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Abstract—Consider a K-user interference channel with time- interference channel with the channel matrix:
varying fading. At any particular time, each receiver will see a

signal from most transmitters. The standard approach to sub Y = HX+7Z Q)

a scenario results in each transmitter-receiver pair achieing a

rate proportional to % the single user rate. However, given tWo \yhere Y — Y1,Ys YB]T X = [X1,Xo X3]T 7 —
) ) ) ) ) )

well chosen time indices, the channel coefficients from intkering (21, 7o, 2 ]T are the vectors containing the received svmbols
users can be made to exactly cancel. By adding up these twol“1> <2, <3 9 Yy '

signals, the receiver can see an interference-free versiaof the the .t_ransm?tted sym_bols Qnd the zero mean u.nit_variance
desired transmission. We show that this technique allows eh additive white Gaussian noise symbols for users indicajed b
user to achieve at least half its interference-free ergodicapacity the subscripts. The transmit power constraint for each isser

at any SNR. Prior work was only able to show that half the E[XQ] < Pk — 1.2.3. Consider two different values of the
interference-free rate was achievable as the SNR tended to charl?lne_l m:’ﬂrix T

infinity. We examine a finite field channel model and a Gaussian
channel model. In both cases, the achievable rate region has 1 -1 1 1 1 —1
simple description and, in the finite field case, we prove it ithe

ergodic capacity region. Ha. = 1 I -1, H=| -1 1 1 (2)

|I. INTRODUCTION

The interference channel is one of the fundamental buildiy IS Shown in [4] that taken individually either channel
blocks of wireless networks. Following several recent adbatrix Ha or Hy, by itself results in a sum capacity of
vances, the capacity region of the classical two-user Gauss2(1 +3P), so that separate coding can at most achieve a
interference channel is known exactly for some interestifgPacity2log(1 + 3P). However, taken together, the capacity
special cases (e.g. very weak or strong interference), &Ngne parallel interference channeldsog(1 +2P) which is
approximately (within one bit) for all channel conditior [ achieved pnly by joint _codlng across both channel matrices.
There is also increasing interest in generalizations otwtee  1he key is the complimentary nature of the two channel
user Gaussian interference channel model to morezhesers Matrices, i.e;(Ha + Hy,) = T which allows the receivers to
and fading channels. However these generalizations turn §@ncel interference by simply adding the outputs of thelfgara
to be far from trivial, as they bring in new fundamental issuechannels, provided the transmitters send the same symbol ov
not encountered in the classical setting. Extensions toemd©th channels.
than 2 users have to deal with the possibility interference N this paper, we take this idea further by recognizing
alignment[2], [3] while extensions to fading channels ardhat in the ergodic setting, for a broad class of channel
faced with theinseparabilityof parallel interference channelsdistributions, the channel states can be partitioned iotth's
[4], [5]. Interference alignment refers to the consolidatof Ccomplimentary pairings over which interference can berelt)
multiple interferers into one effective entity which can b&0 that each user is able to achieve (slightly more than)dfalf
separated from the desired signal in time, frequency, spabis interference-free ergodic capacityaaty SNR. Prior work
or signal level dimensions. The inseparability of inteefeze N [3] has shown that for fading channels every user is able to
channels refers to the necessity for joint coding acrossch&chieve half the channel degrees of freedom. In other words,
nel states. In other words, for parallel Gaussian interfeee €ach user achieves (slightly less than) half of his interfee-
channels, the capacity cannot be expressed in general asfii@ capacity asymptoticallgs SNR approaches infinitiyairly
sum of the capacity of the sub-channels. sophisticated interference alignment schemes are catstiu

The following example presented in [4] to establish tht® establish this achievability. However, in this work wesh
inseparability of parallel interference channels formes tale- that for a broad class of fading distributions, including.e.

vant background for this work. Consider theuser Gaussian Rayleigh fading, alignment can be achieved quite simply and
more efficiently. Note, however, that the stronger result is
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The next section presents the main problem statementDefinition 1: We say that an ergodic rate tuple

where we formulate both a finite-field and a Gaussian interfdiR;, Rs, ..., Rx) is achievableif for all ¢ > 0 and n
ence network model. In Section Ill, we derive an achievablarge enough there exist channel encoding and decoding
scheme for the finite field model in Section Ill and in Sectiofunctionséy,...,Ek, D1, ..., Dk such that:

V we show this matches the upper bound exactly. In Section .

