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Abstract—We study the sum capacity of the X channel
generalization of the symmetric 2-user interference channel. In
this X channel, there are 4 independent messages, one from each
transmitter to each receiver. We characterize the sum capacity of
a deterministic version of this channel, and obtain the generalized
degrees of freedom characterization for the Gaussian version.
The regime where the X channel outperforms the underlying
interference channel is explicitly identified, and an interesting
interference alignment scheme based on a cyclic decomposition
of the signal space is shown to be optimal in this regime.

I. INTRODUCTION

The X channel is a generalization of the 2-user interference
channel with 4 independent messages, one from each transmit-
ter to each receiver. It holds special significance for a number
of reasons:

1) Interference Alignment: It is the smallest (in terms of
the number of nodes) network where the newly discov-
ered concept of interference alignment [1], [2] becomes
relevant.

2) Structured Codes: The X channel is related to the “dou-
ble dirty” multiple access channel [3] where linear codes
have been shown to outperform random codes. This is
because, like the “double dirty” multiple access channel,
each transmitter in an X channel has side-information
about its own potentially interfering transmissions to the
other receiver.

In this paper, we explore the capacity of the X channel
as a stepping stone to an improved understanding of the role
of interference alignment and structured coding in wireless
networks. For simplicity of exposition, we choose as a baseline
the symmetric interference channel model and study its X
channel extension. We identify the regime where interference
alignment is helpful so that the X channel has a higher
capacity than the underlying symmetric interference channel.
The interference alignment is accomplished using a linear
coding scheme based on a cyclic decomposition of the signal
space which is of interest in and of itself.

Etkin, Tse, and Wang [4] introduced the notion of general-
ized degrees of freedom (GDOF) to study the performance
of various interference management schemes. As its name
suggests, the idea of GDOF is a generalization of the con-
cept of degrees of freedom. Unlike the conventional degrees
of freedom perspective where all signals are approximately

equally strong in the dB scale, the GDOF perspective provides
a richer characterization by allowing the full range of relative
signal strengths in the dB scale.

A useful technique in the characterization of the GDOF
of a wireless network is the deterministic approach [5]. The
deterministic approach essentially maps a Gaussian network
to a deterministic channel, i.e, a channel whose outputs are
deterministic functions of its inputs. The deterministic channel
captures the essential structure of the Gaussian channel, but
is significantly simpler to analyze. Reference [6] showed that
the deterministic approach leads to a GDOF characterization
of the 2-user interference network, which leads to a constant
bit approximation of its capacity.

In this paper, using a deterministic approach, we character-
ize the sum capacity of a deterministic X channel, and obtain
the GDOF characterization for the Gaussian version. Although
the models are simplified to symmetric setting, our results
provide an interesting view of the structural difference between
the X channel and the interference channel. In terms of
GDOF, both channels perform equally well when interference
alignment is not applicable. But when interference alignment
is applicable, the X channel has larger GDOF and, therefore,
higher capacity than the interference channel.

The rest of the paper is organized as follows. Section II
describes the models. Section III summarizes our main results.
In Section IV, we explore the sum capacity of the deterministic
X channel. Section V provides the GDOF characterization of
the symmetric Gaussian X channel.

II. SYSTEM MODEL

A. The Symmetric Deterministic X Channel

The symmetric deterministic X channel is described by the
input-output equations

Y1(t) = Sq−ndX1(t) + Sq−ncX2(t) (1)
Y2(t) = Sq−ncX1(t) + Sq−ndX2(t) (2)

where nd, nc ∈ Z+, q = max(nd, nc), Xi(t),Yi(t) ∈ Fq
2 for

i = 1, 2, and S is a q × q shift matrix. The deterministic X
channel is physically the same channel as the deterministic
interference channel introduced in [6], except that the X
channel has 4 independent messages. Please refer to [6] for
the illustration of the deterministic channel. The message set



and standard definitions and notations of the achievable rates
are similar to those in the Gaussian setting given in the
next subsection. To avoid confusion, sometimes we add the
subscript det to distinguish the notations of the deterministic
channel from those for the Gaussian channel.

