
Interference Alignment Through Staggered Antenna
Switching for MIMO BC With No CSIT

Chenwei Wang, Tiangao Gou, Syed A. Jafar
Electrical Engineering and Computer Science

University of California, Irvine, Irvine, CA, USA
Email: {chenweiw, tgou, syed}@uci.edu

Abstract—In this paper, we explore the degrees of freedom
(DoF) of the broadcast channel (BC) where the transmitter is
equipped with M antennas and there are K receivers, each
equipped with N reconfigurable antennas capable of switching
among M preset modes. Without any knowledge of the channel
coefficient values but only receiver antenna switching modes at
the transmitter, we propose an interference alignment scheme
for this channel. We show that if N < M , then a total of

MNK
M+KN−N

DoF are achievable, almost surely. The key to this
interference alignment scheme is the ability of the receivers to
switch between reconfigurable antenna modes to create short
term channel fluctuation patterns that are exploited by the
transmitter. Compared to the results we showed for MISO BC
[6], the supersymbol of MIMO BC may have diverse structures
depending M and N , and it can be determined from that of
MISO BC through an iterative mapping function.

I. INTRODUCTION

Multiple antenna system has a potential to increase capacity
by providing more spatial DoF, whose availability depends
on two factors: cooperation within inputs and outputs, and
channel knowledge. Although the effect of inability to jointly
process the signals at distributed outputs on the DoF is well
known with perfect channel state information, the effect of the
absence of channel information is less understood. Consider a
K user MIMO BC with M antennas at the transmitter and N
antennas at each receiver. With channel state information at the
transmitter (CSIT), this channel has a total of min(M, KN)
DoF. However, if there is no CSIT, then we only know the DoF
of some certain cases. One case is the compound channel [1],
[2], [5] where the channel vector is drawn from a finite set
which is known at the transmitter but he does not know the
specific value. If the channel coefficients follow i.i.d. Rayleigh
fading across antennas, users and time slots, then it has been
proved that the time-division between the users is optimal,
i.e., min(M, N) [3]. Note that if M ≤ N , there is no DoF
loss since the outerbound of DoF min(M, KN) = M can
be achieved even without CSIT. If N < M , then it indicates
that the number of DoF collapses to N , since the transmitter’s
ability to zero-force interference is lost.

Recently, a breakthough appeared in [4] indicates that even
without CSIT, we can still do blind interference alignment if
the channel coefficients have some special staggered block
coherence structures. In [4], it has been shown that for a
two user MISO BC with M = 2, if the coherence blocks
of the two users are suitably staggered, then we can use a

simple interference alignment to achieve the outerbound. With
this idea, in [6], we proposed a systematic blind interference
alignment scheme for the vector broadcast channel where each
receiver is equipped with a reconfigurable antenna capable of
switching among preset modes. In this paper, we propose a
systematic way to achieve blind interference alignment for
K user MIMO BC without CSIT through staggered antenna
switching (SAS) at the receiver. We show that MNK

M+KN−N
DoF can be achieved for the K user M × N MIMO BC.
Compared to the result in [6], this result can also be interpreted
as increasing the number of DoF achieved by the K user M

N ×1
MISO BC by N times. However, the achievability is not trivial
as it looks due to different possible combinations of M and
N . In this paper, we propose the SAS patterns and a mapping
function between the supersymbols of the MIMO BC [6] and
that of its MISO BC counterpart. With SAS patterns and the
mapping function, we can easily construct the supersymbol of
the K user MIMO BC for blind interference alignment.

The rest of this paper is organized as follows. In Section
II, the system model is presented. In Section III, we show
the structure of the alignment block. Then a mapping function
between the supersymbol structures of MISO BC and MIMO
BC is introduced in Section IV. Finally, the conclusions are
summarized in Section V.

