is M = 3, B = 6
bits and the average receive SNR is assumed to be 5dB. The
throughput plots for perfect feedback and no-feedback are also
shown for comparison. For simplicity, we assume that the
input, channel and the output are real valued.
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When D = 1 (channel feedback sent every channel change),
for all a, both the schemes receive B = 6 bits every channel
use and consequently both the schemes have the same average
throughput. Due to the large number of quantization vectors
(N = 26 = 64), the achievable throughput performance is
very close to that with perfect feedback. As D increases,
the quantized mean conveys less precise information about
the instantaneous state of the channel. Consequently, the
performance of mean feedback deteriorates with an increase
in D.

For large a (a ≈ 1) the channel does not change much
and mean feedback receives 6 bits of channel information
while quantized direction feedback receives 6

D bits of channel
information. Mean feedback therefore performs better than
quantized feedback for large a. As a decreases, the quality of
the feedback decreases and consequently the average through-
put offered by mean feedback decreases. Note that a large a
(higher memory) can reduce the feedback to achieve the same
throughput. For a = 0, the channel changes every transmission
and for a large value of D, the performance of mean feedback
approaches that of the no-feedback case. The performance of
quantized feedback does not depend on the value of a, and
therefore its throughput is unchanged with an increase in a.

VII. CONCLUSIONS

We investigate the capacity of an general multiple trans-
mit antenna channel with perfect channel knowledge at the
receiver and partial/limited channel information at the trans-
mitter. We derive a necessary and sufficient condition for
beamforming to be capacity achieving in such systems. Based
on this general condition, a set of simplified conditions are pre-
sented to help in determining the optimality of beamforming.
These conditions are universal - applicable to all partial/limited
feedback schemes in all ergodic fading channel conditions
irrespective of the number of transmit antennas or transmit
power. We demonstrate that the conditions can be used to
derive previous results on the optimality of beamforming
for several different partial/limited feedback schemes. The
conditions can also be used to determine if beamforming is
optimal in cases where optimality results are unknown. We
demonstrate this with the quantized mean feedback scenario.
An extension of the universal optimality condition to MIMO
systems is provided in [25]. With Monte Carlo simulations,
we also provide some numerical results comparing quantized
feedback and mean feedback.
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