B. The Symmetric Gaussian X Channel

The symmetric 2-user Gaussian X channel is described by
the input-output equations

Y1(t) = HdX1(t) + HcX2(t) + Z1(t) (3)
Y2(t) = HcX1(t) + HdX2(t) + Z2(t) (4)

where at symbol index t, Yj(t) and Zj(t) are the channel
output symbol and additive white Gaussian noise (AWGN)
respectively at receiver j. Hc and Hd are the channel gain
coefficients, and Xi(t) is the channel input symbol at trans-
mitter i. All symbols are real and the channel coefficients do
not vary with time. In the remainder of this paper, we suppress
time index t if no confusion would be caused. The AWGN is
normalized to have zero mean and unit variance and the input
power constraint is given by

E
[
X2

i

]
≤ 1, i = 1, 2. (5)

There are 4 independent messages in the X channel:
W11, W12, W21, W22 where Wji represents the message from
transmitter i to receiver j. We indicate the size of the mes-
sage by |Wji|. For codewords spanning T symbols, rates
Rji = log |Wji|

T are achievable if the probability of error for
all messages can be simultaneously made arbitrarily small
by choosing an appropriate large T . The capacity region C
of the X channel is the set of all achievable rate tuples
R = (R11, R12, R21, R22). We indicate the sum rate and the
sum capacity of the X channel by RΣ and CΣ respectively.

1) Generalized Degrees of Freedom (GDOF): The same
problem formulation has been given in [7], and we include
it for the sake of completeness. To motivate our problem
formulation, we briefly revisit the framework for the GDOF
characterization of the symmetric interference channel. The
interference channel is defined as:

Y1(t) =
√

SNRX1(t) +
√

INRX2(t) + Z1(t) (6)
Y2(t) =

√
INRX1(t) +

√
SNRX2(t) + Z2(t) (7)

and with the parameter α defined as follows

α ! log(INR)
log(SNR)

(8)

the GDOF metric is defined as [4],

d(α) = lim sup
SNR→∞

CΣ(SNR, α)
1
2 log(SNR)

(9)

where CΣ(SNR, α) is the sum capacity of the interference
channel.

Since our goal is to compare GDOF of the X channel
with the interference channel, we use the same symmetric
interference channel model described above as the physical
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Fig. 1. 2-user Gaussian X channel.

channel model for the X channel. There is however, one
notational difference. Since the terminology SNR, INR is not
as appropriate for the X channel, we instead use the parameter
ρ to substitute for these notions, resulting in the following
system model for the X channel GDOF characterization:

Y1(t) =
√

ρX1(t) +
√

ραX2(t) + Z1(t) (10)
Y2(t) =

√
ραX1(t) +

√
ρX2(t) + Z2(t) (11)

In other words, we have set Hd = √
ρ, Hc =

√
ρα. Note

that (10), (11) represent the same physical channel as (6), (7).
However, as mentioned earlier, unlike the interference channel
the X channel has 4 independent messages: one from each
transmitter to each receiver. The GDOF characterization for
the X channel is defined as:

d(α) = lim sup
ρ→∞

CΣ(ρ, α)
1
2 log(ρ)

(12)

where CΣ(ρ, α) is the sum capacity of the X channel.
Note that we use lim sup to ensure that d(α) always exits.

The half in the denominator is because all signals and channel
gains are real.

III. MAIN RESULTS

The first main result of the paper is the characterization of
the sum capacity of the symmetric deterministic X channel.
The result is given in the following theorem.

Theorem 1: The sum capacity CΣ(nc, nd) of the symmetric
deterministic X channel is given as follows.

CΣ(nc, nd) =






2nd − 2nc, 0 ≤ nc
nd

< 1/2
2nc, 1/2 ≤ nc

nd
< 3/4

2(nd − 1
3nc), 3/4 ≤ nc

nd
< 1

nd, nc = nd

2(nc − 1
3nd), 1 < nc

nd
≤ 4/3

2nd, 4/3 < nc
nd
≤ 2

2nc − 2nd,
nc
nd

> 2

(13)

The key features of the sum-capacity-achieving scheme for the
regimes of 3/4 ≤ nc

nd
< 1 and 1 < nc

nd
≤ 4/3 are shown in Fig.

2. It can be easily seen that all interference is aligned and that
all intended messages can be recovered after canceling both
the decoded messages and the decoded sums of the aligned
interference.



Fig. 2. Sum-capacity-achieving scheme for the symmetric deterministic X
channel with (nc, nd) = (12, 15)

The second main result of the paper builds upon the result of
Theorem 1 to find the GDOF characterization of the Gaussian
X channel.

