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Abstract— We explore the impact of propagation delay
on the degrees of freedom of wireless interference networks.
For K > 2 user interference channel we show through an
example that propagation delays can increase the degrees
of freedom by upto a factor of K/2. We provide an
example of node placement for a 4 user interference
network such that the propagation delays for line-of-
sight communication allow perfect interference alignment.
We show that even if nodes are randomly placed, one
can almost surely achieve sufficient interference alignment
to approach the upperbound on the degrees of freedom
by choosing the basic symbol duration small enough.
An analogy with deterministic channel models is pointed
out as an interesting mechanism to translate propagation
delay based interference alignment schemes to delay-free
Gaussian channel models.

I. INTRODUCTION

Interference is believed to be the principal limitation
to the performance of wireless networks. In order to
understand the role of interference, a promising approach
is to de-emphasize the local additive noise at the nodes in
relation to the signal and interference strength [1]. This
is the philosophy behind deterministic channel models
[1] and the degrees of freedom [2] characterizations,
both of which provide valuable insights into the capacity
of wireless networks. The classical problem in infor-
mation theory that explores the nature of interference
is the interference channel model [3]. The Gaussian
interference channel capacity remained open for over
thirty years, until a capacity approximation accurate to
within one bit was found recently for the two user case
[4]. The classical Gaussian interference channel problem
ignores propagation delays as the signals travel from the
transmitters to the receivers. If all paths to the same
receiver suffer the same propagation delay then there
is no loss of generality in this assumption as the delays
merely imply a time shift at the receiver. However, in
practice, each transmitter-receiver pair will be associated
with a unique propagation distance, and therefore a
unique propagation delay. Since propagation delay is an
unavoidable physical reality in wireless communication,
it is not clear to what extent the capacity results based on

delay-free propagation models will be indicative of the
capacity of wireless networks with propagation delays.
It is this question that we explore in this paper. The
metric that we use to estimate the capacity of wireless
networks is the ”degrees of freedom” D [5]- which is
defined as the ratio of the sum capacity C(P ) of the
network to the log of the total transmit power P , in the
limit that P → ∞, where the local noise at each node
is normalized to have unit variance.

D = lim
P→∞

C(P )
log(P )

(1)

It is clear that degrees of freedom provide a capacity
approximation C(P ) = D log(P ) + o(log(P )) whose
accuracy approaches 100% as the total transmit power
P approaches infinity.

A. System Model

Consider a K user interference network, i.e., an in-
terference channel with K transmitters and K receivers.
The signal input-output equations are:

Y [i](n) =
n∑

j=1

H [ij]X [j](n − d[ij]) + Z [i](n) (2)

where at discrete time index n, Y [i](n) is the received
signal and Z [i](n) the additive noise at the ith receiver.
X [j](n) is the signal transmitted by the j th transmitter
and H [ij] is the channel coefficient and ni,j is the
propagation delay between between transmitter j and
receiver i. Note that this model assumes propagation
delays are integer multiples of the basic symbol duration.
Non-integer delays will be addressed subsequently in this
work. If we set all delays d[ij] equal to zero, we obtain
the classical Gaussian interference channel model.

II. THE IMPACT ON CAPACITY OF PROPAGATION

DELAYS

The first question that we address is whether prop-
agation delay can significantly impact the capacity of
a wireless network. Indeed, for the two user Gaussian



interference channel, one can verify that neither the in-
nerbounds nor the outerbounds of [4] are affected by the
propagation delays. Since the inner and outerbounds are
shown to be within 1 bit of each other, one can conclude
that propagation delays do not impact the capacity of
the 2 user Gaussian interference channel by more than 1
bit. This observation suggests that perhaps propagation
delays do not significantly impact the capacity of the
Gaussian interference channel. However, as we show
next through an example, this is not the case for more
than 2 users.