II. SYSTEM MODEL

Consider a complex K user MIMO BC, where the trans-
mitter has M antennas while each receiver is equipped with
N reconfigurable antennas (and thus N RF chains) and each
can switch among M preset modes. Let h[k]

j (m[k]
j ) denote the

1×M channel vector associated with the jth antenna of user
k at the mode m

[k]
j where j = 1, . . . , N and m

[k]
j ∈ M =

{1, . . . , M}. We assume that the channel vectors are generic,
by which we mean that they are drawn from a continuous
distribution, so that any M of them are linearly independent
almost surely. We assume that the coherence times of the chan-
nels are long enough so that the channels stay constant across
a supersymbol. Then the channel at user k is represented as
H[k](m[k](t)) = [h[k]T

1 (m[k]
1 (t)), . . . ,h[k]T

N (m[k]
N (t))]T at time

t and m[k](t) = [m[k]
1 (t), . . . , m[k]

N (t)]T ∈ MN . Thus, the
received signal vector at the kth user is

y[k](t) = H[k](m[k](t))x(t) + z[k](t) k = 1, . . . , K (1)

where x(t) is an M×1 transmitted signal vector, and the noise
vector z[k](t) ∼ CN (0, IN ) and i.i.d over time. The channel



input is subject to an average power constraint E[‖x‖2] 6 P .
We assume that the there is no CSIT except the configurable
modes m[k](t) while the receiver only knows its own channels.

The transmitter sends independent messages W [k] to user k
with rates R[k]. A rate tuple (R[1], R[2], . . . , R[K]) is achiev-
able if every receiver is able to decode its message with
arbitrary small error probability. The total number of degrees
of freedom d is defined as

d = lim
P→∞

R[1] + · · ·+ R[K]

log P
(2)

Throughout this paper, we use a|b to denote the reminder of
a divided by b. det() standards for the determinant operator.
The definitions and notations in this paper are all consistent
with that we use in [6].

III. STRUCTURE OF THE ALIGNMENT BLOCK

The following theorem states that we can use SAS to create
different temporal correlations at different users to achieve
more than N DoF that is achieved without SAS.

Theorem 1: For the K user M × N MIMO BC with
staggered antenna switching, a total of MNK

M+KN−N DoF can
be achieved when M > N .

First note that if M |N = 0, then the generalization is
trivial. For this case, the supersymbol structure is the same
as the K user M

N × 1 MISO BC [6]. Then we can obtain the
beamforming matrix for the M ×N MIMO BC by replacing
the M

N × M
N identity matrix in the beamforming matrix for the

M
N × 1 MISO BC with the M ×M identity matrix. Thus in
this section, we only need to show the case when M |N 6= 0.

Similar to the MISO BC, the supersymbol structure for the
MIMO case is obtained by creating non-overlapping alignment
blocks. Based on the supersymbol, the beamforming matrix
can be obtained. Different from the MISO case, the alignment
blocks for the MIMO case may have different structures
depending on M and N . Before showing the alignment block
structure for the general case, we first illustrate this point
through three specific examples.

Example 1: 2 User 3× 2 MIMO BC
The alignment block for the 3 × 2 MIMO BC is shown

in Figure 1. The alignment block consists of three symbols,
over which the channel changes for the desired user while
remains fixed at the undesired users. As shown in Figure 1,
the beamforming matrix consists of two block columns, each
block is a 3 × 3 matrix. Note that this is different from that
of MISO case where the beamforming matrix corresponding
to one alignment block consists of only one block column.
The reason for multiple block columns is to make the six
data streams received at the desired receiver to be sent along
a square matrix - the effective channel, i.e. the product of
channel and beamforming matrices. To see this, consider the
following effective channel matrix seen at user 1, denoted as
H̃[1]. For brevity, we replace m[1](t) with different number to
stands for the SAS mode and thereinafter.