IV, we give an achievable scheme for the Gaussian model Rp>Rp—e¢, k=12, K, (6)
which we show is quite close to the outer bound for the equal Pr({w1 #wi}U...U{wk #wk}) <e. (7)

SNR case for any number of users. We conclude the paper in

Section VI. Definition 2: The ergodic capacity regiois the closure of

the set of all achievable ergodic rate tuples.
[I. PROBLEM STATEMENT

We consider both a finite-field model and a Gaussian modé+. Finite Field Model

First, we will give definitions common to both models. We The channel alphabet is a finite field of size¥’ = F,. The

will use bold lowercase to denote column vectors and bol$hannel coefficients for block, hy, are drawn independently
uppercase to denote matrices. Thereliransmitter-receiver ang uniformly frome, \ {0}.

pairs (see Figure 1). Let denote the number of channel uses. Remark 1:Our results can be extended to the case where

Let each message;, be chosen independently and uniformlype channel coefficients are sometimes zero through simple

Ry, s i ) . : -
fromthe se{(1,2, ..., 27"} for someR). > 0. Messageur iS  counting arguments. However, this considerably compiat
only available to transmittet. Let X" be the channel input and e description of the capacity region.

output alphabet. Each transmitter has an encoding fundion  the additive noise termg;,(t) are i.i.d. sequences drawn

that maps the message intochannel uses: from a distribution that takes values on uniformly on
& {1’27___72111%} X" 3) {1,2,.._.,q — 1} with probability p and is zero otherwise.
We define the entropy af(¢) to be0 < H(Z) < log, q.

B. Gaussian Model

Zy
X VY, . The channel inputs and outputs are complex numbgrs,
Wi & [ o— w1 C. Each transmitter must satisfy an average power constraint
Zs )
o X, - 5 Yo by E[X,(t)F[H(t) =B] <SNR, VBeH (8)
(t) where SNR;, > 0 is the signal-to-noise ratio. The channel
P coefficients are drawn independently of each other and scros
X ¢Ky time. They can be drawn from any distribution that is symmet-
wr—| Ex L —@—K> UK ric about zero (withP(hye) = P(—hge)). This includes many
popular fading models such as Rayleigh fading and uniform
Fig. 1. K-user interference channel with fading. phase fading. The noise terms are i.i.d. sequences drawn fro

a Rayleigh distributionZy, () ~ CA/(0, 1).

We focus on the fast fading scenario where the channelRemark 2:Our choice of power constraint eliminates the
matrix changes at every time step. LHi(t) = {hw(t)}re need to search for the optimal power allocation policy. A-non
denote the channel matrix at tinteand letH" denote the equal power allocation over channel states could certdinly
entire sequence of channel matrices. We assume that befgtguded as part of our scheme but for the sake of simplicigy w
each time step, all transmitters and receivers are given perfeglplicitly disallow it. See [6] for a study of power allocati

knowledge of the channel matréd(z). for fast fading2-user interference channels.
At time ¢, the channel output seen by receiveis given  Remark 3:We could also allow for different interference-
by: to-noise ratios between each transmitter and receiveral(lysu
K written as INRy,). However, the achievable rate derived in
Yi(t) = Z hue () Xo(t) + Zi(t) (4) Section IV would still only depend on theNR; parameters.
/=1

whereZy(t) is additive noise. Note that addition and multipli- Il. FINITE FIELD ACHIEVABLE SCHEME

cation are carried out over a finite field or the complex field, We now develop an achievable scheme for the finite field

depending on the channel model. case that can approach the symmetric ergodic capacity, Firs
Each receiver is equipped with a decoding function: we need some tools from the method of types [7]. et
De: X" — {12, Qan} 5) denote the alphabet of the channel matrix so #H#t) € H.

Let N(H|H") be the number of times the channel matrix
and produces an estimatig, of its desired message.. H € H occurs in the sequendd™.



