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Abstract— In this work, we consider a two-hop multiuser
amplify-and-forward relay network with MIMO nodes. The
results are three-fold. First, for any relay amplification matrix
D in the multiple-access channel (MAC), we show that duality
holds when κD† is employed in the broadcast channel (BC), and
vice versa, where κ is obtained from switching the total source
and relay power constraints. Second, under a total network power
constraint, we show that MAC-BC duality holds when D and D†

are the relaying matrices in the MAC and BC respectively. Third,
for any D in the MAC and cD† in the BC where c is any positive
real scalar, duality under total network power constraint holds
only for the above two cases.

I. INTRODUCTION

The use of relaying techniques to transfer information via
multiple hops and routes offers significant benefits for wireless
networks that include throughput enhancement, range exten-
sion and power reduction. These benefits make cooperation
and relaying a promising candidate for the next generation
wireless systems. Various forwarding strategies at the relays
have been studied. Among them, memoryless schemes such
as amplify and forward (AF) are attractive for their simplicity
and the ability to provide soft information.

In this work we consider multiuser MIMO AF relay net-
works. The most basic multiuser scenarios are the multiple
access channel and the broadcast channel. For the single-
hop communication without relays, the MAC-BC duality [1],
[2], which states that the capacity region of a MAC is equal
to the capacity region of the reciprocal BC for the same
total transmit power, is well known. For AF relay networks
with single antenna nodes, the following MAC-BC duality
is recently shown in [3]. Consider a MAC with total user
power P and total relay power PR. This MAC is dual to the
BC obtained by reversing the direction of communication and
swapping the sum relay power and total source power. For
multihop networks with more than two hops, duality holds
when the powers are shifted such that each hop gets the same
transmit power in both the original and the dual channels.
Such a duality relationship may be helpful in solving network
optimization problems. For example, in [4], a three hop AF
relay network is optimized using the duality relationship in
[3].

Another version of duality in AF relay networks is found in
[5]. Here the authors consider a multiuser AF relay network
with memory where the relays can transmit a linear combina-
tion of previously received signals. For this model, the authors
show an interesting duality relationship under a total network

power constraint. It is shown that duality holds when the same
relaying matrix is used in both the MAC and BC without any
scaling factor. Duality under total network power constraint
holds for the result in [3] as well. Thus MAC-BC duality for
single antenna nodes, subject to the network power constraint,
holds for two cases. Two important questions arise:

• Does duality hold for any scaled version of D† in the
dual channel (with D in the original channel)?

• Do these duality relationships hold when the nodes have
multiple antennas?

These are the questions that we answer in this paper. In the
following, we consider a SIMO relay network and its dual
channel. Here we highlight the differences with respect to a
single antenna relay network that make it hard to establish a
duality relationship.

Consider a SIMO relay network as shown in Fig. 1 where
a single antenna source communicates to an M -antenna des-
tination through a bunch of parallel relays. The relays may
have multiple antennas and let N be the total number of
relaying antennas. In the first slot, the source transmits x
while the relays receive r = gx + nR where g represents
the N × 1 source-relay channel. The components of nR

are CN (0, 1) additive white Gaussian noise (AWGN). In the
second slot, the relays collectively transmit Dr where D is the
relay amplification matrix. Note that D in general is a block
diagonal matrix. The received signal vector at the destination
is

y = H†Dgx + H†DnR + n (1)

where H† is the M × N relay-destination channel and the
components of n are CN (0, 1) AWGN. In normalized-form,
the input-output relationship of the relay network is

y′ =
(
H†DD†H + I

)−1
2 H†Dgx + n. (2)

Now consider a MISO relay network obtained by reversing
the communication direction. Here the multiple antenna source
communicates to the single antenna destination through the
relays that use κD† as their relaying matrix. Here κ may
denote the scaling factor used in the dual channel similar to
those in [3], [5]. The received signal at the destination can be
expressed as

y = κg†D†Hx + κg†D†nR + n (3)

where n is unit variance AWGN. In normalized form, the
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Fig. 1. Two-hop SIMO and MISO relay networks

input-output relationship is

y′ =
κg†D†H√

1 + κ2 ‖ g†D† ‖2 x + n. (4)

Notice that (2) and (4) have different effective channel
directions. Compare these channels with the point to point
SIMO and MISO channels,

y = h†x + n y = hx + n

that have essentially the same spatial direction. To establish
duality, it is not clear whether we need a different relaying ma-
trix for the dual channel instead of the scaled (and conjugate-
transposed) versions of the original relaying matrix.