Fig. 1. The alignment block for 3× 2 MIMO BC

Fig. 2. The alignment block for 5× 2 MIMO BC

H̃[1] =




H[1](1) H[1](1)

H[1](2) O

O H[1](3)




6×6

(3)

where O is the 2×3 zero matrix. Since the channel is a 2×3
matrix, it is easy to see that the above matrix is a 6×6 square
matrix. Now we need to verify whether the above matrix has
full rank, so that user 1 can decode 6 data streams intended for
him. In order to achieve this goal, we design the SAS pattern
as follows.

H[1](1)=

[
h

[1]
1

h
[1]
2

]
, H[1](2)=

[
h

[1]
3

h
[1]
1

]
, H[1](3)=

[
h

[1]
3

h
[1]
2

]
(4)

Substitute (4) into H̃[1] and apply simple linear transforma-
tion. It is easy to see det(H̃[1]) 6= 0, almost surely. Thus, H̃[1]

is a full rank matrix, almost surely. While at the undesired
user, it can also be easily seen that 6 interference streams are
aligned into 4 dimensions.

Example 2: 2 User 5× 2 MIMO BC
The alignment block is shown in Figure 2. As we can

see, different from the alignment block of the MISO case in
which the channel state changes for the desired user, some
channels remain fixed for this 5× 2 MIMO BC. Specifically,
the alignment block consists of five symbols. It can be divided
into three sub-blocks. The first sub-block consists of the first
symbol. The second one consists of the second and the third
symbols where they remain fixed within this block. The last
two symbols constitute the last sub-block in which channel
changes for the desired user. With this alignment block, the
beamforming matrix is shown in Figure 2. Note that for each
block columns, the block rows with the identity matrix see
different channels. With such beamforming matrix, the 10 data
streams are received along the following 10× 10 matrix.

H̃[1]=




H[1](1) H[1](1)

H[1](2) O

O H[1](2)

H[1](3) O

O H[1](4)




10×10

(5)

The SAS pattern is designed as follow.

H[1](1) =

[
h

[1]
1

h
[1]
2

]
, H[1](2) =

[
h

[1]
3

h
[1]
4

]

H[1](3) =

[
h

[1]
5

h
[1]
1

]
, H[1](4) =

[
h

[1]
5

h
[1]
2

]
(6)



Fig. 3. The alignment block for 5× 3 MIMO BC

With simple linear transformation, it can be seen that H̃[1] has
full rank, almost surely. Thus, the desired user can separate
all desired data streams. It can be also easily seen that at
the undesired user, 10 interference streams are aligned into 4
dimensions.

Example 3: 2 User 5× 3 MIMO BC
The alignment block is shown in Figure 3. It consists of 5

symbols, over which the channel changes at the desired user
while remains fixed at the undesired user. The corresponding
beamforming matrix is also shown in Figure 3 where α1, α2
and α3 are scalars independently drawn from a continuous
distribution and I is the 5× 5 identity matrix. Note that there
is another difference between the beamforming matrices of the
MIMO and MISO cases. For the MISO BC, the beamforming
matrix consists of identity matrices. However, for the MIMO
BC some identity matrices are scaled by a random coefficient.
The reason is to make sure the desired signals are received
linearly independently at the receiver. Consider the following
matrix along which the desired signals are received.

H̃[1] =




H[1](1) H[1](1) H[1](1)

α1H
[1](1) α2H

[1](1) α3H
[1](1)

H[1](2) O O

O H[1](3) O

O O H[1](4)




15×15

(7)

The SAS pattern is designed as follows.

H[1](1) =




h
[1]
1

h
[1]
2

h
[1]
3


 , H[1](2) =




h
[1]
4

h
[1]
5

h
[1]
1




H[1](3) =




h
[1]
4

h
[1]
5

h
[1]
2


 , H[1](4) =




h
[1]
4

h
[1]
5

h
[1]
3


 (8)

Again, with linear transformation, it can be easily shown that
H̃[1] has full rank, almost surely. Thus, the 15 desired data
streams are linearly dependent with each other. Also, at the
undesired receiver, 15 interference streams are aligned into 9
dimensions.

