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Abstract—We provide outer bounds on the capacity region of
the two-user Gaussian X channel, i.e. a generalization of the two-
user interference channel where there is an independent message
from each transmitter to each receiver. We identify the conditions
under which operating the X channel as the interference channel
is optimal from the perspective of generalized degrees of freedom
(GDOF) and sum capacity. Specifically, we first extend the bound
on the sum rate of the interference channel obtained by Etkin,
Tse, and Wang in [1] to the X channel. This bound provides
insights into the operating regimes in which two channels have
the same GDOF. We then extend the noisy interference capacity
characterization previously obtained for the interference channel
[2]–[4] to the X channel. Therefore, we show that the X channel
associated with noisy (very weak) interference channel has the
same sum capacity as the noisy interference channel.

I. INTRODUCTION

Interference is the key property of wireless communication
due to the broadcasting nature of wireless links. The model
that is widely used to study the behavior and the correspond-
ing management of interference is the interference channel.
Unfortunately, the characterization of the capacity region of
the interference channel has been an open problem over thirty
years. Recently, significant progress is made by Etkin, Tse, and
Wang [1] to approximate the capacity region of the two-user
Gaussian interference channel to within one bit. Further insight
into the capacity of the the channel is revealed in [2]–[4].
These references find that the decoding strategy of treating in-
terference as noise at each receiver in the interference network
is capacity optimal for a class of interference channels, known
as the “noisy” interference channels. Recent results have also
found approximations to the capacity regions of certain K-user
interference channels in the high signal-to-noise ratio (SNR)
regime. Reference [5] approximates the capacity region of the
fully connected K-user interference channel with time-varying
channel coefficients as

C(SNR) =
K

2
log(SNR) + o(log(SNR))

where SNR represents the total transmit power of all nodes
when the local noise power at each receiver is normalized to
unity. In other words, it was shown that the time-varying K-
user interference channel has K

2 degrees of freedom. Similar
capacity approximations of the K-user (K > 2) interference
channel with constant channel coefficients (i.e., not time-
varying or frequency-selective) are not known in general.

From the recent advances in the study of interference
channels, many interesting and powerful tools related to the
study of general wireless networks have emerged. Reference
[1] introduces the notion of generalized degrees of freedom
(GDOF) to study the performance of various interference
management schemes. As its name suggests, the idea of GDOF
is a generalization of the concept of degrees of freedom
originally introduced in [6]. Unlike the conventional degrees
of freedom perspective where all signals are approximately
equally strong in the dB scale, the GDOF perspective provides
a richer characterization by allowing the full range of relative
signal strengths in the dB scale. The idea of GDOF is
powerful because in the multiple access, broadcast and two-
user interference channels, achievable schemes that are optimal
from a GDOF perspective also achieve within a constant
number of bits of capacity [7].

In this paper, we explore the two-user X channel - a network
with two transmitters, two receivers and four independent
messages - one corresponding to each transmitter-receiver pair.
One of the key features of the X channel is that, unlike the
two-user interference channel, it provides the possibility of
interference alignment [8] [9]. Interference alignment refers to
the construction of signals such that they overlap at receivers
where they cause interference, but remain distinguishable at
receivers where they are desired. Interference alignment is
the key to the degrees of freedom characterizations of the X
channel with two or more users [10], and for the interference
channel with three or more users [5]. Since the potential for in-
terference alignment does not arise in the two-user interference
channel, the two-user X channel provides the simplest possible
setting for interference alignment, in terms of the number of
transmitters/receivers and channel coefficients. It is shown in
[8] that, due to interference alignment, the two-user X channel
has 4/3 degrees of freedom (assuming time-varying channels),
while the two-user interference channel has only 1 degree of
freedom. In this paper, instead of trying to apply interference
alignment to find a larger achievable region, we take an
alternative path and try to answer the following questions.
When don’t extra messages help? When doesn’t interference
alignment work? We answer these questions by identifying
the conditions under which operating the X channel as the
interference channel is optimal from the perspective of GDOF
and capacity respectively.