II. DUALITY IN SIMO AND MISO RELAY NETWORKS

Theorem 1: The capacity of a single user SIMO relay
network is unchanged when the role of the transmitter and the
receiver is reversed while the power constraint at the source
and the relays are switched in the dual network.

Proof: To prove it, we need to show that the dual channel
is at least as capable as the original channel and vice versa.

A. Part 1 (MISO ≥ SIMO)
The input signal in the SIMO relay network is a scalar x that

satisfies the power constraint P while the relay amplification
factor D satisfies the relay power constraint. For this model
(given by (1)), the capacity optimal strategy is to use Gaussian
input at the transmitter and employ maximal ratio combining
at the receiver. Let b be any unit norm vector used for receive
combining, then the achievable SNR is given by

SNR1 =

∣∣b†H†Dg
∣∣2 P

1 + Tr (D†Hbb†H†D)
(5)

and D should conform to the power constraint which is
given by Tr

(
D(gg†P + I)D†) = PR. Absorbing the power

constraint into the SNR expression we have

SNR1 =

∣∣b†H†Dg
∣∣2 PPR

Tr (D(gg†P + I)D†) + PRTr (D†Hbb†H†D)
.

The capacity of this system is

C1 = max
b: ‖b‖=1

log(1 + SNR1). (6)

For the dual MISO network, we construct an achievable
scheme that achieves the capacity in (6). Let the transmitted
symbol be x = bx′ where E [|x′|2] = PR. Let κD† be the
relay amplification factor where

κ2 =
P

Tr (D† (Hbb†H†PR + I)D)
.

Here κ ensures that the total relay power is P . The achiev-
able SNR for this scheme is

SNR2 =
κ2

∣∣g†D†Hb
∣∣2 PR

1 + κ2Tr (Dgg†D†)

The achievable SNR after substituting κ is given by

SNR2 =

∣∣g†D†Hb
∣∣2 PPR

Tr (D† (Hbb†H†PR + I)D) + PTr (Dgg†D†)
= SNR1. (7)

Thus the MISO relay network can achieve the capacity of the
SIMO relay network with a beamforming vector equal to the
receive combining vector in the SIMO case.

B. Part 2 (MISO ≤ SIMO)

Consider the MISO case with source transmit power PR

and total relay power P . Let D be the relaying matrix.
The capacity of this system is the result of the following
optimization problem.

C = max
Qx,D

I(x; y)

s.t. Tr(Qx) = PR and Tr
(
D† (

HQxH† + I
)
D

)
= P.

(8)
For a given D, Gaussian inputs are optimal and the capacity
achieving strategy is beamforming. However there is a power
constraint on D that depends on the input covariance matrix
Qx. Therefore it is not clear whether beamforming is optimal
or not. Furthermore it is not clear whether Gaussian inputs are
optimal.

Notice that the relay power constraint depends only on
the input covariance matrix and not on the input distribution.
For any (D,Qx) pair that satisfies the power constraints, the
best input distribution is Gaussian as it maximizes the mutual
information. Let (D?,Q?

x) be the optimal pair. Now consider
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Fig. 2. MIMO broadcast AF relay network

the eigenvalue decomposition of Q?
x

Q?
x = UΛU† ⇒ x =

M∑

i=1

√
λiuixi

where
∑M

i=1 λi = PR and ui is the ith column of U.
We can view the multi-antenna transmitter as M indepen-

dent sources each with power λi. The resultant MAC achieves
the same capacity as in (8). In the MAC, the channel from
the ith source to the relays is Hui. This MAC relay channel
subscribes to the framework in [3]. This channel is dual to the
broadcast channel which in turn is inferior to the SIMO relay
channel. Thus the SIMO relay network is at least as capable
as the MISO relay network.