Now we are ready to present the general case, i.e., the
M ×N MIMO BC. The alignment block consists of M sym-
bols as shown in Figure 4. Since the channel remains constant
at all undesired user, we omit it in the figure for simplicity. To
understand the structure of alignment block at the desired user,
we can further divide it into bM

N c+1 sub-blocks. As shown in
Figure 4, the first sub-block consists of M |N symbols. While
the channel keeps unchanged across different symbols in the
first sub-block, we generate coefficients i.i.d. for each identity
block matrices in the beamforming matrix (denoted by ? in
the figure) to satisfy the full rank requirement at the desired
receiver. Each of the remaining bM

N c sub-blocks consists of
N symbols. Specifically, for the second to the bM

N cth sub-
blocks, the channel state remains the same in each sub-block

while changes across different sub-blocks. That is, in sub-
block i = 2, · · · , bM

N c, the channel is H[1](i). In the last
sub-block, the channel state changes over each symbol, i.e.,
H[1](bM

N c + 1), · · · ,H[1](bM
N c + N). Note that the order of

symbols in the alignment block can be made arbitrarily. The
SAS pattern within each N×M channel matrix in the general
case is designed as follows.

H[1](1)=




h
[1]
1

...
h

[1]
N


 , H[1](i)=



h

[1]

(i−1)N+1

...
h

[1]
iN


 i=2, . . . , bM

N
c,

H[1]

(
bM
N
c+i

)
=




h
[1]

M−(M|N)+1

...
h

[1]
M

h
[1]

i|N
...

h
[1]

(i−1+N−(M|N))|N




i = 1, . . . , N (9)

In fact, we can draw an analogy between the alignment
block of M×N MIMO BC and that of the M ′×1 MISO BC
where M ′ = bM

N c+1. As shown in Figure 4, if we view each
sub-block as one symbol, then it is similar to the alignment
block of the M ′×1 MISO BC. In other words, we can obtain
the alignment block of the M × N MIMO BC from that of
M ′×1 MISO BC. To do that, we need two operations, repeat
and expansion. In particular, we choose the second to bM

N cth
symbols from the alignment block of the M ′ × 1 MISO BC
and repeat each symbol N times. In addition, we choose the
last one symbol of the M ′ × 1 MISO BC and expand it to N
symbols with different channel values from all other symbols.

With the alignment block, we can write the beamforming
matrix as a block matrix from Figure 4. This can be done in

Fig. 4. Structure of one alignment block of the M ×N MIMO BC



the following form. Let us define two block B1 and B2 as

B1 =




I I · · · I
α21I α22I · · · α2NI

...
...

...
...

α(M|N)1I α(M|N)2I · · · α(M|N)NI


 (10)

and

B2 =




I O · · · O
O I · · · O
...

...
. . .

...
O O · · · I




MN×MN

(11)

where I is the M × M identity matrix. Then, B can be
obtained by stacking one B1 and bM

N c B2:

B =




B1

B2

...
B2




M2×MN

(12)

It can be easily verified that the received signal is along a full
rank MN×MN matrix. We omit the rigorous proof here due
to the space limitation.

With such construction, each user can achieve MN DoF
in one alignment block. While MN interference data streams
can be aligned into N2 dimensions at all undesired users.

IV. SUPERSYMBOL MAPPING FOR K USER MIMO BC

With the alignment block, we can design the supersymbol
structure by creating non-overlapping alignment blocks for
each user. Similar to the MISO case, the supersymbol can be
divided into two blocks. Block 1 ensures the alignment and
Block 2 ensures that the desired signals do not overlap with
interference [6], also shown in the example of Fig.5. Also,
the key is to design Block 1. Once designed, Block 2 can be
determined automatically. As mentioned before, the alignment
block for the M × N MIMO BC can be obtained from that
of the M ′ × 1 MISO BC where M ′ = bM

N c + 1. Since the
alignment blocks constitute the supersymbol, the supersymbol
of the MIMO BC can also be obtained from that of its MISO
counterpart. We will first explain this through an example, then
show the structure for the general case.