The rest of the paper is organized as follows. Section II
describes the model. In Section III, we provide the main
results of the paper. The detailed derivations of our GDOF
and capacity results are given in Section IV and V respectively.
Section VI concludes the paper.

II. SYSTEM MODEL

The two-user Gaussian X channel is described by the input-
output equations

Y1(t) = H11X1(t) +H12X2(t) + Z1(t) (1)
Y2(t) = H21X1(t) +H22X2(t) + Z2(t) (2)

where at symbol index t, Yj(t) and Zj(t) are the channel
output symbol and additive white Gaussian noise (AWGN)
respectively at receiver j. Xi(t) is the channel input symbol
at transmitter i, and Hji is the channel gain coefficient between
transmitter i and receiver j for all i, j ∈ {1, 2}. All symbols
are real and the channel coefficients do not vary w.r.t symbol
index. In the remainder of this paper, we suppress time index
t if no confusion would be caused. The AWGN is normalized
to have zero mean and unit variance and the input power
constraint is given by

E
[
X2
i

]
≤ Pi, i = 1, 2. (3)

There are four independent messages in the X channel:
W11,W12,W21,W22 where Wji represents the message from
transmitter j to receiver i. We indicate the size of the mes-
sage by |Wji|. For codewords spanning T symbols, rates
Rij = log |Wji|

T are achievable if the probability of error for
all messages can be simultaneously made arbitrarily small
by choosing an appropriate large T . The capacity region C
of the X channel is the set of all achievable rate tuples
R = (R11, R12, R21, R22). We indicate the sum capacity of
the X channel by CΣ.

A. Generalized Degrees of Freedom (GDOF)

To motivate our problem formulation, we briefly revisit the
framework for the GDOF characterization of the symmetric
interference channel. The interference channel is defined as:

Y1(t) =
√

SNRX1(t) +
√

INRX2(t) + Z1(t) (4)

Y2(t) =
√

INRX1(t) +
√

SNRX2(t) + Z2(t) (5)

and with the parameter α defined as follows

α ,
log(INR)
log(SNR)

(6)

the GDOF metric is defined as [1],

d(α) = lim sup
SNR→∞

CΣ(SNR, α)
1
2 log(SNR)

(7)

where CΣ(SNR, α) is the sum capacity of the interference
channel.

Since our main goal is to compare GDOF of the X channel
with the interference channel, we use the same symmetric
interference channel model described above as the physical
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Fig. 1. Two-user Gaussian X channel.

channel model for the X channel. There is however, one
notational difference. Since the terminology SNR, INR is not
as appropriate for the X channel, we instead use the parameter
ρ to substitute for these notions, resulting in the following
system model for the X channel GDOF characterization:

Y1(t) =
√
ρX1(t) +

√
ραX2(t) + Z1(t) (8)

Y2(t) =
√
ραX1(t) +

√
ρX2(t) + Z2(t) (9)

In other words, we have set H11 = H22 =
√
ρ, H12 =

H21 =
√
ρα, and P1 = P2 = 1. Note that (8), (9) represent

the same physical channel as (4), (5). However, as mentioned
earlier, unlike the interference channel the X channel has 4
independent messages - one from each transmitter to each
receiver. The GDOF characterization for the X channel is
defined as:

d(α) = lim sup
ρ→∞

CΣ(ρ, α)
1
2 log(ρ)

(10)

where CΣ(ρ, α) is the sum capacity of the X channel.
Note that we use lim sup to ensure that d(α) always exits.

The half in the denominator is because all signals and channel
gains are real.

We use the following notation convention. A(T ) is defined
as

A(T ) 4= (A(1), A(2), . . . A(T )) ,

for any sequence A. Similar to the notation usage in [4], we
use XiG to denote zero-mean Gaussian random variables with
variance Pi for i = 1, 2. A subscript G is added to a random
variable when all its associated channel inputs are Gaussian.

III. MAIN RESULTS

A. GDOF of the Symmetric Gaussian X Channel

The first main result of this paper is the GDOF character-
ization of the Gaussian X channel for α ≤ 2

3 and α > 3
2 .