Definition 3: A sequence of channel matriceH", is ¢- Theorem 1:For theK-user finite field interference channel,

typical if: the rate tuple Rsyy, Rsyw, - - -, Rev) IS achievable where :

1 1

~N(H|H") - P(H)| <5 VHeEN 9) Rom = 5 (logy ¢ — H(Z)) (15)
where P(H) is the probability of channeH € H under the Proof: For anye > 0, let 6 be a small positive constant

channel model. Leti” denote the set of ali-typical channel that will be chosen later to satisfy our rate reiuirementnngs
matrix sequences. Lemma 1, choose: large enough so thaP(Aj) > 1 — <.

Lemma 1 (Csiszar#mer 2.12): For any i.i.d. sequence of ASSUme thav andn are chosen such that( ;7 — 6) is an

channel matricedI”, the probability of the set of ali-typical €Ven integer. Now condition on the event that the sequence
sequencesd?, is lower bounded by: of channel matricesH", is é-typical. Since the channel

coefficients are i.i.d. and uniform, the probability of any

P(AD) > 1 — |H|2 (10 channelH € H is Wl‘ SinceH" is §-typical we have that
4nd for everyH € H:
For a proof, see [7]. 1 1
Lemma 2: There exists a one-to-one map,: FX*% — n (W - 6) < NHH") <n (W - 6) (16)
FX*K such thatH + g(H) = I, VH wherel is the identity IH] IH]
matrix. Throw out all but the firstn(ﬁ — ¢) indices for each

Proof: Let f : F, — F, be the one-to-one map such thathannel realization. This results in losing at most faaction
f(a) +a = 1forall a € F,. SinceF, is a finite field, f(-) of the total rate. Group together all time indices that have

is guaranteed to exist. Then, defipe) as follows: channel realizatiod and call this set of indicegg. We will
Fh) —his o —hig encode for eaclyy separately. For each channel realization
“hor flhas) - —hox H, transmitter¢ generates a message;n € Fj' where
g(H) = _ _ 1) m = Gy — 0)(loga @) (Rem — 5)- Using a computation
: : : : code from Lemma 3, each transmittérsends its message
—hg1  —hgs - flhgk) wen during the firstg (i — ) time indices inZy. Receiver
where—hy, is the additive inverse ofy,. Clearly,g(H)+H = & makes an estimatd,y of uyu = Sy hrewen.
I andg(-) is one-to-one. ] For each channel realizatioHH € H, pair up the first

The basic idea underlying our scheme is to add togethert\@éwﬂ — 0) blocks with H with the Iastg(ﬁ — 6) blocks
well-chosen channel outputs such that the interferencetlgxa with g(H) using g(-) from Lemma 2. Sinceg is one-to-one,
cancels out. However, for the finite field model, if we do thithis procedure pairs up all of the channel indices. Durirg th
in an uncoded fashion, we risk accumulating noise. Thus, Wast %(ﬁ — 0) indices with channel(H), the transmitters
denoise the desired linear functions using computatioregodise the messagey, 1, and a computation code from Lemma

prior to combining them together [8]. 3. The receivers make an estimaigy of vig = vig =
Lemma 3:Consider ak -user finite field interference chan-f (hik)Win — >z, hrewen where f(-) is the function such
nel with fixed channel coefficients,, € F, \ {0}: that f(hie) + hie = 1.
K For n large enough, the total probability of error for all
Yi(t) = Z hie Xe(t) + Zi(t) (12) computation codes is upper boundedhyReceiverk makes
=t an estimate ofw,y by simply adding up the two equations

o .. . . to getwim = Ggxu + V. Note that the transmitters do not
where Z,.(t) is i.1.d. additive noise with entropy/ (7). Each know a priori which time indices will be successfully paired

1 m 1 —
t;ansmltter has a message. € ', The maximum ratel? = = 1, yeq) yith this, the transmitters use an erasure code wafiéh r
™ log, ¢, at which each receiver can reliably recover the Ilne%rt least(1 — ) Rom — % with probability of error no greater

. K . . i
functionuy, = > °,_; hxewe is given by: than £ over all transmissions. By choosirgsmall enough,
R =logyq— H(Z) (13) we finally get that each receiver can recover its message at
) a rate greater thaé(log2 q— H(Z)) — e with probability of
Proof SketchlLet G € Fp*™ be a good linear code for grror |ess thar as desired. -
additive noise channel at rat&. Each encoder transmits Theorem 2:For theK -user finite field interference channel,
x; = Gwy. Each receiver observes: any rate tupl€ Ry, . .., Rx), satisfying the following inequal-
K ities is achievable:
= Gh +zi = Guy + 14
v ; R T = T a4 Re+ Ry < logyq— H(Z), k1, (17)
from which it can recoveny,, reliably. See Theorem 1 in [8] First, we will give an equivalent description of this ratgicen
for a full proof and extensions. and then show that any rate tuple can be achieved by time

We will now show that all users can achieve half the singkharing the symmetric rate point from Theorem 1 and a single
user rate simultaneously. user transmission scheme.