A. 3 User 5× 2 MIMO BC

For the 3 user 5 × 2 MIMO BC, M ′ = 3. Thus, it
corresponds to the 3 user 3×1 MISO BC. First let us consider
the mapping of the alignment blocks between these two cases.
Recall that the alignment block for 3 × 1 MISO BC consists
of three symbols. From the mapping shown in Figure 5, we
can obtain the alignment block for the 5 × 2 MIMO BC
shown in Figure 2 by repeating the second symbol in the
alignment block of 3 × 1 MISO BC twice and expand the
last symbol into two symbols with different channel values.
With the understanding of mapping of alignment blocks, now
we consider the mapping of supersymbols from MISO case to
MIMO case. In the MISO case, the supersymbol of each user
consists of four alignment blocks shown in Figure 5. Thus, to

Fig. 5. Mapping of supersymbol from 3× 1 MISO BC to 5× 2 MIMO BC

Fig. 6. The beamforming matrices for 3 user 5× 2 MIMO BC

clarify the mappings, we only need to specify which symbols
in each alignment block need repeating or expanding. Here
we choose the last symbol of each alignment block of the
MISO case to be always expanded, thus obtaining Block 2
of MIMO case. Now let us consider Block 1 of MISO case,
which consists of four groups corresponding to four alignment
blocks. We need to specify which one of the two symbols in
each group needs repeating. Due to the interleaving structure
of Block 1, it is sufficient to specify this for user 1. For user
1’s temporal signature in Block 1, there are four consecutive
groups, each consisting of two different symbols. From the
first to the fourth group, we choose the second, first, first and
second symbol in four groups, respectively, to be expanded.
Actually, the symbol chosen in jth group, denoted as c[j], can
be determined as follows. We label two symbols within each
group with indices 1 and 2, respectively. We first arbitrarily
choose one symbol in the first group. In this example, we
choose c[1] = 2. Then the index we choose for the second
group depends on c[1]. That is, the index we choose in the



second group can be decided through a mapping function
c[2] = (c[1]|(M ′−1))+1 = 1. After the first two groups are
determined, the third and fourth groups can determine their
indices based on that of the first and the second groups by the
same mapping function, respectively. Specifically for j = 3, 4,
we have c[j] =(c[j−2]|(M ′−1))+1, i.e., c[3] = 1, c[4] = 2.

After designing the supersymbol, we can group alignment
blocks to design the beamforming matrix. In fact, the grouping
for the MIMO case is the same as its MISO counterpart. The
beamforming matrices for the 3 user 5 × 2 MIMO BC are
shown in Figure 6.

B. K User M ×N MIMO BC
With the understanding of the example above, now we

show how to construct the supersymbol for the K user
M ×N MIMO BC from that of the M ′× 1 MISO BC where
M ′ = bM

N c+1. First let us consider the mapping between the
alignment blocks as shown in Figure 4. As mentioned before,
for each alignment block, the last symbol is always chosen to
expand for N symbols with different channel values. Besides
this, we still need to choose bM

N c − 1 out of the remaining
M ′ − 1 symbols to repeat N times for each symbol. Since
the last symbol constitutes Block 2 of the supersymbol, we
can easily obtain it for the K user M × N MIMO BC after
expanding the last symbol of every alignment block for every
user in the supersymbol of the K user M ′ × 1 MISO BC.
Thus, the remaining issue is to design Block 1. In Block
1 of supersymbol of K user M × 1 MISO BC, there are
(M ′ − 1)K−1 groups for each user, and we need to specify
which bM

N c−1 symbols we choose for repeating in each group.
Due to the interleaving structure of Block 1, it is sufficient to
specify this for user 1.