For comparison, Fig. 2 also shows the GDOF characterization
of the symmetric interference channel as obtained in [1]. For
values of α ≤ 2/3, characterization of d(α) is identical for
both channels. We prove this by showing that the Etkin-
Tse-Wang (ETW) outerbound derived for the interference
channel [1] holds for the X channel as well (See Theorem
1). The ETW outerbound is tight from a GDOF perspective
in the interference channel for α ≤ 2/3. Therefore, our



extension of this outerbound implies that for α ≤ 2/3 a
GDOF optimal achievable scheme is to set W12 = W21 = φ,
so that the X channel operates as an interference channel.
Similarly, we show that for α > 3

2 , it is GDOF optimal
to set W22 = W11 = φ and operate the X channel as an
interference channel with messages W12 and W21. Note that
for both α ≤ 2/3 and α > 3/2 the GDOF optimal achievable
scheme operates the X channel as weak interference channel
by setting the appropriate messages to null.

B. Capacity of the “Noisy” Gaussian X Channel

References [2]–[4] show that in the interference channel,
for a class of channel coefficients, encoding messages using
Gaussian codebooks and decoding desired messages by treat-
ing interference as noise at each receiver is capacity optimal.
Our second main result extends this conclusion to the X
channel. We show that if a two-user interference channel
satisfies the noisy interference conditions obtained in [2]–[4]
then the corresponding X channel obtained by allowing all
transmitters to communicate with all receivers, has the same
sum capacity as the original noisy interference channel. This
is a surprising result since it implies that for a class of X
channels, interference alignment has no capacity benefit. For
simplicity we re-state the result here for the symmetric case
(H11 = H22 = 1, H12 = H21 = h, P1 = P2 = P ) in a
notation consistent with [4], as follows.

Noisy “Symmetric” X Channel Result: If
∣∣h (1 + h2P

)∣∣ ≤
1
2 , then the sum capacity of the Gaussian X channel is given

by CΣ = log
(
1 + P

1+h2P

)
. Similarly, if |h| ≥ 2(1 + P ) then

the sum capacity of the Gaussian X channel is given by CΣ =
log
(
1 + h2P

1+P

)
.

The condition
∣∣h (1 + h2P

)∣∣ ≤ 1
2 is the same as the

noisy interference condition in [4]. It means that when the
cross-links are too weak, there is no sum-capacity benefit
in communicating messages over those links (X channel
operation), even though it rules out interference alignment,
and we are better off just communicating on the direct links
while treating the weak interference as noise. Thus, in this
case messages W12,W21 do not increase sum capacity of the
X channel.

The other condition |h| ≥ 2(1+P ) refers to a strong cross-
channel scenario. It says that when the cross-links are too
strong relative to direct links, then sum capacity is achieved
by communicating only over the strong cross-links and treating
the weak interference received over the direct links as noise. In
this case, messages W11,W22 do not increase the sum capacity
of the X channel.

IV. GDOF OF THE SYMMETRIC GAUSSIAN X CHANNEL

In this section, we extend the ETW outerbound derived for
the interference channel to the X channel, and use it to find
the generalized degrees of freedom for X channel for α ≤ 2

3
and α > 3

2 . We start from the following theorem.
Theorem 1: The sum rate RΣ achieved by any reliable

coding scheme over the X channel satisfies the following

3
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Fig. 2. Outer and inner bounds for the generalized degrees of freedom of
the two-user Gaussian X channel.

bounds

RΣ ≤ 1
2

log
(

1 +H12
2P2 +

H11
2P1

1 +H21
2P1

)
+

1
2

log
(

1 +H21
2P1 +

H22
2P2

1 +H12
2P2

)
(11)

RΣ ≤ 1
2

log
(

1 +H11
2P1 +

H12
2P2

1 +H22
2P2

)
+

1
2

log
(

1 +H22
2P2 +

H21
2P1

1 +H11
2P1

)
(12)

Proof: Let

S1(t) = H21X1(t) + Z2(t) (13)
S2(t) = H12X2(t) + Z1(t). (14)