Theorem 2: The generalized degrees of freedom d(α) of
the symmetric Gaussian X channel is shown in Fig. 3 and
given as follows.

d(α) =






2− 2α, 0 ≤ α < 1/2
2α, 1/2 ≤ α < 3/4
2− 2

3α, 3/4 ≤ α < 1
1, α = 1
2α− 2

3 , 1 < α ≤ 4/3
2, 4/3 < α ≤ 2
2α− 2, α > 2

(14)

It can be easily seen that the X channel outperforms the
underlying interference channel in the regimes of 2/3 ≤ α < 1
and 1 < α ≤ 3/2.

IV. SUM CAPACITY OF THE SYMMETRIC DETERMINISTIC
CHANNEL

The goal of this section is to prove Theorem 1. We start
from the following lemma, which follows trivially from the
symmetry in the X channel.

Lemma 3: CΣ(nc, nd) = CΣ(nd, nc).

A. Upperbound
The following lemma provides a set of outer bounds for

all achievable rate tuples R of the symmetric deterministic X
channel.

Theorem 4: All achievable rate tuples (R11, R21, R12, R22)
satisfy

R11 + R12 + R22 ≤ max(nd, nc) + (nd − nc)+ (15)
R11 + R21 + R22 ≤ max(nc, nd) + (nd − nc)+ (16)
R11 + R21 + R12 ≤ max(nd, nc) + (nc − nd)+ (17)
R21 + R12 + R22 ≤ max(nc, nd) + (nc − nd)+ (18)
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Fig. 3. Generalized degrees of freedom of the 2-user Gaussian X channel.

RΣ ≤ 2 max(nc, (nd − nc)+) (19)
RΣ ≤ 2 max(nd, (nc − nd)+) (20)

Proof: Inequality (15) to (18) are the upperbounds of
the sum capacity for the four Z channels contained in the
X channel respectively. Inequality (19) and (20) can be seen
as the X channel extensions of the bound given in (9.c) of
[8]. Please see the full paper [9] for the detailed proof in a
more general asymmetric setting.

It is easy to verify that (19) and (20) lead to the tight upper-
bounds of the sum capacity in the regimes of 0 ≤ nc

nd
< 3/4

and nc
nd

> 4/3 respectively. Adding (15) to (18) and dividing
both sides by 3, we have

RΣ ≤
4
3

max (nc, nd) +
2
3
(nd − nc)+ +

2
3
(nc − nd)+. (21)

The tight upperboud of the sum capacity for 3
4 ≤ nc

nd
≤ 4

3
follows from (21) and the multiple access bound that if nc =
nd, we have RΣ ≤ nd.

B. Achievable Scheme
The achievable scheme for nc

nd
< 2

3 and nc
nd

> 3
2 follows

trivially from [6]. We provide an outline of the achievability
proof for 2

3 ≤
nc
nd
≤ 3

2 . We start from the following lemma.
Lemma 5: Let (nc, nd) ∈ Z2

+ such that 3
4 ≤

nc
nd

< 1. Then

1) If nc is divisible by 3, then there exists a V ∈ Fnd×nc
3

2

such that

rank
([

V Snd−ncV S2nd−2ncV Vnull

])
= nd

where Vnull is a nd × (nd − nc) matrix whose column
vectors form a basis for the nullspace of Snd−nc

2) There exists a V̄ ∈ F3nd×nc
2 such that

rank
([

V̄ H̄V̄ H̄2V̄ V̄null

])
= 3nd

where

H̄ =




Snd−nc 0nd×nd 0nd×nd

0nd×nd Snd−nc 0nd×nd

0nd×nd 0nd×nd Snd−nc




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Fig. 4. A pictorial representation of the cyclic decomposition of Fnd
2 with

(nc, nd) = (10, 13). H = Snd−nc

and V̄null represents the 3nd×(3nd−3nc) matrix whose
column vectors form a basis for the nullspace of H̄.

Proof: To prove the lemma, we make use of cyclic
decomposition, the idea of decomposing Fnd

2 into several
disjoint invariant subspaces. Fig. 4 gives an illustration of the
cyclic decomposition. Pleas see [9] for the detailed proof.