Discussion: Let us understand why (2) and (4) take different
form making it hard to spot a duality connection. For the
SIMO channel, let D be any relay amplification vector that
satisfies the relay power constraint. Then the optimal receive
combining vector (MRC) is given by

b? =

(
H†DD†H + I

)−1
2 H†Dg

‖ (H†DD†H + I)
−1
2 H†Dg ‖

.

From Theorem 1, this vector is also optimal in the MISO relay
channel. It is important to note that the effective channel in
the MISO channel is not in the same direction as that of the
optimal precoding vector. This is because any vector that is
parallel to the effective channel will affect the relay power
constraint. And the optimum precoding vector need not be
along the direction of the effective channel. This explains the
difference in the direction of the channel in (4) and (2). This
also suggests that the duality is not mainly due to use of the
scaled versions of D but it is rather due to the relay power
constraint that couples the two channels.

III. DUALITY IN MULTI-USER RELAY NETWORKS

Consider a MIMO broadcast channel with AF relays as
shown in Fig. 2. The channel from the transmitter to the relays
is denoted by H while the row vector g†i represents the channel
from the set of relays to the single antenna user i. Let the
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Fig. 3. MIMO multiple access AF relay network

source transmit power be PB . The relay amplification matrix
employed in this broadcast channel is DB. The received signal
at the kth user is given by

yk = g†kD
BHx + g†kD

BnR + nk, (9)

where nk and the components of nR are i.i.d. CN (0, 1). The
total power consumed by the relays can be calculated as

PB
R = Tr

(
DB

(
HQxH† + I

)
DB†

)
. (10)

The total power expended across the network is PB
T = PB +

PB
R . Now consider the multiple access channel as shown in

Fig. 3 obtained from reversing the direction of communication
in the broadcast channel. Let DM be the relay amplification
matrix employed in this channel. The received signal at the
base station can be expressed as

y = H†DM
K∑

k=1

gkxk + H†DMnR + n (11)

where xk is the signal transmitted by user k with power
E [||xk|2] = Pk. The total power utilized by the relays is

PM
R = Tr

(
DM

(
K∑

k=1

gkg
†
kPk + I

)
DM†

)
(12)

and the total power expended by the network is PM
T = PM

R +
PM where PM =

∑K
k=1 Pk. The following theorem reveals

the duality relationship between the relay MAC and and its
reciprocal BC for fixed relaying matrices.

Theorem 2: Consider a K user MIMO AF relay network.
Let D be any relaying matrix in the BC. For any c ∈ R+, let
cD† be the relay amplification matrix in the reciprocal MAC.
Then the following statements are true.

1) MAC-BC duality in MIMO relay networks holds when
the total source and relay power are switched in the dual
network, i.e. PM

R = PB , PB
R = PM and

c2 =
PM

R

Tr
(
D†

(∑K
j=1 gjg

†
jPj + I

)
D

) . (13)



2) Under a total network power constraint, MAC-BC duality
holds when D and D† are the relaying matrices used in
the MAC and BC respectively. In other words, MAC-BC
duality holds when

c = 1, PM
R + PM = PB

R + PB . (14)

3) The values for c given by (13) and (14) are the only cases
where MAC-BC duality holds for a total network power
constraint.
Proof: For any power allocation αi and precoding vector

ui for user i and for a given encoding order in BC, consider a
MAC that uses a decoding order that is the reverse of the
encoding order and employs u†i as the receive combining
vector for decoding user i’s signal. The goal is to find a
user power allocation strategy in the MAC that would result
in achieving the same rate tuple as in the BC. The power
allocation for user i will be

Pi = αi

∑i−1
j=1

∣∣∣u†iH†D†gj

∣∣∣
2

Pj + Tr
(
DHuiu

†
iH

†D†
)

+ 1
c2

∑K
j=i+1

∣∣∣g†iDHuj

∣∣∣
2

αj + Tr
(
D†gig

†
iD

)
+ 1

.