Note that S1 and S2 are auxiliary variables similar to those
used in the ETW outerbound of the interference channel.
Consider any reliable coding scheme. Now, let a genie provide
S2 and W12 to receiver 2. From Fano’s inequality, for any
codeword of length T , we can write

T (R22 +R21 − ε)
≤ I(W22,W21;Y

(T )
2 , S

(T )
2 ,W12)

(a)
= I(W22,W21;Y

(T )
2 , S

(T )
2 |W12)

= I(W22,W21;S
(T )
2 |W12) + I(W22,W21;Y

(T )
2 |W12, S

(T )
2 )

= h(S(T )
2 |W12)− h(S(T )

2 |W12,W22,W21)

+h(Y (T )
2 |W12, S

(T )
2 )− h(Y (T )

2 |W12, S
(T )
2 ,W22,W21)

(b)

≤ h(S(T )
2 |W12)− h(S(T )

2 |W12,W22,W21, X
(T )
2 )

+h(Y (T )
2 |S(T )

2 )− h(Y (T )
2 |W12, S

(T )
2 ,W22,W21, X

(T )
2 )

= h(S(T )
2 |W12)− h(Z(T )

1 |W12,W22,W21, X
(T )
2 )

+h(Y (T )
2 |S(T )

2 )− h(S(T )
1 |W12, S

(T )
2 ,W22,W21, X

(T )
2 )

= h(S(T )
2 |W12)− h(Z(T )

1 ) + h(Y (T )
2 |S(T )

2 )− h(S(T )
1 |W21)

(15)



where in step (a) we use the fact all messages are independent,
and in step (b) we use the fact that X(T )

2 is a function of W12

and W22 alone with the fact that dropping conditioning does
not reduce differential entropy.

Similarly, by letting a genie provide receiver 1 with S
(T )
1

and W21, we can bound the rates at receiver 1 as

T (R11 +R12 − ε)
≤ h(S(T )

1 |W21)− h(Z(T )
2 ) + h(Y (T )

1 |S(T )
1 )− h(S(T )

2 |W12).
(16)

Adding (15) and (16), we get

T (RΣ − ε)
≤ h(Y (T )

1 |S(T )
1 ) + h(Y (T )

2 |S(T )
2 )− h(Z(T )

1 )− h(Z(T )
2 )

≤
T∑
t=1

[h(Y1(t)|S1(t)) + h(Y2(t)|S2(t))]− Th(Z1)− Th(Z2)

where the second inequality follows by fact that dropping
conditioning does not reduce differential entropy. Dividing
both sides by T , taking T → ∞, and using the fact that
independent and identical (i.i.d.) Gaussian random variables
maximize conditional differential entropy for a given covari-
ance constraint, we get the desired outer bound (11).

Similarly, the second bound on the sum capacity of the X
channel can be proved by letting a genie provide H22X

(T )
2 +

Z
(T )
2 and W22 to receiver 1 and H11X

(T )
1 +Z

(T )
1 and W11 to

receiver 2. This completes the proof.
The following theorem gives the characterization of d(α)

for α ≤ 2
3 and α > 3

2 .
Theorem 2:

d(α) = 2max(α, 1− α), for α ≤ 2
3 (17)

d(α) = 2max(1, α− 1), for α > 3
2 (18)

Proof: Substituting H11 = H22 =
√
ρ, H21 = H12 =√

ρα, and P1 = P2 = 1 into (11), dividing both sides by
1
2 log ρ, and letting ρ→∞, we get

d(α) ≤ 2 max(α, 1− α).

Following the same steps except that now we substitute H21 =
H12 =

√
ρ and H11 = H22 =

√
ρα, and P1 = P2 = 1 into

(12), we get
d(α) ≤ 2 max(1, α− 1).

By comparing the outer and inner bounds shown in Fig. 2, we
finish the proof.

V. CAPACITY OF THE “NOISY” GAUSSIAN X CHANNEL

Theorem 3: If∣∣∣∣H12

H22

(
1 +H2

21P1

)∣∣∣∣+ ∣∣∣∣H21

H11

(
1 +H2

12P2

)∣∣∣∣ ≤ 1, (19)

then the sum capacity of the Gaussian X channel is given by

CΣ =
1
2

log
(

1 +
H2

11P1

1 +H2
12P2

)
+

1
2

log
(

1 +
H2

22P2

1 +H2
21P1

)
.