Lemma 4:Assume, without loss of generality, that the We condition on the event that the sequence-gfuantized
users are labeled according to rate in descending order,ce@nnel matriced1”, is é-typical. Unlike the finite field case,
that Ry > R, > --- > Rg. The achievable rate region fromthe channel matrix distribution is not uniform. For Hl, €

Theorem 2 is equivalent to the following rate region: we have that:

Ry < logyq — H(Z) (18)  n(P(H,)—0) < N(H,[HZ) < n(P(H,)+0)  (21)

Ry, < min{log, ¢ — H(Z) — Ry, l(logg q—H(2)}, k>2 Throw out a_|| b_ut the _firStn(P(HV) — 0) blocks of e_ach
2 channel realization. This causes a loss of at masfraction

Proof: The key idea is that only one user can achievein rate. Leth], denote the elements dfi,. We define the
rate higher tharj(log, ¢ — H(Z)). From (17), we must have following one-to-one mag : H — H:

that Ry + Ry <log, q — H(Z) so if Ry > $(logy ¢ — H(Z)) W B e Y
all other users must satistyy, < log, q— H(Z)—Ry. If Ry < —hi hiyz o
1(logyq—H(2)), thgn we have thaky, < 1 (log, q—.H(Z)) g(H,) = _ - QK. (22)
for all other users since the rates are in descending ormer. : S :

Proof of Theorem 2: We show that the equivalent rate —hjer —hYey - Rk

region developed by Lemma 4 is achievable by time-sharingete that due to the symmetry of the channel distribution
First, we consider the case whef > j(logyq — H(Z)). P(g(H,)) = P(H,). Group together all time indices that
Leta = 2(1 — 7). We allocatean channel uses to have channel realizatio, and call this set of indices
the symmetric scheme from Theorem 1. For, the remaining; . For each channel realizatioH € #, pair up the

(1 —a)n channel uses, usepsthroughK are silent, and user first %(P(H,) — 0) blocks with channelH, with the last

1 employs a capacity-achieving point-to-point channel cod%(p(Hv) — 0) blocks with channel(H,). We ensure that

This results in uset achieving its target rat&;: we use the same channel inputs during time indem 7z
a(logy ¢ — H(Z)) fori=1,2,...,5(P(H,) - ¢) as we do during time index
2 5 + (1 —a)(logy g — H(Z)) (19) i+ 2(P(H,) - 6) from T ). Let ¢, denote the first time
=logyq— H(Z)— Ry —log,q+ H(Z) + 2R, = Ry andt, denote the second time. We have the following channel
outputs:

and user® through K achievingRy, = log, ¢ — H(Z) — R;.
If Ry < %(log, ¢—H(Z)), we can achieve any rate point with Yie(t1) = huoe(t2) X (t1) + Z he (1) Xo (t2) + Z1(t1)
the use of the symmetric scheme from Theorem 1. = £k

IV. GAUSSIAN ACHIEVABLE SCHEME Yio(t2) = hir (t2) X (t1) + Z he(2) Xo (1) + Zi (t2)

1#£k
The scheme for the Gaussian case is quite similar to our . .
finite field scheme. The key difference is that we need tlnce f has quantized channdil, and ¢, has quantized

guantize the channel alphabet so that we can deal with a fi Gaannelg(H,) we hav_e that the_ chan_nel fronXk(tl.) o
” . . L 'k (t1) + Yi(t2) has a signal-to-noise ratio of at least:
set of possible matrices. By decreasing the quantization bi

size, we can approach the desired rate in the limit. Alscg her ~ SNRi(2(Re(hx) — 3)* + (Im(hi) — 3)°) (23)
it is beneficial to transmit combine the channel outputsrprio 2+ 92> 0 SNRe
to decoding to exploit a power gain. By choosingy small enough, we can achieve:

Definition 4: For v > 0, let Q~(hy¢) represent the closest 1 .
point in v(Z + jZ) to hge in Euclidean distance. The- Rym, > max §1Og(1+2|hkk|25NRk) _ € (24)
quantizedversion of a channel matrill ¢ CX*X s given hinC€Hy
by H, = {Q-(hie) }re- for eachH,. The total rate per user is given by

Theorem 3:For the K-user Gaussian interference channel, 1
the rate tupleg Ry, Ro, ..., Rx) is achievable for : Ry, = H] Z P(Hy) Ry, (1 - 9) (25)

H,eH
1 . .
Ry =3E [log (1 + 2|hkk|*SNRy)] - (20) For § small enough and taking the limit— 0, we get:

Proof: For any ¢ > 0, chooser > 0 such that ilil% Ry, =
P (Uke{lhie| > 7}) < 5. Let v and 6 be small positive %
constants that will be chosen later to satisfy our rate requi 5 / 1{|hke| > 7}1og (1 + 2|her|*SNRy) P(H)dH — 3
ment. Also, using Lemma 1, chooselarge enough so that
P(A7) > 1 — & We will throw out any time index with a
channel coeff|C|_ent with magnltude larger thanTh|s ensures lim lim Ry = lE[log (1 + 2|hkk|25NRk)] 2 (26)
that the~-quantized version of the channel is of finite size. 7—o0v—0 2 3
Specifically, the size of the channel alphaBétis given by Thus, there existy and = such that we achieveR?, >
|H| = (2%)”{2. We assume that,~,5 andn are chosen so 1 Ellog (1 + 2|huk|>SNR)] — € with probability 1 — e.
that all the appropriate ratios only result in integers. [ ]

Finally, takingT — oo, we get:



V. UPPERBOUNDS

10

We now briefly describe upper bounds for both the finit - - ~Upper Bound -
field case and the Gaussian case. The finite field upper bot —— Achievable R
matches the achievable performance thus yielding the &go
capacity region. For the Gaussian case, we demonstrate -
our achievable performance is very close to the upper bou
when the transmitters have equal power constraints.

Theorem 4:For the K-user finite field interference channel,
the ergodic capacity region is:

Ergodic Rate per User

Re+ Ry <logaq— H(Z), Vk#UL. (27)

Proof: The required upper bound follows from step:
similar to those in Appendix Il of [3]. Without loss of
generality, we upper bound the rates of uskrand 2. Note
that the capacity of the interference channel only depen

on the noise marginals. Thus, we can assume #ét) = _ _

() (a2 (1)~ 25(0). Let Ya(t) = hua(f)(haa(0)1Va0). o0 & Sl ot e B 1 S g ol ranemi
We give the receivers full access to the messages from US§fSers:SNR;, — SNRo — - - - — SNRy.

3 through K as this can only increase the outerbound. From

Fano’s inequality, we have that R, + R; —¢,,) where<z — 0

asn — oo is upper bounded as follows:

20
SNR in dB

30 40 50

case, uniform phase fading channels with a large number of

users [9].

S n) 1wz w01, V) . VI. CONCLUSIONS

Hwi; 177) + (wQ’YQ Jron, X7) We developed a new communication strategy, ergodic in-
= I(wi; Y1) + I(wa; {hi2(8) X (t) + Z1(8) i |wi, XT) terference alignment, that codes efficiently across mrall
= I(wy;; Y")+ interference channels. With this strategy, every user & th

I(wa; {h11 () X1(t) + hio(t) X2 (t) + Z1 ()}, Jwi, X*)  channel can attain at least half the rate available to them in
— T(wn; V) + I(ws: Yy the single-user setting. Moreover, we showed that for aefinit

ot field channel model this achievable scheme matches the outer

= I(wr, w2 Y7") bound exactly, thus yielding the ergodic capacity regiome T
< n(logyq— H(Z)) key to the achievable strategy was perfect channel knowledg

at the transmitters. An interesting direction for futurerlwo
developing an ergodic alignment scheme for the case of
ited channel state information.

Similar outer bounds hold for all receiver paiks and /.
Comparing these to the achievable region in Theorem 2 yleﬁ%
the capacity region.
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