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Abstract— We provide achievability as well as converse
results for the degrees of freedom region of a MIMO X
channel, i.e., a system with two transmitters, two receivers,
each equipped with multiple antennas, where independent
messages need to be conveyed over fixed channels from each
transmitter to each receiver. The inner and outerbounds on
the degrees of freedom region are tight whenever integer
degrees of freedom are optimal for each message. If all
nodes have equal number of antennas M > 1 and channel
matrices are non-degenerate then the degrees of freedom
η�

X = 4
3
M . If the channels vary with time/frequency then

the X channel with single antennas (M = 1) at all nodes
has 4/3 degrees of freedom. Thus, the MIMO X channel
has non-integer degrees of freedom when M is not a
multiple of 3. Simple zero forcing without dirty paper
encoding or successive decoding, suffices to achieve the
4
3
M degrees of freedom in all cases. The key idea for

the achievability of the degrees of freedom is interference
alignment - i.e., signal spaces are aligned at receivers where
they constitute interference while they are separable at
receivers where they are desired. With equal number of
antennas at all nodes, we also explore the increase in
degrees of freedom when some of the messages are made
available to a transmitter or receiver in the manner of
cognitive radio.

I. INTRODUCTION

Previous work by several researchers has determined
the degrees of freedom for various multiuser MIMO
systems. The single user point to point MIMO channel
with M1 transmit and N1 receive antennas is known
to have min(M1, N1) degrees of freedom [1]. For the
two user MIMO multiple access channel (MAC) with
N1 receive antennas and M1,M2 transmit antennas at
the two transmitters, the maximum multiplexing gain is
max(M1 + M2, N1) [2]. Thus, the multiplexing gain
is the same as the point to point MIMO channel with
full cooperation among all transmit antennas. The two
user broadcast channel (BC) with M1 transmit antennas
and N1, N2 receive antennas has a maximum multi-
plexing gain of max(M1, N1 + N2) which is also the
same as the point to point MIMO channel obtained
with full cooperation between the two receivers [3]–
[5]. The multiplexing gain for two user MIMO inter-
ference channels is found in [6]. It is shown that for
a (M1, N1,M2, N2) MIMO interference channel (i.e. a

MIMO interference channel with M1,M2 antennas at the
two transmitters and N1, N2 antennas at their respective
receivers), the maximum multiplexing gain is equal to
min (M1+M2,N1+N2,max(M1,N2),max(M2,N1)).

In this work we provide achievability as well as
converse arguments for the degrees of freedom region of
a MIMO X channel, i.e., a system with two transmitters,
two receivers, each equipped with multiple antennas,
where independent messages need to be conveyed from
each transmitter to each receiver. We also consider the
benefits of cognitive message sharing at the transmitters
and/or receivers for the MIMO X and interference
channels.

A. The MIMO X channel
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Fig. 1. MIMO X Channel

The MIMO X channel is shown in Figure 1 and is
described by the input output equations:

Y[1] = H[11]X[1] + H[12]X[2] + N[1]

Y[2] = H[21]X[1] + H[22]X[2] + N[2]

where Y[1] is the N1 × 1 output vector at receiver 1,
Y[2] is the N2 × 1 output vector at receiver 2, N[1]

is the N1 × 1 additive white Gaussian noise (AWGN)
vector at receiver 1, N[2] is the N2×1 AWGN vector at
receiver 2, X[1] is the M1×1 input vector at transmitter
1, X[2] is the M2×1 input vector at transmitter 2, H[11]

is the N1×M1 channel matrix between transmitter 1 and
receiver 1, H[22] is the N2×M2 channel matrix between
transmitter 2 and receiver 2, H[12] is the N1 × M2

channel matrix between transmitter 2 and receiver 1,



and H[21] is the N2 × M1 channel matrix between
transmitter 1 and receiver 2. As shown in Figure 1 there
are four independent messages in the MIMO X channel:
W11,W12,W21,W22 where Wij represents a message
from transmitter j to receiver i.

We assume the channel matrices are generated from a
continuous probability distribution so that, almost surely,
any matrix composed of channel coefficients will have
rank equal to the minimum of the number of its rows and
columns. Perfect knowledge of all channel coefficients
is available to all transmitters and receivers. With the
exception of Theorem 5, we assume throughout that the
values of the channel coefficients are fixed throughout
the duration of communication.

