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Abstract—We consider a cognitive radio system where the
secondary transmitter varies its transmit power based on all the
information available from the spectrum sensor. The operation
of the secondary user is governed by its peak transmit power
constraint and an average interference constraint at the primary
receiver. Without restricting the sensing scheme (total received
energy, or correlation etc), we characterize the power adaptation
strategies that maximize the secondary user’s SNR and capacity.
We show that, in general, the capacity optimal power adaptation
requires decreasing the secondary transmit power from the peak
power to zero in a continuous fashion as the probability of the
primary user being present increases. We find that power control
that maximizes the SNR is binary, i.e., if there is any transmission,
it takes place only at the peak power level. Numerical results
for common spectrum sensing schemes show that the SNR and
capacity maximizing schemes can be significantly different.

I. INTRODUCTION

In recent years, increased dependence on diverse wireless
technologies has generated a huge demand for more band-
width. While the traditional ‘divide and set aside’ approach
to spectrum regulation ensures that the licensed (primary)
users cause minimal interference to each other, it has cre-
ated a crowded spectrum with most frequency bands already
assigned to different licensees [1]. The term ‘cognitive radio’
encompasses several techniques [2]–[7] that seek to overcome
the spectral shortage problem by enabling secondary (unli-
censed) wireless devices to communicate without interfering
with the primary users. Our work will exclusively focus on
the ‘interweave’ (interference avoidance) approach [4]–[7]
to cognitive radio, wherein the secondary radio periodically
monitors and intelligently detects occupancy in the different
frequency bands and then opportunistically communicates over
the spectrum holes with minimal interference to the active
primary users.

The main challenge to opportunistic communication lies
in striking a balance between the conflicting goals of mini-
mizing the interference to the primary users and maximizing
the performance of the secondary users [8], [9]. This issue
can be addressed by adapting the transmit power based on
the reliability of the sensed information. Prevalent cognitive
radio models implement the primary user sensing as a bi-
nary hypothesis test. The spectrum sensor outputs a binary
decision (0 or 1) that indicates whether or not the PU has
been detected. The secondary transmit power depends on
the sensed signals only through this binary decision. This
kind of power adaptation is based on hard decisions. In the
absence of channel knowledge at the transmitter, it involves
transmitting at two power levels - zero when the primary user

is detected and at the peak power when no primary radio
is deemed present - thereby simplifying implementation at
the secondary transmitter. With binary detection and binary
power control, minimizing interference reduces to satisfying
a missed detection probability constraint while maximizing
the secondary performance reduces to satisfying a false alarm
probability constraint.

We emphasize that there is a loss of information in trans-
lating the (analog) sensed signals to a binary decision. The
motivation behind our work stems from the possibility that
this information (soft information) can be used through so-
phisticated (continuous) power control to improve the system
performance. For example, instead of the simple two level
power switching (zero or peak power), one can have a power
adaptation scheme where the transmit power increases con-
tinuously from 0 to the peak power Pmax as a function of the
sensed information. With soft sensing based continuous power
adaptation, the notions of missed detection and false alarm
probabilities are irrelevant. This generalized setting brings us
back to the ultimate goals of minimizing the interference to
the primary users and maximizing the performance (SNR or
capacity) of the secondary users. While binary detection and
power control are interesting for their simplicity, we explore
soft sensing and continuous power adaptation in order to
identify optimal cognitive radio design principles.

We consider a cognitive radio system where the secondary
transmitter varies its transmit power based on the value of
the sensing metric. We assume a peak power constraint at the
secondary transmitter and an average interference constraint
at the primary receiver. The following is a summary of our
main results:
• For an arbitrary sensing scheme, we identify and charac-

terize the power adaptation strategies that maximize the
SNR at the secondary receiver and the capacity of the
secondary user.

• Binary (hard) power adaptation is optimal for SNR re-
gardless of the type of sensing metric, i.e., the SNR opti-
mal power adaptation policy mandates that transmissions
take place only at the peak power.

• In general, we find that the capacity optimal power
adaptation is not binary and involves transmissions at
non-boundary power levels between zero and the peak
power.

• With analytical and numerical results, we show that
the SNR optimal and capacity optimal power adapta-
tion schemes are similar for common spectrum sensing
schemes.