After calculating the total network power in the MAC and
BC, the difference in the total network consumption can be
obtained as

∆P = PM
T − PB

T = (c2 − 1)
(
PB

R − PM
)
. (15)

Refer to the Appendix for the derivation. For MAC-BC duality
to hold under a total network power constraint, we need to
find c such that ∆P = 0. From (15), it is clear that the only
solutions are
• c = 1

• PB
R = PM which leads to PM

R = PB due to equal
network power. The value of c can be found from the
relay power constraint in the MAC which is given by

c2 =
PM

R

Tr
(
D†

(∑K
j=1 gjg

†
jPj + I

)
D

) .

This concludes the proof.

A. Extensions

1) Linear processing: Theorem 2 holds even when the
user signals are encoded and decoded independently at the
transmitter and the receiver respectively, i.e., without succes-
sive encoding (dirty paper coding) or successive interference
cancelation.

2) Multi-antenna users: Theorem 2 also holds when the
users have multiple antennas. Using eigenvalue decomposition
of the user covariance matrix, the multiple antennas can be
reduced to independent single antenna nodes. Consequently
the duality result in Theorem 2 directly holds.

Discussion: We stress that the duality result in Theorem 2
holds only for fixed relaying matrices in the MAC and BC.
When the relay amplification matrix is fixed in the BC, the
network reduces to a single hop Gaussian MIMO broadcast
channel for which the optimality of dirty paper coding is

well known. However, for the joint optimization of the source
covariance matrix Qx and the relaying matrix D, it is not clear
whether dirty paper coding is optimal. For example, consider
the MISO relay network in Section II. It can be noticed that
the joint optimization of Qx and D resulted in a precoding
vector that is not parallel to the effective channel direction.
Similarly, in the BC the relay power constraint may affect the
choice of the covariance matrix at the transmitter. Since it is
not known whether DPC is optimal for any transmit covariance
matrix in the classical MIMO broadcast channel (single hop),
the optimality of DPC in the MIMO relay network cannot be
claimed. To summarize, Theorem 2 suggests that the capacity
region of the MAC is equal to the dirty paper coding region
of the BC.

For the special case of single antenna source in the BC with
multi-antenna users and relays, it can be established that the
DPC rate region is equal to the capacity region of the broadcast
relay network.

Theorem 3: Consider a broadcast AF relay channel that
has a single antenna transmitter and with the source and
relay power constraints P and PR respectively. Its capacity
region is equal to the capacity region of the MAC obtained
from reversing the communication direction and switching the
power constraints, i.e., in the MAC, the sum of user powers
is PR while the total relay power constraint is P .

Proof Outline: Let us first consider the broadcast relay
network. As the transmitter contains only a single antenna,
the relay power constraint depends only on P and not on
the transmit strategy. Therefore Gaussian inputs are optimal
and DPC is the optimal transmit strategy. Choose any D that
satisfies the power constraint and fix any encoding order for
the users. Let b†i be the unit-norm receive combining vector
at user i. The achievable rates can the be calculated. The
capacity region is obtained by optimizing over bi and D.
Now in the MAC, user i employs the beamforming vector
bi. Let the decoding order at the destination be opposite to
the BC encoding order. Now it can be shown that there exists
user power allocation such that the rate tuple in the BC is
achievable in the MAC with total user power PR and sum relay
power P . This establishes that the MAC is as capable as the
BC. The converse is similar to the second part of the proof for
Theorem 1. First Gaussian inputs are optimal at each user as
the relay power constraint depends only on the user covariance
matrix. Then for any covariance matrix, the multiple antenna
user can be reduced to many single antenna users. The reduced
network resembles a MAC relay network with single antenna
sources and destination. For this network, the dual BC is at
least as capable.

IV. CONCLUSION

In this work, we showed that the duality relationships in
AF relay networks, that were known for single antenna nodes,
hold even when the nodes have multiple antennas. Similar to
[3], the dual channel uses a scaled and conjugate-transposed
version of the relaying matrix used in the original channel.
In addition the source and relay powers are switched so that
each hop has the same transmit power in both the channels. In
another version of duality, the same relaying matrix is used in



both the channels. Here the total network power expenditure
in the same in the MAC and BC. It is shown in this work that
such a duality also holds for MIMO networks. Since both the
duality results use a scaled form of the relaying matrix in the
channels, an interesting question arises: How many possible
duality relationships can be found by using different scaled
versions of the relaying matrix in the dual channel? We showed
that duality under total network power constraint holds only
for the above two cases.