Consider a K user interference channel where all
channel coefficients are equal to one and all propagation
delays are equal to zero, i.e. H [i,j] = 1, ni,j = 0 ∀i, j ∈
{1, 2, · · · , K}. On this interference channel, all receivers
observe statistically equivalent signals. Therefore, if a
message can be decoded by any receiver, it can be
decoded by all receivers. Consequently, the sum capacity
of this interference channel is the sum capacity of the
multiple access channel from all transmitters to, say,
receiver 1. This multiple access channel has only 1
degree of freedom, and therefore, the sum capacity of
the interference channel is log(P ) + o(log(P )).

Now, suppose with the same channel coefficients as
before, we allow non-zero propagation delays. In partic-
ular, we assume:

d[ij]mod2 = 0, i = j (3)

d[ij]mod2 = 1, i �= j (4)

Thus, all desired signals arrive with an even propagation
delay and all interfering signals arrive with an odd
propagation delay at each receiver. On this interference
channel, suppose all transmitters tranmit only over even
time slots and are silent over odd time slots. Then, each
receiver is able to hear his desired signals free of inter-
ference over the even time slots and all the interference is
aligned over the odd time slots. Thus, even though all the
channel coefficients are equal, this interference channel
achieves a sum capacity of K/2 log(P ) + o(log(P )).
We see through this example, that the presence of
propagation delays can increase the degrees of freedom,
and therefore the high SNR capacity by a factor of K/2
for the K user interference channel.

III. NODE PLACEMENT FOR INTERFERENCE

ALIGNMENT

The propagation delay example in the last section
shows the capacity benefits of interference alignment.
Since propagation delays correspond to propagation
distances, the choice of propagation delays has clear
implications for node placement. An interesting question
is whether one can place nodes optimally in a way to
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Fig. 1. A 4 user interference channel having 2 degrees of freedom

ensure interference alignment. If we allow only line-of-
sight communication, the node placement directly de-
termines the propagation delays. We present an example
next to show how one may place 4 transmitters and their
corresponding receivers such that every user is able to
communicate free from interference for half the time.

Consider a 4 user interference channel. Let d [ji] indi-
cate the delay between transmitter i and receiver j. Let
us place the nodes as in figure 1 and define D1 = 1,
D2 = 1 +

√
2. With this arrangement, the delays d[ij]

satisfy the following conditions.

d[l1] = d[k2] = D1, l �= 1, k �= 2 (5)

d[l3] = d[k4] = D2 , l �= 3, k �= 4 (6)

d[11] = d[22] = D2 (7)

d[33] = d[44] = D1 (8)

D1 �= D2 (9)

We make time slotted, with each slot of length Δ =
D2 − D1. The transmission strategy is as follows. (See
Fig. ??)

• Transmitters 1 and 2 transmit in even time slots and
remain silent in odd time slots, i.e., they transmit
between times duration 2kΔ and (2k + 1)Δ

• Transmitters 3 and 4 transmit in odd time slots and
remain silent in even time slots

Now with this transmitting strategy, it can be observed
that all interference is perfectly aligned at all receivers.
For example, at receiver 1, interference from transmitters
3 and 4 arrive between times (2k−1)Δ+D2 and 2kΔ+
D2, for all k. Also, since 2kΔ+D1 = (2k−1)Δ+D2,
the interference from transmitter 2 at receiver 1 also
arrives exactly between (2k−1)Δ+D2 and 2kΔ+D2.
Receiver 1 receives the desired signal from transmitter 1
between 2kΔ+D2 and (2k+1)Δ+D2. Thus the desired
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Fig. 2. Transmitted and received signals in the 4 user interference
channel

signal at receiver 1 is shielded from all interference.
Similarly, it can be verified that all receivers receive their
desired signals free of interference so that the receive
strategy is described as follows

• Receivers 1 and 2 listen between times 2kΔ + D2

and (2k +1)Δ+D2 and ignore the received signal
at other times.

• Receivers 3 and 4 listen between times (2k−1)Δ+
D1 and 2kΔ + D1 and ignore the received signal
at other times.

Since all the 4 ‘conversations’ are active half the time,
the channel has 2 degrees of freedom.

