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Abstract—We show that the exact number of spatial degrees that even if communication links are introduced between the
of freedom for a two user nondegenerate (full rank channel two transmitters as well as between the two receivers the
matrices) MIMO Gaussian interference channel with My, M>  pighest multiplexing gain achievable is equal to one. These
(respectively) antennas at transmittersl, 2 and Ny, N> antennas o . .
at the corresponding receivers, and perfect channel knowl- results are somewhat surprising aS.It can be shown that with
edge at all transmitters and receivers, ismin{M; + M, Ny + ideal cooperation between transmitters (broadcast channel)
N», max(Mi, N2), max(M2, N1)}. A constructive achievability —or with ideal cooperation between receivers (multiple access
proof shows that zero forcing is sufficient to achieve all the channel) the maximum multiplexing gain is equal to 2. A
available degrees of freedom on the two user MIMO interference number of challenging questions arise in a wireless network
channel. This is in contrast to the MIMO X channel where the . L . . . .
combination of zero forcing, dirty paper coding, and successive with distributed nodes and with m“'t'p'? (possibly Va.ry'ng
decoding schemes is shown to achieve more degrees of freedorfiCrOSS USers) antennas at each transmitter and receiver. For

than are possible with spatial zero forcing [1] alone. We also example:
study a share-and-transmit scheme and show how the gains of
transmitter cooperation are entirely offset by the cost of enabling

that cooperation so that the available DoF are not increased. o What is the maximum multiplexing gain in distributed
MIMO systems?
|. INTRODUCTION « How can this multiplexing gain be shared among users?

« |Is spatial zero forcing optimal for achieving all the avail-
able multiplexing gain, or is it possible to use dirty paper
coding and successive decoding principles to achieve
more multiplexing gain than is possible with spatial zero
forcing alone?

« How does the multiplexing gain depend on the number
of messages in the system ?

How does limited cooperation between distributed nodes
affect the spatial degrees of freedom?

Multiple input multiple output (MIMO) systems have as-
sumed great importance in recent times because of their
remarkably higher capacity compared to single input single
output systems. It is well known [2]-[4] that capacity of a
point to point (PTP) MIMO system with\/ inputs and N
outputs increases linearly asin(M, N) at high SNR. For
power and bandwidth limited wireless systems, this opens
up another dimension - “space” that can be exploited in a*
similar way as time and frequency. Similar to time division
and frequency division multiplexing, MIMO systems present
the possibility of multiplexing signals in space. Spatial di- In this paper, we focus on the two usgv/;, Ny, Ms, No)
mensions are especially interesting for how they may BéIMO interference channel where transmittér with A,
limited by distributed processing as well the amount of channehtennas has a message for receivarnth N, antennas, and
knowledge. Previous work has shown that in the absencet@nsmitter2 with M, antennas has a message for receiver
channel knowledge, spatial DoF are lost [5], [6]. Multiuse?2 with N, antennas. We develop a MIMO multiple access
systems, with constrained cooperation between inputs/outpcitsnnel (MAC) outerbound on the sum capacity of this
distributed among multiple users, are especially challengibiMO interference channel. The outerbound is used to prove
since, unlike PTP case, joint processing is not possible atconverse result for the maximum number of degrees of
inputs/outputs. The available spatial DoF are affected by tireedom. We also provide a constructive proof of achievability
inability to jointly process the signals at the distributed inputsf the degrees of freedom based on zero forcing. We show
and outputs. 7] investigated DoF as a function of distributedhat the innerbound and the outerbound are tight, thereby
and partial side information for multiple access (MAC) andstablishing the precise number of degrees of freedom on
broadcast (BC) channels. The two user interference chantred MIMO interference channel asin{M; + Ms, N; +
with single antennas at all nodes is considered by Hos¥,, max(Mj, Ny), max(Ma, No)}. We also consider a simple
Madsen [7], [8]. It is shown that the maximum multiplexingcooperative scheme to understand why transmitter cooperation
gain is only equal to one even if cooperation between tmeay not increase DoF. Through this simple scheme, we are
two transmitters or the two receivers is allowed via a noisgble to show how the benefits of cooperation are completely
communication link. Nosratinia and Host-Madsen [9] showffset by the cost of enabling it.
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In order to isolate the impact of distributed processing frohj€ Output vector

channel uncertainty, we assume that channel state is fixed and yhew _ (V v T)_
. . - HVH
perfectly known at all transmitters and receivers. Also, we
assume that the channel matrices are sampled from a r{aBing generalized Moore-Penrose inverse) and ignoring the
scattering environment. Therefore we can ignore the measuego gain channels result in thein(M, N) parallel channels
zero event that some channel matrices are rank deficient. Jtpnew, ., _ new, - . .
is well known that the capacity of acalar additive white ¥ (@) = Vx () + N0, 1<i <min(M,N), (5)
Gaussian noise (AWGN) channel scaled@g SN R) at high  whereN"®W(;) ~ A/(0, \;) are Gaussian noise terms akds
. -1