By Lemma 3, we only need to consider the achievable
scheme for nc ≤ nd. The achievable scheme is split into three
different regimes viz. 2

3 ≤
nc
nd

< 3
4 , 3

4 ≤
nc
nd

< 1, and nc
nd

= 1.
Achievability for nc

nd
= 1 is trivial, since an optimal

achievable scheme sets W12 = W21 = W22 = φ and uses
all the nd levels for W11 at transmitter 1. We will treat the
other 2 cases below.

Case 1 : 2
3 ≤

nc
nd

< 3
4

The achievable scheme for this regime is illustrated in Fig. 5.
Case 2 : 3

4 ≤
nc
nd

< 1
We first consider the case where nc is a multiple of 3.

1) Transmit Scheme: We use linear precoding at the trans-
mitters. Let Vnull ∈ Fnd×(nd−nc)

2 satisfy

Snd−ncVnull = 0nd×(nd−nc).

At transmitter i, we use, as precoding vectors for Wii, column
vectors of the matrix [V Vnull] where V ∈ Fnd×nc

3
2 . We will

shortly explain how V is chosen, but here we mention that the
columns of V are linearly independent of Vnull. Note that this
implies that Snd−ncV has a full rank of nc/3. For Wji, we
use Snd−ncV as the precoding matrix so that the transmitted
codeword Xi can be represented as

Xi = VX̂ii(1) + VnullX̂ii(2) + Snd−ncVX̂ji (22)

for (i, j) ∈ {(1, 2), (2, 1)}, where X̂ii(1) ∈ F
nc
3

2 and
X̂ii(2) ∈ Fnd−nc

2 are column vectors representing the bits
encoding Wii. X̂ji ∈ F

nc
3

2 is the column vector of the bits
encoding Wji.

2) Receive Scheme: Consider receiver 1. The received signal
Y1 can be expressed as follows.

VX̂11(1) + VnullX̂11(2) + Snd−ncV
(
X̂21 + X̂22(1)

)

+S2nd−2ncVX̂12 (23)

Rx2Rx1

1 2 21

12[1]x

22[1]x

11[1]x

21[1]x

21[1]x

11[2]x

11[1]x

22[1]x

12[1]x

22[2]x

d cn n!

d cn n!

3 2c dn n!

d cn n!

Fig. 5. Signal levels at receivers for 2
3 ≤

nc
nd

< 3
4 .

Now, receiver 1 wishes to decode X̂11(1), X̂11(2), X̂12 using
linear decoding. Notice that the interference from X̂21, X̂22(1)
aligns along Snd−ncV. Suppose we choose V such that the
columns of the matrix

G =
[
V Snd−ncV S2nd−2ncV Vnull

]

are linearly independent, then clearly receiver 1 can decode
W11, W12 using linear decoding. Therefore, in order to show
achievability, we need to show that there exists V so that the
matrix G has a full rank of nd. This is shown in Lemma 5.
Similar analysis applies to receiver 2.

Now, we consider the case where nc/3 is not an integer.
In this case, we use a 3 symbol extension of the channel
represented below



Yi(3t)
Yi(3t + 1)
Yi(3t + 2)





︸ ︷︷ ︸
Ȳi∈F

3nd
2

=




Xi(3t)
Xi(3t + 1)
Xi(3t + 2)





︸ ︷︷ ︸
X̄i∈F

3nd
2

+H̄




Xj(3t)
Xj(3t + 1)
Xj(3t + 2)





︸ ︷︷ ︸
X̄j∈F

3nd
2

Like the case where nc was a multiple of 3, a linear precoding
and decoding technique is applicable over this extended chan-
nel. The only difference in this case is that, we need to show
that there exists a 3nd × nc matrix V̄ such that the matrix

Ḡ =
[
V̄ H̄V̄ H̄2V̄ V̄null

]

has a full rank of 3nd, where V̄null represents the (3nd−3nc)
basis elements of the null space of H̄. This is shown in Lemma
5 as well. This completes the proof of the achievability.

Remark: In the regime of 3
4 ≤

nc
nd

< 1, the sum-capacity-
achieving scheme needs to satisfy the challenging condition of
achieving (15) to (18) simultaneously. And the scheme solves
the problem by efficiently aligning the interference: for the nc

levels that receiver j can see the signals from both transmitters,
nc
3 of them are used for Wjj , nc

3 of them are used for Wji,
and nc

3 of them are used for aligning Wii and Wij , i &= j.