II. SYSTEM MODEL

Consider a communication system with a primary transmit-
ter (PR) and primary receiver (PR) licensed to operate over
a certain frequency band as shown in Figure 1. The primary
user (primary transmitter - receiver pair, PU) activity follows
a block static model with a coherence time Tc and an ON

probability of α, i.e., the primary user remains active (ON

state) or inactive (OFF state) for a period of Tc channel uses
after which it switches to an independent ON (or OFF) state
(with a probability α of switching to the ON state). We assume
that the primary transmitter uses a Gaussian codebook with an
average power Pt for the primary transmissions.

To allow for higher spectral efficiencies, the channel is also
open to be used by a cognitive user (secondary transmitter
(ST ) - secondary receiver (SR) pair, SU) as Figure 1 shows.
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Fig. 1: System Model.

The channel coefficients between each of the primary and
secondary nodes are considered to be independent Rayleigh
distributed variables with variances that depend on the dis-
tances between the nodes, i.e.,

hij = CN

(
0,

1
d2

ij

)
, (1)

where dij is the corresponding distance between the associated
pair of nodes. We assume no CSI at the transmitting nodes and
perfect CSI at the receivers.

Every block, the primary user detector at the secondary
transmitter monitors the frequency band for primary transmis-
sions (Figure 1). Based on the signals received, the detector
calculates a single sufficient sensing metric γ as Figure 1
shows. To be as general as possible, we do not restrict the
type of primary user detector, i.e., γ can represent any sensing
metric (for example, γ can denote the total signal power
observed, or the correlation between the observed signal and a
known signal pattern, etc). We assume that the statistics of γ

conditioned on the primary user being ON/OFF are known a
priori at the secondary transmitter. We denote the distribution
of γ given that the primary user is OFF by f0 (γ). Similarly,
given that the primary user is ON, γ ∼ f1 (γ).

The secondary transmitter adapts its transmit power depend-
ing on the value of γ, i.e., if the value of the sensing metric
in a certain block is γ, a power P (γ) is used to transmit the
secondary signals for that block. We assume a peak power
constraint at the secondary transmitter, i.e.,

Peak Power Constraint:

P (γ) 6 Pmax ∀γ. (2)

The secondary user is allowed to operate within the same
frequency band as long as the average power received at the
primary receiver (when the primary user is ON) does not
exceed a certain threshold I0, i.e.,

Average Interference Constraint:

EγEh21

[
P (γ) |h21|

2
∣∣∣ PU ON

]
= Ef1 [P (γ)]

1
d2

21
6 I0, (3)

where Ef1 [· ] denotes an expectation over the distribution
f1 (γ).

A. Problem Statement

The performance metrics of interest to us are the average
SNR at the secondary receiver and the ergodic capacity of the
secondary user. For the system model presented above, we
seek answers to the following:
• Does soft sensing help improve the secondary user’s SNR

(or capacity)?
• What is the optimal power control strategy P∗ (γ) that

maximizes the secondary user’s average SNR (or capac-
ity)?

III. OPTIMAL POWER ADAPTATION

In this section, we consider the problem of secondary
radio SNR and capacity optimization under the peak power
(equation (2)) and average interference (equation (3)) con-
straints. Extensions to average power constraints and addi-
tional considerations such as channel knowledge availability
at the secondary transmitter are explored in [10].

A. SNR Maximization

The average SNR at the secondary receiver ξs can be
written as in equation (4). I is a binary random variable that
denotes whether the PU is ON (I = 1, Prob [I = 1] = α) or
OFF (I = 0, Prob [I = 0] = 1 − α = ᾱ). Further simplification
of equation (4) follows from the fact that Eh12
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, the average SNR can be expressed as

in equation (5).
The SNR maximization problem can be written as

max
Ef1 [P(γ)]6I′0 , 06P(γ)6Pmax

Ef0 [P (γ)] + a1Ef1 [P (γ)] , (6)

where I′0 = I0d2
21. For the optimization of equation (6), we

identify the power adaptation strategy P (γ) that maximizes
the average SNR in the following theorem:

Theorem 1 (SNR Optimal Power Control): For a sec-
ondary user operating under the peak transmit power (equation
(2)) and average interference (equation (3)) constraints, the
power adaptation strategy that maximizes the secondary user’s
average SNR is binary valued, i.e.,

P∗ (γ) =

{
Pmax if f0 (γ) > (λ1 − a1) f1 (γ)

0 if f0 (γ) < (λ1 − a1) f1 (γ)
, (7)
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= a0 (Ef0 [P (γ)] + a1Ef1 [P (γ)]) (5)

where γ is the soft information available from sensing and
λ1 is chosen such that equation (7) satisfies the average
interference constraint (equation (3)).