SNR. On the other hand, for a single user MIMO channtt:“eith diagonal term of Ve V! . The noise terms may

with M inputs andN outputs, the capacity growth rate Car})e correlated across different channels but the correlations are

be shown to bemin(M, N)log(SNR) at high SNR. This . O ;
. . ; : inconsequential since each channel is encoded and decoded
motivates the natural definition of spatial DoF as: L .
separately. Dividing power equally among thein(M, N)

1
VuY

02 lim Cx(p) B channels, we can achieve

p—oo log(p)’ min(M,N) ) 1
whereCx(p) is the sum capacity (just capacity in case of pTH(MAC) > plin;o m Z log (1 + mm(]\/[N))\2>
channels) at SNR. In other words, Dok represent the max- =1 ’ ’
imum multiplexing gain[4] of the generalized MIMO system.
For PTP case(M, N) DoF are easily seen to correspond to = lim Toa(7) [min(M, N') log(p)+
the parallel channels that can be isolated using SVD, involving min(M.N)
joint processing at thé/ inputs andN outputs, i.e. ' 1 .

Z 10g ()M]\m)} :mln(M7N)
n(PTP) = min(M, N) 2 i=1 g ’

Note that the channel gains or the exact power allocation does

not affect the DoF as long as the SNR on each channel is
The MAC channel is an example of a MIMO system wherproportional top.

cooperation is allowed only between the channel outputs. LetCombining the converse and the achievability, we have

the MAC consist of/V outputs controlled by the same receiveestablished that(M AC) = min(M; + M, N).

and2 users, each controlling/; and M5 inputs for a total of

M = M + M, inputs. For the MAC, the available DoF areB' The Broadcast Channel

A. The Multiple Access Channel

the same as with perfect cooperation between all users. ~ The BC channel is an example of a MIMO system where
cooperation is allowed only between the channel inputs. Let
n(MAC) = n(PTP) = min(M; + M>, N). (3) the BC consist of\/ inputs controlled by the same transmitter

. . . . and?2 users, each controllingy; and N, outputs for a total of
While the capacity region of the MIMO MAC is well known N = N, + N, outputs. In a similar fashion as the MAC, it is

and the spatial multiplexing gain has also been explored in

revious work, we include the following constructive proof té)OSSible to show that by ZF at the BC transmittain (17, ')
b ' . . 9 . P .parallel channels can be created, so that the total DoF are the
introduce zero forcing (ZF) notation which will be useful i

the derivation of our main result for the interference channeﬁ?me as with perfect cooperation between all the users.
ZF, which is normally a suboptimal strategy, is sufficient in n(BC) = n(MAC) = n(PTP) = min(M, N). (6)
this case (as well as in MIMO BC channel) to utilize all DoF.
Converse The converse is straightforward because, for the . . )
same number of inputs and output§MAC) < 5(PTP) = ConS|der.ar(Ml,N1),(MQ,NQ) mterfere'nce channel with
min(M; + Ma, N). In other words, the lack of cooperation afWo transmittersry and T3, and two receivers; and Ry,

the inputs can not increase DoF. whereT; has a message fdk; only and7, has a message
Achievability The N x 1 received signalY at the MAC for Ry only. T andT; haveM; and M, antenngs respectively.
receiver R, and Ry have N; and N, antennas respectively. We denote
the channels for link 1 withV;x; channel gain matriff(!),

for link 2 by NoxM, matrix H®) | for the channel betweef,

and R, by NoxM; channel matrixZ(®), and betweerf, and

R1 by NyxM, matrix Z(1). We assume that the channels are
whereN is the N x 1 AWGN vector, H*) is the N x M;, non-degenerate, i.e., all channel matrices are full rank. Figure
channel matrix for usek, andX %) is the M;, x 1 transmitted 1 shows an illustration of this interference channel. Without
vector for userk. Vi = V(H"'") is the (M, + M) x N loss of generality we arrange the links so that link 1 always
matrix obtained by vertically stacking the matricl$!)’ and has the most number of antennas either at its transmitter or
H®' . Similarly, Vx = V(X)) is the (M + M) x 1 matrix receiver, i.emax(Mi, N1) > max(Ma, N).