IV. RANDOM DELAYS

In the previous section we explored node placement
for interference alignment. The preceding example leads
to a natural question - how much interference alignment
is possible if the nodes are randomly placed. In this
section we answer this question from a mathematical
standpoint.

Theorem 1: The K user interference channel with
delays d[ij] independent of each other and uniformly
distributed between a non-negative minimum and a fi-
nite maximum value has K/2 degrees of freedom with
probability 1.

Proof: We show that K/2(1 − ε) degrees of
freedom are achievable over this channel for any ε > 0
through an achievable scheme. For ease of exposition,
let all delays have a uniform distribution between Dmin

seconds and Dmax seconds. (Note that the result can
easily be extended to the case where different delays
have different uniform distributions as well) Now, we
normalize the unit of time so that 1 unit of time is equal
to Dmax − Dmin seconds. Let Toffset = Dmin

Dmax−Dmin
.

Therefore, all delays are uniformly distributed between
Toffset and Toffset +1 units of time. Now we can write
d[ij] − Toffset in its decimal expansion as

d[ij] − Toffset = 0.x
[ij]
1 x

[ij]
2 x

[ij]
3 . . .

Since d[ij] − Toffset is uniformly distributed between 0
and 1, elements of the sequence x

[ij]
1 , x

[ij]
2 . . . are i.i.d.

Also, x
[ij]
k can take any value from {0, 1, 2 . . .9} with

equal probability (of 0.1). We aim to achieve K/2(1−ε)
degrees of freedom for any positive ε. Now, choose N
so that 10−N < ε. We wish to choose n so that the set of
random variables Mn = {x[ij]

l : i, j = 1, 2, . . .K, l =
n, n + 1, . . . n + N} satisfy the following conditions.

• x
[ij]
n is even if i = j and odd if i �= j

• x
[ij]
n+1, x

[ij]
n+2 . . . x

[ij]
n+N are all equal to 0 for any

i, j = 1, 2 . . .K

Now, observe that, for a given k, the probability that
the set of variables Mk satisfy the desired conditions
is non-zero. Furthermore, the random variables of M k

are independent of the random variables in Mk+N .
Since there are infinite independent realizations of the
set Mk, with probability 1, ∃n ∈ N such that the set
Mn satisfies the desired conditions. In other words, by
picking n appropriately large, we can ensure that Mn

satisfies the desired conditions. Now, given such n, let
Tslot = 10−n units of time. Also, let a symbol be
of duration Tsym = 10−n(1 − ε) units of time. The
following communication strategy achieves K

2 (1 − ε)
degrees of freedom

• All transmitters transmit a symbol at the beginning
of every even time slot i.e. at times 2nTslot units

• Receiver i listens between d[ii] + 2nTslot units and
d[ii]+(2n)Tslot+Tsym units and ignore the received
signal at other times

It can be easily verified that all the interference at
receiver i arrives between timeslots d[ii]+(2n−1)Tslot−
Tslotε and d[ii] + (2n)Tslot so that the desired signal is



shielded from interference. Intuitively, the slot duration
is chosen such that all desired delays are even and unde-
sired delays are odd, within an error of ε. To compensate
for this error, the symbol duration is kept smaller than
the slot duration by a factor of ε. Thus, by picking n
appropriately large (or equivalently the symbol duration
appropriately small), each ‘conversation’ achieves 1 − ε
degrees of freedom so that K

2 (1− ε) degrees of freedom
are achieved in the entire system.

V. DISCUSSION

In the previous section, we established mathematically
that even if nodes are randomly placed, one can almost
surely achieve arbitrarily close to perfect interference
alignment by choosing the basic symbol duration small
enough. However, the mathematical argument presented
above does not translate well into physics. For example,
the argument relies on the following assumptions:

1) Symbol duration can be made arbitrarily small.
2) Delays can be measured to infinite precision.