(20)

Similarly, if∣∣∣∣H22

H12

(
1 +H2

11P1

)∣∣∣∣+ ∣∣∣∣H11

H21

(
1 +H2

22P2

)∣∣∣∣ ≤ 1, (21)

then the sum capacity of the Gaussian X channel is given by

CΣ =
1
2

log
(

1 +
H2

21P1

1 +H2
22P2

)
+

1
2

log
(

1 +
H2

12P2

1 +H2
11P1

)
.

(22)

Proof: Let

S̃1(t) = H21(X1(t) + Z̃1(t)) (23)
S̃2(t) = H12(X2(t) + Z̃2(t)) (24)

where Z̃i is white Gaussian with zero mean and variance σ2
i

for i = 1, 2. Also, let Z̃i(t) be correlated with Zi(t) as

E
[
Zi(t)Z̃i(t)

]
= σiρi, i = 1, 2 (25)

Note that since the variance of Zi is one, ρi is the correlation
coefficient between Zi and Z̃i. Let a genie provide S̃1 and
W21 to receiver 1 and S̃2 and W12 to receiver 2. Using Fano’s
inequality for a codeword spanning T symbols, we have

T (R22 +R21 − ε)
≤ I(W22,W21;Y

(T )
2 , S̃

(T )
2 ,W12)

(a)
= I(W22,W21;Y

(T )
2 , S̃

(T )
2 |W12)

= I(W22,W21; S̃
(T )
2 |W12)

+I(W22,W21;Y
(T )
2 |W12, S̃

(T )
2 )

= h(S̃(T )
2 |W12)− h(S̃(T )

2 |W12,W22,W21)

+h(Y (T )
2 |W12, S̃

(T )
2 )− h(Y (T )

2 |W12, S̃
(T )
2 ,W22,W21)

= h(S̃(T )
2 |W12)− Th(Z̃2) + h(Y (T )

2 |W12, S̃
(T )
2 )

−h(Y (T )
2 |W12, S̃

(T )
2 ,W22,W21)

(b)

≤ h(S̃(T )
2 |W12)− Th(Z̃2) + h(Y (T )

2 |S̃(T )
2 )

−h(H21X
(T )
1 + Z

(T )
2 |Z̃(T )

2 ,W21) (26)

where in step (a) we use the fact that all messages are
independent. Step (b) follows by the fact that dropping con-
ditioning does not reduce differential entropy and the fact
that h(Y (T )

2 |W12, S̃
(T )
2 ,W22,W21) can be simplified as the

following.

h(Y (T )
2 |W12, S̃

(T )
2 ,W22,W21)

= h(Y (T )
2 |W12, S̃

(T )
2 ,W22,W21, X

(T )
2 )

= h(H21X
(T )
1 + Z

(T )
2 |W12, Z̃

(T )
2 ,W22,W21, X

(T )
2 )

= h(H21X
(T )
1 + Z

(T )
2 |Z̃(T )

2 ,W21)

Similarly, we can bound R12 and R11 as

T (R12 +R11− ε) ≤ h(S̃(T )
1 |W21)− Th(Z̃1) + h(Y (T )

1 |S̃(T )
1 )

− h(H12X
(T )
2 + Z

(T )
1 |Z̃(T )

1 ,W12) (27)



Adding (26) and (27), we get

T (RΣ − ε)
≤ h(H12X

(T )
2 +H12Z̃

(T )
2 |W12)− h(H12X

(T )
2 +Z

(T )
1 |Z̃(T )

1 ,W12)︸ ︷︷ ︸
U1

+h(H21X
(T )
1 +H21Z̃

(T )
1 |W21)− h(H21X

(T )
1 +Z

(T )
2 |Z̃(T )

2 ,W21)︸ ︷︷ ︸
U2

+h(Y (T )
1 |S̃(T )

1 ) + h(Y (T )
2 |S̃(T )

2 )− Th(Z̃1)− Th(Z̃2)︸ ︷︷ ︸
U3

The rest of the proof goes along the similar lines as described
in [4]. We only highlight the differences here.