V. GENERALIZED DEGREES OF FREEDOM OF THE
SYMMETRIC GAUSSIAN X CHANNEL

To prove Theorem 2, we start from the following lemma.
Lemma 6: d(α) = αd( 1

α ).
Proof: The lemma is proved using the symmetry of the

X channel. Please see [9] for the details.



By Lemma 6, we only need to find d(α) for α ≤ 1. Since
d(α) for α ≤ 2

3 has been established in Theorem 2 of [7], we
only consider the remaining case of 2

3 < α ≤ 1.

The upperbounds are derived using the insights obtained
from the deterministic setting. Please see [9] for the detailed
derivation and the connection between the deterministic and
Gaussian cases.

The achievable scheme is similar to those used in [10], [11],
and we include an outline of the proof for the sake of the
completeness.

For a given α ∈ [ 23 , 1], we can find a (nd, nc) ∈ Z2
+ and a

very small nonnegative value ε such that

α =
1
nd

(nc + ε(nd − nc)) . (24)

Note that when α is a rational number, ε is chosen to be
zero. But when α is not rational, ε(nd − nc)/nd is used to
compensate the difference between α and a rational number
nc
nd

that is very close to α. We choose (nc, nd) such that (14)
can be achieved without symbol extension for the symmetric
deterministic channel with parameter (nc, nd).

Consider the sequence of channels, i.e. ρ indexed by N ,
such that

ρ = Q
2Nnd
1−ε (25)

where Q is a very large but fixed positive integer and N is
a positive integer whose value grows to infinity. Note that ρ
grows to infinity as N grows to infinity.

1) Transmit Scheme: We impose the following structure
on the Q-ary representation of the transmit signal Xi at
transmitter i for i ∈ {1, 2}.

Xi =
1
√

ρ

Nnd−1∑

k=0

xi,kQk (26)

The values of xi,k are restricted to the set {1, . . . , 'Q−1
4 −1(}

to ensure that the addition of interference does not produce
carry over. It’s easy to see that the power constraint is satisfied.

Since the signal design process developed in the Section
IV-B also works in FNnd

&Q−1
4 '−2

, we can use it to find the

transmit signals X1,X2 ∈ FNnd

&Q−1
4 '−2

for the symmetric
deterministic channel with parameter (Nnc, Nnd) and then
obtain the corresponding X1, X2 ∈ R+ by

Xi =
1
√

ρ

[
QNnd−1 QNnd−2 · · · Q2 Q1 1

]
Xi.

2) Receive Scheme : Each receiver takes the magnitude of
the received signal, reduces to modulo QNnd , discards the
value below the decimal point, and expresses the result in Q-
ary representation as

Y i =
⌊

|Yi| mod QNnd
⌋

(27)

=
Nnd−1∑

k=0

yi,kQk, yi,k ∈ {0, 1, . . . , Q− 1} (28)

Substituting (24) and (25) into (10) and (11), we can rewrite
the input output equation as

Yi = Xi + QN(nc−nd)Xj + Zi, (i, j) ∈ {(1, 2), (2, 1)}

where
Xi

(=
√

ρXi

Note that multiplication by QN(nc−nd) shifts the decimal point
in the Q-ary representation of Xj by N(nd − nc) places
to the left. Thus, in the absence of noise, the Nnd digits
of X1, X2, Y 1, and Y 2 behave exactly like the symmetric
deterministic channel with parameter (Nnc, Nnd). Following
the similar arguments in [10], [11], we have

RΣ = RΣ,det(Nnc, Nnd) logQ ('Q−1
4 −2() + o(N) (29)

= NRΣ,det(nc, nd) logQ ('Q−1
4 −2() + o(N) (30)

Combining (25), (30), and (9), we can show that d(α) is not
less than

!lim sup
N→∞

NRΣ,det(nd(α−ε
1−ε ), nd) logQ('Q−1

4 −2() + o(N)
Nnd
1−ε

=
1− ε

nd
RΣ,det(nd(α−ε

1−ε ), nd) logQ ('Q−1
4 −2()

Carrying out the substitution of RΣ,det(·, ·), choosing Q and
ε to be arbitrarily large and small respectively, and comparing
with the outerbound, we finish the proof of Theorem 2.
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