The sum power of all transmitters is assumed to
be equal to ρ. We indicate the size of the message
set by |Wij(ρ)|. For codewords spanning n channel
uses, the rates Rij(ρ) = log |Wij(ρ)|

n are achievable
if the probability of error for all messages can be
simultaneously made arbitrarily small by choosing an
appropriately large n. The capacity region CX(ρ) of
the X channel is the set of all achievable rate tuples
R(ρ) = (R11(ρ), R12(ρ), R21(ρ), R22(ρ)).

We define the degrees of freedom region for the MIMO
X channel as:

DX =
{

(d11, d12, d21, d22) ∈ R
4
+ : dij = lim

ρ→∞
Rij(ρ)
log(ρ)

}

The total degrees of freedom η�
X is defined as:

η�
X

�
= max

DX
(d11 + d12 + d21 + d22)

The MIMO X channel is especially interesting be-
cause it is generalizes the interference channel to allow
an independent message from each transmitter to each
receiver. An interesting coding scheme is recently pro-
posed by Maddah-Ali, Motahari and Khandani in [7] for
the two user MIMO X channel with three antennas at all
nodes. Just as the MIMO X channel combines elements
of the MIMO broadcast channel, the MIMO multiple
access channel and the MIMO interference channel
into one channel model, the MMK scheme naturally
combines dirty paper coding, successive decoding and
zero forcing elements into an elegant coding scheme
tailored for the MIMO X channel. The results of [6]
establish that with 3 antennas at all nodes, the maximum
multiplexing gain for each of the MIMO IC, MAC
and BC channels contained within the X channel is 3.
However, for the MIMO X channel with 3 antennas at
all nodes, the MMK scheme is able to achieve 4 degrees
of freedom. The MMK scheme also extends easily to
achieve �4M/3� degrees of freedom on the MIMO X
channel with M antennas at each node. Thus, the results

of [7] show that the degrees of freedom on the MIMO
X channel strictly surpass what is achievable on the
interference, multiple access and broadcast components
individually.

Several interesting questions arise for the MIMO X
channel. First, we need an outerbound to determine
what is the maximum multiplexing gain for the MIMO
X channel, and in particular, if the MMK scheme is
optimal. Second, we note that neither dirty paper coding
nor successive decoding have been found to be necessary
to achieve the full degrees of freedom on any multiuser
MIMO channel with perfect channel knowledge. Zero
forcing suffices to achieve all degrees of freedom on
the MIMO MAC, BC, and interference channels. So the
natural question is whether zero forcing also suffices to
achieve all the degrees of freedom for the MIMO X
channel. Third, we note that there are no known results
for the optimality of non-integer degrees of freedom
for any non-degenerate wireless network with perfect
channel knowledge. The results of [7] have lead to
the conjecture that �4/3M� is the optimal number of
degrees of freedom for the MIMO X channel with M
antennas at each node, which reinforces the intuition
that degrees of freedom must take integer values. It is
therefore of fundamental interest to determine if this
intuition is correct or if indeed noninteger degrees of
freedom can be optimal for the X channel. Finally, while
the interference channel does not seem to benefit from
cooperation through noisy channels between transmitters
and receivers, it is not known if shared messages (in the
manner of cognitive radio [8]) can improve the degrees
of freedom on the MIMO X and interference channels.
These are the open questions that we answer in this work.

Notation: co(A) is the convex hull of the set A. R
n
+

and Z
n
+ represent the set of n-tuples of non-negative real

numbers and integers respectively.

II. MAIN RESULTS

We summarize the main results of this work in Theo-
rems 1 to 5. Due to space constraints, we refer the reader
to the full paper [9] for the detailed proofs.

Theorem 1: DX ⊂ DX
out where the outerbound on

the degrees of freedom region is defined as follows.

DX
out

�
=

{
(d11, d12, d21, d22) ∈ R

4
+ :

d11 + d12 + d21 ≤ max(N1,M1)
d11 + d12 + d22 ≤ max(N1,M2)
d11 + d21 + d22 ≤ max(N2,M1)
d12 + d21 + d22 ≤ max(N2,M2)
d11 + d12 ≤ N1

d21 + d22 ≤ N2



d11 + d21 ≤ M1

d12 + d22 ≤ M2}
Note that the outerbound allows all real non-negative
values for dij that satisfy the 8 inequalities. The bound-
ary values of dij , e.g., those that maximize ηX may
not be integers. This is the main distinction between the
outerbound and the innerbound presented in Theorem 3.

While the set DX
out provides an outerbound for all

achievable dij on the MIMO X channel, maximizing any
weighted sum of dij over DX

out is a linear programming
problem. The following theorem presents an outerbound
ηout for the total degrees of freedom η�

X in closed form
by explicitly solving the linear programming problem.