Proof: See Section V-A.
Theorem 1 shows that a binary power control scheme is

optimal, i.e., the secondary transmitter simply transmits at
either of the boundary points (0 or the peak power Pmax) based
on the roots of the equation f0 (γ) − (λ1 − a1) f1 (γ) = 0.
Transmission does not take place at any intermediate power
values. This result is somewhat surprising since it establishes
that there is no SNR advantage to the soft information
available from primary user sensing regardless of the sensing
scheme or the form of the a priori probabilities. The soft
sensing metric output from the sensing block can be replaced
with a binary output without any loss in the average SNR while
maintaining the interference level at the primary receiver.

B. Capacity Maximization

The ergodic capacity of the secondary user can be written
as in equation (8) by conditioning on the value of I. The
capacity optimization problem is: max

Ef1 [P(γ)]6I′0 , 06P(γ)6Pmax

Cs.

The power adaptation scheme that maximizes the capacity is
characterized in the following theorem:

Theorem 2 (Capacity Optimal Power Control): For a
secondary user operating under the peak transmit power
(equation (2)) and average interference (equation (3))
constraints, the power adaptation strategy that maximizes
the ergodic capacity of the secondary receiver is given by
equation (9), where γ is the sensing metric. λ1 is chosen to
satisfy the average interference constraint.

Proof: See Section V-B.
Notice that unlike the SNR optimal power adaptation pol-

icy, the power adaptation that maximizes the capacity is, in
general, not a binary one, i.e., it can involve transmission at
non-boundary power levels between 0 and Pmax.

IV. POWER BASED SENSING

In this section, we consider a power based sensing scheme
and characterize the SNR maximizing power control strategy.
The sensing metric is the total primary signal power in a
number of independent signal samples, i.e.,

γ (N) =

N−1∑

n=0

|y (n)|2 , (10)

where N is the observation time. We assume that N is small
compared to the primary user coherence time Tc. We consider
the case of fast fading, i.e., where the channel coefficients

change every sample. The received signal at the detector y (n)

is of the form

y (n) =

{
h00 (n) xp (n) + z (n) PU is ON

z (n) PU is OFF
(11)

where xp (n) is the primary signal, h00 (n) the coefficient of
the channel between the primary and secondary transmitters,
z (n) the unit variance white Gaussian noise at the primary
detector and n is the sample index.

Notice that conditioned on the presence/absence of the pri-
mary user, γ (N) is a sequence of independent and identically
distributed random variables. When a primary signal is present,
the sensing metric of equation (10) can be approximated by a
Gaussian random variable (Central Limit Theorem) for large
N with a distribution

f1 (γ) =
1
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Similarly when there is no primary signal, the distribution
f0 (γ) can be written as

f0 (γ) =
1

σ0
√

2π
exp

(
−

(γ − µ0)
2

2σ2
0

)
, (15)

where µ0 = N and σ2
0 = 2N.

Substituting (12) and (15) in equation (25), we have
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where the equality is satisfied with roots ρ1 (λ1) and ρ2 (λ1).
Based on the discussion in Section III-A, the power adaptation
can be calculated as follows:

P (γ) =

{
P∗max γ ∈ [ρ1 (λ1) , ρ2 (λ1)]

0 elsewhere . (17)

The value of λ1 is calculated based on the interference
constraint at the primary receiver (equation (3)), i.e.,
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The resulting SNR at the secondary receiver can be written as

ξs = a0Pmax
(
a1I0d2

21+(
Q

(
ρ1 (λ1) − µ0

σ0

)
− Q

(
ρ2 (λ1) − µ0

σ0

)))

It is difficult to analytically determine the capacity optimal
power adaptation from (equation (9)). We instead provide
some numerical results comparing the optimal power adap-
tation strategies for SNR and capacity.

A. Numerical Results

We consider the primary and secondary nodes to be located
such that d00 = 4, d11 = 3, d12 =

√
17, d21 = 1 and d22 = 1.

For the primary user, we assume that the average ON time
is α = 0.5 and the transmit power Pt = 1. The power based
sensing scheme at the secondary user calculates the total power
in N = 20 samples of the primary signal. We assume a peak
power constraint of Pmax = 1 at the secondary transmitter.

We first consider a case where the tolerable interference at
the primary user is I0 = 0.075 (15% of ᾱPmax

d2
21

) and plot the
SNR optimal power adaptation in Figure 2. Notice that the
thresholds γ1 and γ2 are both positive and give rise to the
pulse shaped power adaptation function shown in Figure 2.
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Fig. 2: Figure 2 shows the SNR optimal power adaptation with
15% (w.r.t Pmax

d2
22

) interference tolerance at the primary receiver.