The duality result is valid only when the relaying matrix is
fixed. For the case of joint source and relay optimization, we
showed that the capacity region of the MAC is equal to the
dirty paper coding region of the BC. The optimality of DPC
in the broadcast relay network is not established.

APPENDIX

A. Proof of Theorem 2

The source in the broadcast channel transmits K indepen-
dent messages. Let DB = D be the relay amplification matrix.
For a fixed D, the network reduces to a single hop MIMO
broadcast channel whose capacity region is equal to the dirty
paper coding region. Without loss of generality, let user 1
be encoded first, user 2 next and so on. Let αi be the power
allocated for the ith user such that

∑
αi = PB . Let ui denote

an arbitrary unit norm precoding vector at the source for user
i. Due to successive encoding, the received signal at user i
will be

yi = g†iDHuixi + g†iDH
K∑

j=i+1

ujxj + g†iDnR + ni

The achievable SNR for user i is

SNRBi =

∣∣∣g†iDHui

∣∣∣
2

αi

∑K
j=i+1

∣∣∣g†iDHuj

∣∣∣
2

αj + Tr
(
D†gig

†
iD

)
+ 1

(16)
The total power utilized by the relays is

PB
R = Tr

(
DH

(
K∑

i=1

uiu
†
iαi

)
H†D†

)
.

Now consider a MAC that is the flipped version of the BC.
Let DM = cD† be the relay amplification matrix where c is
any real scalar. We choose a decoding order that is reverse to
the encoding order in BC, i.e., user 1 is decoded last. Let u†i
be the receive combining vector for user i. The received signal
at the destination after canceling the interference of sources
K to i + 1 is

y = c

i∑

j=1

H†D†gjxj + cH†D†nR + n.

In this channel, the achievable SNR for user i is

SNRMi =
c2

∣∣∣u†iH†D†gi

∣∣∣
2

Pi

c2
∑i−1

j=1

∣∣∣u†iH†D†gj

∣∣∣
2

Pj + c2Tr
(
DHuiu

†
iH

†D†
)

+ 1
.

(17)

The total power utilized by the relays in the MAC is

PM
R = c2Tr


D†




K∑

j=1

gjg
†
jPj + I


D


 .

Now we are interested in finding the power allocation to
users in the MAC such that the rate tuple in the BC is achieved
in the MAC. The total network power expended in the MAC
reduces to

PM
T = c2

K∑

j=1

Pj

(
1 + Tr

(
D†gjg

†
jD

))
+ c2Tr(DD†)

+ (1− c2)
K∑

j=1

Pj . (18)

Equating (16) and (17), and using the relation
K∑

i=1

i−1∑

j=1

∣∣∣u†iH†D†gj

∣∣∣
2

Pjαi =
K∑

i=1

K∑

j=i+1

∣∣∣g†iDHui

∣∣∣
2

αjPi

the total network power in the MAC can be obtained as

PM
T =

K∑

i=1

αi

(
1 + c2Tr

(
DHuiu

†
iH

†D†
))

+ (1− c2)
K∑

j=1

Pj + c2Tr
(
D†D

)
. (19)

For the broadcast channel, the total power spent across the
network is

PB
T =

K∑

i=1

αi + Tr

(
D

(
I +

K∑

i=1

Huiu
†
iH

†αi

)
D†

)
. (20)

To achieve the same rate tuple in both the BC and MAC, the
difference in the total network power when D and cD† are
the relaying matrices for the BC and MAC respectively is

∆P = PM
T − PB

T

= (c2 − 1)

(
Tr

(
D

(
I +

K∑

i=1

Huiu
†
iH

†αi

)
D†

)
− PM

)

= (c2 − 1)
(
PB

R − PM
)
. (21)

Similarly, if we start with a MAC that uses D and find the
power allocation for a dual BC that employs cD†, it can be
shown that ∆P = PB

T − PM
T = (c2 − 1)

(
PM

R − PB
)
.
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