I1l. I NTERFERENCECHANNEL

2
Y=Y HOX® 4 N=Vu'Vx+2, ()
k=1
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Fig. 1. (M;1,N1), (M2,N2) Interference channel Fig. 2. Achievability proof for (/1,N1) , (M2,N2) Interference channel

WhenM1 2 MQ,Nl,NQ

A. Achievability: Innerbound on the Degrees of Freedom

For the (M;, N1), (M2, N,) interference channel we Proveg - converse: Outerbounds on the Degrees of Freedom
the following innerbound on the available degrees of freedom.

n(INT) > min(My, Ny) For the (M7, N1), (Ms, N») interference channel we prove
+ min(Msy — Ny, No)* 1(M; > Ny) the following outerbound on the available degrees of freedom.
+ min(Mg,Ng—M1)+ 1(M1 <N1), (7)
where 1(.) is the indicator function ar{d)™ = max(0, z). n(INT) < min{an M N1+ Na max(My,Nz).masx(Mz,N1) }

1) Sketch of Achievability ProofAccording to our model,
either M; > Nj, My, Ny or Ny > M, Ms, Ns. First, we ) ] o i )
consider the case whel; > Ny, My, Ny. To start with, notlt;e that a trivial outerbound is obtained
Step 1:From SVD, Z® = UAVH, where U and V are from the PTP case, i.)(INT) < min(M; + My, Ny + N).
NoxN, and M, xM,; unitary matrices respectively andis the Ir_ldeed this outerbound coincides with the innerbound when
diagonal matrix of singular values &?). By applying SVD €ither min(My, My) > Ny + Ny or min(Ny, Np) > My +
to Z®, we decompose the channel intain(M;, Na) parallel Ms. In ggneral, while the capacn)_/ region of the interference
channels. Therefore, there até — N, effective inputs af’; cha}nnel is not known even with smglg antennas at all nodes,
that are not connected #,, and do not cause any interferenc&@rious outerbounds have been obtained [10]-[12] that have
to Ry. been useful in finding the capacity region in some spema! cases
Step 2:Similarly, applying SVD toZ (V) createsnin(Ms,, N;) [13], [14]. Most of the existing outerbounds are for single
parallel connections. There aféf, — N;)* effective inputs anténna systems.
at T, that are not connected t®;, and therefore do not cause For our purpose, we develop a genie based outerbound for
any interference withR?;. MIMO interference channel where the number of antennas at
Step 3:For link 1, all N; effective outputs are used by;. either receiver is> the number of transmit antennas at the
Step 4:13 transmits toR; usingV; effective inputs such that interfering transmitter, i.e. eithé¥; > M, or Ny > M;. This
at most(N; + N, — M, )™ effective inputs that are active areouterbound is the key to the tight converse needed to establish
also connected td,. the number of DoF. Note that for this section, since we do not
Step 5:Link 2 uses only those effective inputs/outputs that argeed the assumption thatax(M;, N1) > max(M,, N3), the
not connected to an active effective input/output of link 1. proof for the casesV; > M, or N, > M, is identical.
Step 6:Link 1 is left with IV, effective inputs andV, effective Theorem 1: For the (M, N,), (M, N») interference

outputs, i.e. the number of DoF for link % N;. channel with N; > M,, the sum capacity is bounded

Step 7:For link 2, Ty is left with (M, — N7 )™ effective inputs above by that of the correspondingi, Ms, Ny) MAC
while R is left with min(M; — Ny, N») effective outputs, i.e. channel with additive nois& ~ A7(0,In) modified to
the number of DoF for link 2= min(Ms — Ny, min(M; — N N(O K’) where

Nl,NQ))+ = mzn(Mg — Nl,Ng)+ since My > Ms by ’

assumption. Hence proved.