We next consider a case where the I0 = 0.05 (10% of
Pmax
d2

21
) and plot the SNR optimal and capacity optimal power
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Fig. 3: Figure 3 compares the SNR and capacity optimal power
adaptation with 10% (w.r.t Pmax

d2
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) interference tolerance at the
primary receiver.

adaptation policies in Figure 3. Notice that the SNR and capac-
ity optimal power adaptation policies are markedly different.
While the SNR optimal power adaptation policy is a binary
strategy, i.e. mandates transmission either at zero power or at
the peak power Pmax, the capacity optimal strategy involves
transmission at intermediate power values. We explore the
SNR and capacity dependence on the observation time N in
[10].

V. PROOFS

A. Proof of Theorem 1

The Lagrangian LS [P (γ) , λ1, {λ2 (γ)} , {λ3 (γ)}] for the ob-
jective function in the SNR maximization of equation (6) can
be written as in equation (18), where λ1, λ2 (γ) and λ2 (γ) are
the Lagrangian variables.

It is easy to show that the objective function is concave
in P (γ) and that the constraint set (equation (3)) is convex.
Taking the derivative of LS [P (γ) , λ1, {λ2 (γ)} , {λ3 (γ)}] with
respect to P (γ) and setting it to zero, the necessary and
sufficient KKT conditions are:

f0 (γ) + a1f1 (γ) − λ1f1 (γ) + λ2 (γ) − λ3 (γ) = 0 (21)

λ1

(
Ef1 [P (γ)] − I′0

)
= 0 (22)

λ2 (γ) P (γ) = 0 ∀γ (23)
λ3 (γ) (P (γ) − Pmax) = 0 ∀γ (24)
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For each value of γ, the optimal power adaptation P∗ (γ)

can be 0, Pmax or take a value in the open interval (0, Pmax).
This directly gives rise to the following three cases:
• Case 1: Suppose P∗ (γ) = Pmax for some γ, equation (23)

requires that λ2 (γ) = 0. Substituting this into equation
(21) and noting that λ3 (γ) > 0, we have

f0 (γ) + (a1 − λ1) f1 (γ) > 0. (25)

Therefore P∗ (γ) = Pmax for all γ satisfying equation
(25).

• Case 2: Suppose P∗ (γ) = 0 for some γ, equation (24)
requires that λ3 (γ) = 0. Substituting this into equation
(21), this is possible when (since λ2 (γ) > 0),

f0 (γ) + (a1 − λ1) f1 (γ) 6 0. (26)

• Case 3: Suppose 0 < P∗ (γ) < Pmax for some γ. From
equations (23) and (24), we have λ2 (γ) = λ3 (γ) = 0.
From equation (21), we require

f0 (γ) = (λ1 − a1) f1 (γ) (27)

In general, the solution set to equation (27) (for a
given value of λ) will have a measure of zero [10].
The power allocation at the roots of equation (27) will
have to be expressed as impulse functions (i.e., of the
form P (γ0) δ (γ − γ0)), that are excluded by definition
because they do not satisfy the peak power constraint.

The optimal power allocation policy can therefore be written
as in equation (7), where the value of λ1 is calculated from
the average interference constraint (equation (3)).

B. Proof of Theorem 2

The Lagrangian for maximizing the capacity function of
equation (8) can be written as in equation (19). The derivative
of the Lagrangian with respect to P (γ) in equation (20) and
the complementary slackness conditions of equations (22)-(24)
form the KKT conditions for this optimization. As in the case
of SNR, the three cases (P∗ (γ) = Pmax, P∗ (γ) = Pmax and
P∗ (γ) = Pmax) yield the three conditions of equation (9). A
more detailed proof is provided in [10].

VI. CONCLUSION

We consider a general cognitive radio system where the
secondary transmitter adapts its transmit power depending on
the soft information obtained from the spectrum sensor. We
have a peak power constraint at the secondary transmitter and
an average interference constraint at the primary receiver. We
characterize the SNR and capacity optimal power adaptation
strategies for arbitrary sensing schemes. Binary power control
is SNR optimal, which shows that one can simultaneously
obtain the dual benefits of optimum SNR performance and
low power control complexity. On the other hand, the capacity
optimal power adaptation scheme is, in general, not binary and
dictates transmission at power levels other than 0 and Pmax.
For a power based spectrum sensing scheme, the SNR optimal
power control scheme directs transmission at peak power if the
sensing metric lies within a certain range.
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