Theorem 2:

η∗out
�
= max

DX
out

(d11 + d12 + d21 + d22)

= min{M1+M2, N1+N2,max(M1,N1)+max(M1,N2)+M2
2 ,

max(M2,N1)+max(M2,N2)+M1
2 ,

max(M1,N1)+max(M2,N1)+N2
2 ,

max(M1,N2)+max(M2,N2)+N1
2 ,

max(M1,N1)+max(M1,N2)+max(M2,N1)+max(M2,N2)
3 }

Note that all 7 terms in the min expression of Theorem
2 are necessary in general. The following examples with
different values of (M1,M2, N1, N2) illustrate this point,
as in each case only one of the 7 bounds is tight.

(1, 1, 2, 2) ⇒ ηout = 2
(4, 8, 6, 10) ⇒ ηout = 11
(3, 3, 3, 3) ⇒ ηout = 4.

For completeness, we now state the innerbound from
[10], [11]. An alternate constructive proof of this inner-
bound is also presented in [9].

Theorem 3: DX ⊃ DX
in

�
= co

(DX
out ∩ Z

4
+

)
.

Several interesting observations can be made regarding
the schemes used in [9], [11], [12] to establish the
achievable degrees of freedom for the MIMO X channel.
First, these schemes do not require dirty paper coding or
successive decoding. Instead, as with the MIMO MAC,
BC and interference channels, the optimal achievability
schemes are based on simple zero forcing. The distin-
guishing feature of the MIMO X channel is the con-
cept of interference alignment. Interference alignment
refers to the careful choice of beamforming directions in
such a manner that the desired signals are separable at
their respective receivers while the interference signals
are aligned, i.e., the interference vectors cast overlap-
ping shadows. Overlapping of interference subspaces is
pointed out as a useful idea for the MIMO X channel by
Maddah-Ali, Motahari and Khandani in [10]. The first
explicit interference alignment scheme is developed in

[12] for the 2 user X channel. Interference alignment
is subsequently shown to achieve all the points within
the innerbound of Theorem 3 in [11], [9]. Interference
alignment is also found to be useful for the compound
broadcast channel in [13].

It has been conjectured that the integer innerbound
of Theorem 3 is the optimal degree of freedom region
for the MIMO X channel. Interestingly, we show in this
paper that the integer degrees of freedom innerbound
is not optimal. In fact it is the outerbound that is tight
in most cases as the optimal degrees of freedom take
noninteger values. For example consider the MIMO X
channel with M antennas at each node (where M is
not a multiple of 3). The maximum number of degrees
of freedom according to the integer innerbound equals
�4M/3� while according to the outerbound it is 4M/3.
For example, with M = 2 the integer innerbound leads
to only 2 degrees of freedom while the outerbound
suggests 2.66 · · · degrees of freedom. As we show in
Theorem 4 for all cases with M > 1 antennas at all
nodes, it is the outerbound that is tight.

Theorem 4: For the MIMO X channel with equal
number of antennas M1 = M2 = N1 = N2 = M > 1
antennas at all nodes the degrees of freedom

η� =
4
3
M. (1)

The key to the proof is to consider a 3 symbol extension
of the channel so that we have effectively a 3M × 3M
channel, over which we will achieve 4M degrees of
freedom. Note that we still assume the channel matrices
are fixed, so that the 3 symbol extension does not provide
us a new channel matrix over each slot.

For M = 1 we are also able to achieve the full
4/3 degrees of freedom if the channel coefficients are
time/frequency selective.

Theorem 5: For the MIMO X channel with single
antenna (M1 = M2 = N1 = N2 = 1) at all nodes
the spatial degrees of freedom η� = 4

3 per orthogonal
time/frequency dimension if the channel coefficients
are time/frequency varying and drawn independent and
identically distributed from a continuous distribution.

III. COOPERATION THROUGH INTERFERENCE

ALIGNMENT AND SHARED MESSAGES

Message sharing for the interference channel with sin-
gle antenna nodes has been studied recently by Devroye
and Sharif in [14] in the context of cognitive radio.
Exploring this idea further, we characterize the degrees
of freedom for the MIMO cognitive radio channel, i.e.
the MIMO interference channel when some messages
are made available in the manner of cognitive radio at
either the transmitters or the receivers. For simplicity we
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Fig. 2. Cognitive MIMO Interference Channels with η� = M .
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Fig. 3. Cognitive MIMO Interference Channels with η� = 2M .
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Fig. 4. MIMO X Channels with (a) Cognitive Transmitter and (b) Cognitive Receiver. In both cases, η� = 3
2
M for M > 1.

focus primarily on the cases with M1 = M2 = N1 =
N2 = M .