For the case whemN; > My, Ms, N,, the same logic is  pr _ In — ZM (Z(I)Tz(l))_l ZWT 4 ozMW 7'
followed. Then, the total number of DoF igin(M;, Ny) + ’
min(Ms, Ny — My)*. By adding the results from the two _ min( 1 1 )
cases, we obtain a general achievable proof of (8). An illus- 02, (ZM) g2  (H®) )"

tration of this proof is shown in figure 2. Proof:



Let us define lossless operation that leads to:

—1
NGO ~ N <O,IN A (Z“”Z(l)) Z(l)T) y(@new _ x@new (A(z))_l N® ®)
-1
Ny~ W (O’Z(l) (Z(mz(l)) Z0" - az(1>z(1>*> where X (2NeW _ y/(2)x (2),
To save space we allow some notation abuse as we use
. €8}/ 2650 . ; .
Ne N (O’O‘Z Z ) ’ generalized inverse and ignore the terms that correspond to

as threeN x 1 jointly Gaussian and mutually indeIOendenFero dialgonafll }c%har’;\Tel gains mmﬁ Note that thgs?fchannelsd
random vectors. The positive semidefinite property of tHfd € USEless Toh,. AISO, we use the same symbol for rotate

respective covariance matrices is easily established from Hffgstons of noise that are statistically gquwalent.
definition of c. Step 5:Next, we show thai?; can obtain a stronger channel

to X(2N€W gg that if R, can decode it, so caR;. To this

Without loss of generality we assume ¢
end, letR; use ZF to obtain:

N(l) — Ng1)+N£1)+N£1) .
N = N0 N yONew _ x(2)New , y/(2) (Zu)rz(l)) ZWOIND)'

. (2)new 2)
Furthermore, becaud¥™ andN(?) have the same marginal X t+aoN

distributions and the capacity of the interference channel does , .
not depend on the correlation betwedH!) and N2, the Now both R; and R, have a diagonal channel with input

: N . 2)New o : ;
capacity region is not affected if we assume X2 gnd uncorrelated additive white noise components
on each diagonal channel. Moreover, the strongest channel for
NO — N®, R, has noisem. However the noise on any channel
for Ry is only d“?/f/%ich is smaller. Thus, we argue once again

Since a part of the proof is similar to the corresponding,at r, can locally generate noise and add it to its received
proof for the single antenna case, we will summarize thggna) to create a statistically equivalent noise signal as seen
common steps, and emphasize only the part that is umqueongQ_ In other words,R, has a less noisy channel
MIMO interference channel. Consider any achievable sche§gy therefore can decode any signal tRatcan. SinceR,
for any rate point within the capacity region of the interferencgy, decodel’’s message by assumption, we have the MAC

channel, so thak; and R, can correctly decode their intended, jterbound. -
messages from their received signals with sufficiently high o previous theorem leads directly to the following corol-
probability.

- iy : , ary:
N (1)
Step 1:We replace the original additive noi®é") at R; with Corollary 1: For the (My, 1), (Ma, Ny) interference

N®)" as defined in Theorem 1. We argue that this does NQtannel the number of spatial degrees of freedghiT) <

make the capacity region smaller because the original noise
statistics can easily be obtained by locally generatin arq[1 x(Ma, Ny).
y y y 9 9 Proof: If M, < N; the sum capacity of the interference

. . (1) . ..
adding noiseN,, _at Rl' _Therefore, since; was ongmal_ly channel is upperbounded by the multiple access channel with
capable of decoding its intended message with nbise, it .
o R ) N, receive antennas. Therefore, fdd, < N; we must
is still capable of decoding its intended message Wit .
Step 2:Suppose that a genie providBs with side information have n(INT) < Ny. Now, if Mp > Ny, then let us add
P 2-SUpp 9 P more antennas to receivdr so that it has a total of\/,

ini i 1) gj () s i - - "~ .
contalmng(lghe ent!re codeworl ™. Slncex Is indepen receive antennas. Additional receive antennas cannot hurt, so
dent of X", R, simply subtracts out the interference fron}he converse argument is not violated. However, with
. - . ) - - ) X - . X H
its received signal. Thus, the chani®P) can be eliminated receive antennas at receiveronce again the multiple access

without making the capacity region smaller. upperbound applies to the new interference channel. The

Step 3:By our assumpuoanl can dgcode its own Message, \mper of degrees of freedom is therefore upperbounded as
and therefore it can subtrat(!) from its own received signal INT) < M, when M, > N,. Combining the two cases, we

as well. In this manner, after the interfering signals have be ve the result of the corollany(INT) < max(Ms, N;). ®

subtracted out we have Simply by switching the arguments to user 2 instead of
YO = z®x® 4 NO user 1, Corollary 1 leads to another upperboundNT) <
Y@ — H@X® | N®, max (M7, Ny) that holds for allM;, Ma, N1, No. Combining

the two upperbounds of the Corollary and the trivial PTP

To complete the proof we need to show thaRif can decode upperbounds we have the converse result. ]

X2 then so canR;. This would imply thatR; can decode Finally we show that the achievable innerbound and the

both messages, hence giving us the MAC outer bound.  converse outerbound are always tight. The following theorem

Step 4:Without loss of generality, let us perform SVB() = presents the main result of the paper.