Note that U3 is maximized if we choose X1(t) to be i.i.d.
Gaussian of variance P1 , since h(Y (T )

i |S̃(T )
i ) is maximized

by this choice. Thus, we have

U3 ≤ Th(Y1G|S̃1G) + Th(Y2G|S̃2G)− Th(Z̃1)− Th(Z̃2)
(28)

where XiG, YiG, and S̃iG are variables obtained by letting
Xi be a Gaussian random variable of variance Pi for i = 1, 2.
Now, following the proof of [4], we derive conditions on ρi, σi
for i = 1, 2 so that independent and identical Gaussian distri-
butions on Xi(t) maximizes U1 and U2 as well. Specifically,
we show that if

1− ρ2
2 ≥ H2

21σ
2
1 , (29)

then U2 can be bounded above as the following.

U2
(a)
= h(H21X

(T )
1 +H21Z̃

(T )
1 |W21)

−h(H21X
(T )
1 + V

(T )
1 |W21)

(b)
= h(H21X

(T )
1 +H21Z̃

(T )
1 |W21)

−h(H21X
(T )
1 +H21Z̃

(T )
1 + V (T )|W21)

= −I(V (T );H21X
(T )
1 +H21Z̃

(T )
1 + V (T )|W21)

(c)

≤ −I(V (T );H21X
(T )
1 +H21Z̃

(T )
1 + V (T ))

(d)

≤ −TI(V ;H21X1 +H21Z̃1 + V )
= Th(H21X1G +H21Z̃1)− Th(H21X1G + Z2|Z̃2)

where in step (a) we have V1 ∼ N(0, 1− ρ2
2), in step (b) we

have V ∼ N(0, 1 − ρ2
2 − H2

21σ
2
1) and V is independent of

Z̃1, and in step (c) we use the fact that removing conditioning
that is independent of V does not increase the the mutual
information. Note that step (b) holds only when (29) is
satisfied. Step (d) follows by the worst case noise lemma [11].
Following the same lines, we can show that if

1− ρ2
1 ≥ H2

12σ
2
2 , (30)

then U1 can be bounded in a similar manner. Thus, we have

T (RΣ − ε)
≤ Th(H21X1G +H21Z̃

(T )
1 )− Th(H21X1G + Z2|Z̃2)

+Th(H12X2G +H12Z̃2)− Th(H12X2G + Z1|Z̃1)
+Th(Y1G|S̃1G) + Th(Y2G|S̃2G)− Th(Z̃1)− Th(Z̃2)

= T
[
I(X1G;Y1G, S̃1G) + I(X2G;Y2G, S̃2G)

]
.

Dividing both sides by T and letting T →∞, we have

RΣ ≤ I(X1G;Y1G, S̃1G) + I(X2G;Y2G, S̃2G). (31)

The rest of the proof follows Lemma 10 in [4]. Specifically,
it can be shown that if

H11σ1ρ1 = H2
12P2 + 1 (32)

H22σ2ρ2 = H2
21P1 + 1, (33)

then

I(X1G;Y1G, S̃1G) = I(X1G;Y1G) (34)
I(X2G;Y2G, S̃2G) = I(X2G;Y2G). (35)

Combining (31), (34), and (35), we get the desire outer bound
(20). Also as shown in [4], (19) can be obtained by combining
(29), (30), (32), and (33). By letting a genie provide provide
H22(X2+Z̃1) alone with W22 to receiver 1 and H11(X1+Z̃2)
alone with W11 to receiver 2, we can prove (21) and (22) in
a similarly way. This completes the proof.

VI. CONCLUSIONS

We consider the GDOF and capacity of the two-user
Gaussian X channel in this paper. Interesting and potential
extention of this work includes finding the complete GDOF
characterization of the channel, extending the bounds es-
tablished in this paper to the case with more users, and
approximating the capacity region of the X channel to within
a constant number of bits.
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