A. Cognitive MIMO interference channel

We refer to the interference channel with one message
shared between the two transmitters as the interference
channel with a cognitive transmitter. This channel is
often referred to as the cognitive radio channel and is
shown in Figure 2. Following cognitive radio termi-
nology, transmitter 1 is the primary transmitter whose
message for primary receiver (receiver 1) is known non-
causally to transmitter 2, the secondary transmitter. Sim-
ilarly, an interference channel with a cognitive receiver
could be defined as the scenario when the primary user’s
message is known to the secondary user’s receiver. Then
there is also the possibility that both the secondary
transmitter and secondary receiver have knowledge of

the primary user’s message. Theorems 6 and 7 establish
the total degrees of freedom on the MIMO interference
channel with cognitive transmitters and/or receivers.

Theorem 6: On the MIMO interference channel with
equal number (M ) of antennas at all nodes, the total
number of degrees of freedom is equal to M for each
of the following cognition scenarios (shown in Fig. 2).

1) W11 is made available non-causally to transmitter
2 (Fig. 2(a)).

2) W11 is made available to receiver 2 (Fig. 2(b)).
3) W11 is made available non-causally to transmitter

2 and also to receiver 2 (Fig. 2(c)).
Thus, there is no benefit (in terms of total degrees of

freedom) from sharing one user’s message on the MIMO
interference channel with equal number of antennas at
all nodes even if this message is shared with both the
transmitter and receiver of the other user. However, if



the nodes have different number of antennas then the
MIMO interference channel may indeed benefit from
cognitive message sharing. A simple example is the
(1, n, n, 1) case, i.e. transmitter 1 and receiver 2 have one
antenna each while receiver 1 and transmitter 2 have n >
1 antennas. Without message sharing this interference
channel has at most 1 degree of freedom. However,
if transmitter 1’s message W11 is made available non-
causally to transmitter 2, then clearly n degrees of
freedom can be achieved quite simply by transmitter
2 sending W11 to receiver 1 on the n × n channel
between them. Message sharing can also be useful for
the interference channel even with single antennas at
all nodes when channel matrices take certain specialized
structured forms as in [15].

Theorem 7: On the MIMO interference channel with
equal number (M ) of antennas at all nodes, the total
number of degrees of freedom is equal to 2M for each
of the following cognition scenarios (shown in Fig. 3).

1) W11 is made available non-causally to transmitter
2 and W22 is made available non-causally to trans-
mitter 1 (Fig. 3 (a)).

2) W11 is made available to receiver 2 and W22 is
made available to receiver 1 (Fig. 3 (b)).

3) W11 is made available non-causally to transmitter
2 and W22 is made available to receiver 1 (Fig. 3
(c)).

Next we explore the degrees of freedom of the MIMO
X channel with cognitive transmitters or receivers.

B. Cognitive MIMO X channel

Theorem 8: On the MIMO X channel with M > 1
antennas at all nodes, the total number of degrees of
freedom is equal to 3

2M for each of the following
cognition scenarios (shown in Fig. 4).

1) W11 is made available non-causally to transmitter
2 (Fig. 4 (a)).

2) W11 is made available non-causally to receiver 2
(Fig. 4 (b)).

Note that Fig. 4(a) is equivalent to the cognitive
X channel in [14]. It is interesting to note that the
degrees of freedom for the MIMO X channel increase
according to 4

3M for no shared messages→ 3
2M for

one shared message→ 2
1M for two shared messages

(provided the two shared messages are not intended
for the same receiver). The symmetry of the results
for degrees of freedom with cognitive transmitters and
cognitive receivers is also interesting as it points to
a reciprocity relationship between the transmitter and
receiver side cognitive cooperation.

IV. CONCLUSION

We characterize the degrees of freedom region for
the MIMO X channel, a system with two multiple
antenna transmitters and two multiple antenna receivers
where independent messages are communicated from
each transmitter to each receiver. The X channel is
especially interesting because the interference channel,
the multiple access channel and the broadcast channels
are special cases of this channel. Studying the X channel
reveals the importance of interference alignment and
multi-letter extensions of the channel, establishes that
degrees of freedom can take fractional values, and pro-
vides interesting insights into the benefits of cognitive
message sharing.
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