UP APV on the channel betweeh, and R,. Thisis a  Theorem 2: For the (M, Ny),(M,, N;) interference



channel the number of spatial degrees of freedom clear that the available DoF are severely limited by the lack
of transmitter cooperation in the interference channel. As an

n(INT) - = m?n(Ml’Nl) example, consider the interference channel witly,, N;) =
+  min(My — Ny, No)™ 1(M; > Ny) (n,1) and (Ms, N2) = (1,n). From the preceding section we
+  min(My, No — My)" 1(M; < Ny) know there is only one available degree of freedom in this

1D { My 4 Ma, Ny + Nomax(M, Na)smax(Ma, N1 )} channel. However, if full cooperation between the transmitters

Proof: The proof is found by verifying directly that thelS POssible the resulting BC channel h&s/, N1, Na) =
number of degrees of freedom obtained from the inner af@l + 1, 1,7). The number of DoF is now + 1. Therefore,
outerbounds always match. The resulting numbeirom the transmitter cooperation would seem highly desirable. Rather

n(INT) inner and outerbounds is listed for all cases in thigHrPrisingly, it has been shown recently [7] that for the
(1,1), (1,1) interference channel, allowing the transmitters to

following figure. [ | ] ! :
cooperate through a wireless link between them (even with
full duplex operation), does not increase DoF. For MIMO
interference channels, as suggested by the example above, the
potential benefits of cooperation are even stronger and it is
=n [ = [Noawionz] not known if transmitter cooperation can increase DoF. The

capacity results of [7] do not seem to allow direct extensions
to MIMO interference channels.

To gain insights into the cost and benefits of cooperation in
a MIMO interference channel, we consider a specific scheme
where transmitters first share their information in a full duplex
mode as a MIMO channel (step 1) and subsequently transmit

together as BC channel. We will refer to this scheme as the
Thus we have the exact number of degrees of freedom #Mare-and-transmit scheme.

all possibleM;, M5, N1, No. Some examples are provided in

|D=M1+M2|

D=N1

the following table. A. Degrees of Freedom with Share-and-Transmit

(My,Ny) | (Mo, No) n(INT) Consider an(M, N), (M, N) interference channelM <
(1,1) (1,1) 1 N). Also assume that each transmitter is sending information
(1,2) (1,2) 2 with rate R. Note that while we make the preceding simpli-
(2,1) (2,1) 2 fying assumptions for simplicity of exposition, the following
(1,2) (2,1) 1 analysis and the main result extend directly to the general case
(3,2) (2,3) D) of unequal number of antennas and unequal rates.
(2,3) (2,3) 3 From (8), we know that the number of DoF for this interefer-
(2,3) (1,3) 3 nce channel with no transmitter cooperatiomiim(M, N) +
2,2) 3.2) 5 min(M, N — M)t = M +min(M, N — M)*. For the share-
(n,m) (m, n) min(m, ) a}nd-transmlt spheme, we co.mpu.te DoF as follows. .We first
(m, n) (m,n) | min(2m, n)(n > m) find the capacity of the sharing link'; and the capacity of

transmissiorC';. Then, we find the total capacity of the system
A couple of observations can be made about the spatial degreepy evaluating the total amount of data transmitted divided
of freedom. First, there is a reciprocity in tha{/NT) is by the total time it requires to transmit this data, i.e.
unaffected if M, and M- are switched withN; and N

. 2R
respectively. In other words, the degrees of freedom are C=—4—57 - 9)
unaffected if the directions of the messages are reversed. . T ¢
However, notice thay(INT) may change if onlyM; and piging by 1og(SNR) where SNR is large, we obtain the total
N7 are switched whileM, and N, are not switched. Finally number of DoF as
from the constructive achievability proof one can see that the
available degrees of freedom can be divided among the two 1}, ¢ - 2 .
users in all possible ways so that the sum(gNT) and the ~ SNE—co g SNR  5omies + Sormansmi

individual degree of freedom allocations are within the indi- _ o (10)
vidual maxima ofmax (M, Ny ) for user 1 andnax(Ma, N») The number of DoF for the sharing link is that of MIMO
for user 2. PTP channel withM transmit and receive antennas

min(M, M) = M. After transmitters share their informa-
IV. EFFECT OF TRANSMIT COOPERATION ON THE NUMBER tion, they can fully cooperate as(@M, N, N) BC channel.
OF DEGREES OF FREEDOM The number of DoF for this channel isin(2M,2N) =
Comparing the interference channel and the BC chanriehin(M, N). Therefore (10), which gives the total num-
obtained by full cooperation between the transmitters, it ier of DoF for the share-and-transmit scheme, becomes