The first assumption implies access to arbitrarily large
bandwidth. Note that the degrees of freedom are normal-
ized by the bandwidth, so that the above argument does
not waste bandwidth from a mathematical standpoint.
However, the symbol duration required to satisfy even
a moderately small ε for even a moderate number K
of users quickly becomes too small to be physically
feasible. The measurement of delays to an infinite preci-
sion is also precluded by physics. Thus, from a physical
and a practical standpoint, the question remains open -
how much interference alignment is possible if nodes are
randomly placed?

From a practical standpoint, the node placement ex-
ample is quite relevant. Propagation delays have tra-
ditionally not been considered important because the
speed of light is very high and the propagation delays
are therefore often negligible. However, as we pursue
higher data rates the basic symbol duration becomes
smaller and the propagation delays become closer to the
symbol duration. For example if the symbol duration is 1
microsecond, then a propagation distance of 300 meters
corresponds to propagation delay of 1 symbol duration.
Smaller symbol durations will make this distance even
smaller. Even in current CDMA systems, the RAKE
receiver is able to collect energy from many paths
because the delay spread is larger than a basic chip
duration. Thus, it is conceivable that propagation delays
may be used for interference alignment. Another con-
sideration is multipath. In the node placement example
we assumed only line-of-sight propagation. The simple
node placement solution will clearly run into problems
when there is multi-path present. For this reason it

seems that if node placement approach is to have any
practical significance it might be in the scenario where
very high carrier frequencies are used. It is well known
that the signal attenuation is quite severe at very high
frequencies so that only line of sight communication
may be possible. Thus, one can imagine a wireless
backbone of access points or extension points that are
placed in a manner that facilitates interference alignment.
The wireless backbone may use very high frequency
carrier signals for the backhaul communication while
the connection to the end users is made over a different
frequency band.

From a theoretical perspective, the propagation delay
construction for perfect interference alignment is quite
interesting as well. It is shown in [?] that there is a
clear analogy between the propagation delays and the
deterministic channel model. In the deterministic channel
model [6], the nodes transmit ”bits” from a finite field
and the channel raises some of the most significant bits
above the noise floor while the remaining bits are lost.
It turns out that the channel shifting the bits on the
deterministic channel is quite similar to the propagation
delays which shift the signals in time. Thus, interference
alignment schemes based on propagation delays can be
equivalently viewed as interference alignment schemes
on the deterministic channel model of the same network
without propagation delays. It has been shown in [?] that
the interference alignment scheme on the deterministic
channel model can be directly translated into the classi-
cal Gaussian channel model with no propagation delays
as well. This is especially relevant because interference
alignment schemes are in general not known for channels
with constant coefficients and no propagation delays,
when each node has only one antenna.

Finally, propagation delay based interference align-
ment schemes can be constructed for wireless networks
besides the interference channels. For example, consider
a two user X network, i.e., a network of two transmitters
and two receivers where each transmitter has an indepen-
dent message for each receiver, so that the network has
a total of 4 messages. The outerbound on the degrees
of freedom for this network is shown to be equal to
4/3 in [2]. In the delay-free case, the outerbound is also
shown to be achievable if the channel coefficients vary in
time or frequency. However, if the channel coefficients
are constant then it is not known if perfect interference
alignment is possible. Now, suppose we allow propaga-
tion delays, so that the signals from transmitter 1 suffer a
propagation delay of one symbol while the signals from
transmitter 2 suffer a propagation delay of 2 symbols to
receiver 1 and 3 symbols to receiver 2. Then, by carefully
interleaving the two messages at each transmitter over



three time slots one can create a perfect interference
alignment scheme that achieves the outerbound of 4/3
degrees of freedom, as shown in [7]. The propagation
delay example is translated into the deterministic channel
model and then into the delay free Gaussian channel
model to find an interference alignment scheme for the
X channel with constant coefficients and no delays.

It is not known in general if propagation delay exam-
ples can be constructed for every network. In particular,
propagation delay based interference alignment exam-
ples are not known for X networks with more than 2
transmitters or receivers. Finding such examples is an
interesting open problem. Another open problem is to
find optimal node placements for perfect interference
alignment on both the interference channel with more
than 4 users as well as X networks with multiple (more
than 2) transmitters and receivers.
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