Distance=1

11

0r

In fig. 3, we fix the distance between each transmitter and
receiver to be equal to that betweEnandTs. In this case, the

< transmitters allocate the same resources to their sharing link as
| to their transmission links. Fig. 3 indicates that the share-and-
e . d transmit scheme always has a lower rate for the same transmit
power than the no cooperation scheme, which agrees with our
° l result in section V.
| In fig. 4, the distance between each transmitter and receiver
. o | is bx that betweenl; and 75. Note that in this case, the
sharing link is stronger than the transmission links since it
85 1 R 25 3 does not suffer any path loss whereas the transmission links
do. Fig. 4 shows that share-and-transmit scheme outperforms
the no cooperation scheme. As expected, when the sharing link
is stronger, cooperation between transmit nodes results in per-
formance improvement over the no cooperation scheme. Note

Rate
~
o

Fig. 3. Rate vs log(Transmit Power) with same distance.

35 ‘ e : that while our simulations are for the interference channel,
Sl o | similar results have been obtained for the MAC in [15].

2 ° ; VI. CONCLUSIONS

ey ’ < 7 We investigate the DoF for the MIMO interference channel.
1) ) l The distributed nature of the antennas significantly limits DoF.
el i | For an interference channel with a total@ftransmit antennas

' * and a total of NV receive antennas, the available number of
s 1 s 3 s 3 DoF can vary fromN to 1 based on how the antennas are

log(Transmit Power)

distributed among the two transmitters and receivers. Through
an example of a share-and-transmit scheme, we show how
Fig. 4. Rate vs log(Transmit Power) withx distance for transmitting.  the gains of transmitter cooperation are entirely offset by the
cost of enabling that cooperation so that the available DoF
are not increased. Our result is in a sense a negative result,
because similar to [8] it shows that on the MIMO interference
channel there is nothing beyond zero forcing as far as spatial
multiplexing is concerned.

Therefore, we conclude that (for this specific scheme) trans-An exception to this pessimistic inference is recently shown
mitter cooperation in the high SNR regime does not providey Maddah-Ali, Motahari and Khandani in [1] for the two
any advantage to the number of DoF in the MIMO interferenasser MIMO X channel with three antennas at all nodes.
channel. The MIMO X channel is physically identical to the MIMO
interference channel. However, in the interference channel
V. SIMULATION RESULTS there are only two messaged/{, from transmitter1 to
In this section, we verify the result discussed in the previowsceiverl and M, from transmitter2 to receiver2) whereas
section, and discuss the effect of transmitter cooperation whienthe X channel there are two additional messagks,;
the sharing links between the transmitters are stronger than fleen transmitterl to receiver2 and M5 from transmitter2
transmission links. For simplicity, we consider4 1), (4,1) to receiverl. Maddah-Ali, Motahari and Khandani propose a
interference channel, and plot the rate versus the logarittmovel scheme, that we refer to as the MMK scheme. The MMK
of the transmit power. Note that we assume the noise to feheme combines zero forcing with dirty paper encoding and
0-mean unit-variance Gaussian additive noise. successive decoding and is shown to providelegrees of
The share-and-transmit scheme is implemented as explaifie®dom with only3 antennas at all nodes. The result of [1]
in section IV-A. For the no cooperation schenig, has a can be further strengthened to achiéwdegrees of freedom on
message foiR; only and dedicates its available power to itshe (2,3,2,3) MIMO X channel as well as on th@, 2, 3, 2)
link with R;. The same is true fdf, and R;. Note that since MIMO X channels as well. The interesting conclusion is that
the transmit signal space is much larger than the receive signdilile we prove that zero forcing is optimal in terms of degrees
space, I} can decompose its channel wify as well as its of freedom on the interference channel, it is not optimal on
channel withR, to create one non-interfering link t8; and the two user MIMOX channel where additional degrees of
another toR,. T is able to achieve this as well, and eaclreedom can be obtained by a combination of zero forcing
receiver can then decode its message without interferencewith dirty paper coding and successive decoding [1].

2M min(M,N) __
JW—#(M,N) = M. Note that,

M + min(M, N — M)* > M. (11)
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