For user 1, in each of (M ′−1)K−1 groups, we label M ′−1
symbols with indices 1 to M ′−1, respectively. Then we need
to choose bM

N c − 1 = M ′ − 2 indices for each group. Note
that if bM

N c − 1 = 0, then there is no need to repeat. Thus,
in this case, Block 1 is the same for MISO and MIMO cases.
Now we consider bM

N c − 1 6= 0. Let c
[j]
i ∈ {1, . . . , M ′ − 1}

denote the index of the ith, i = 1, . . . , M ′−2, symbol chosen
in the jth group, j = 1, . . . , (M ′− 1)K−1. The indices which
are chosen in each group are as follows.

In the first group, the indices we choose are 2, 3, . . . , M ′−1,
i.e, c

[1]
i = i + 1. Once the first group is specified, we can

determine the second to the (M ′ − 1)th groups. The index in
each group is obtained by cyclic shifting one digit to the right
of its previous group. Mathematically, we have c

[n]
i = (c[n−1]

i
mod (M ′ − 1)) + 1, n = 2, . . . M ′ − 1. Based on the first
M ′ − 1 groups, we can specify the first (M ′ − 1)2 groups
which can be divided into M ′ − 1 blocks, each of which has
M ′ − 1 groups. Again, indices of each group in each block
is one digit cyclic shift of those of its corresponding group
in the previous block. Mathematically, we have the iterative
mapping function

c
[n+k(M′−1)]
i = (c

[n+(k−1)(M′−1)]
i |(M ′ − 1)) + 1

k=1, . . . , M ′−1, n=1, . . . , M ′−1, i = 1, . . . , M ′−2. (13)

In general, in order to decide the indices of the first (M ′ −
1)l, l = 1, . . . , K blocks, we need to know the first (M ′−1)l−1

blocks. The relation is specified by the following function.

c
[n+k(M′−1)l−1]
i = (c

[n+(k−1)(M′−1)l−1]
i |(M ′ − 1)) + 1

k=1, . . . , M ′−1, n=1, . . . , (M ′−1)l−1, i=1, . . . , M ′−2. (14)

After obtaining the supersymbol, we can group symbols to
create alignment blocks for each user. The grouping for the
MIMO case is the same as its MISO counterpart. After align-
ment blocks are designed, we can determine the beamforming
matrix corresponding to each alignment block according to the
mapping shown in Figure 4.

Now we can calculate the DoF achieved using this scheme.
For each user, over one alignment block, MN DoF can be
achieved for the desired user while interference is aligned into
N2 dimensions. For K user M × N MIMO BC, each user
has (M ′ − 1)K−1 alignment blocks. So for each user, the
desired signal occupies MN(M ′−1)K−1 dimensions. At each
receiver, the interference occupies N2(M ′ − 1)K−1(K − 1)
dimensions. Now consider the number of symbol extensions.
In Block 1 of the supersymbol, there are (M ′−1)K−1(M−N)
symbols. In Block 2, there are K(M ′ − 1)K−1N symbols.
Therefore, the total number of symbol extensions is (M ′ −
1)K−1(KN+M−N). Since each receiver has N antennas, the
signal space at each receiver has N(M ′−1)K−1(KN +M −
N) dimensions which is equal to the total dimensions occupied
by the desired signal and interference. Since interference and
the desired signal do not overlap with each other, each user
can achieve MN(M ′−1)K−1 DoF. Thus, the normalized total
number of DoF is MN(M ′−1)K−1K

(M ′−1)K−1(KN+M−N)
= MNK

KN+M−N .

V. CONCLUSION

We extend the DoF result for MISO BC in [6] to MIMO
BC. In this paper, we propose a systematic way to achieve
blind interference alignment for the K user M × N MIMO
BC. In the procedure of designing the supersymbol structure of
MIMO BC, there are two main issues to handle - SAS patterns
and the supersymbol mapping from MISO BC to MIMO BC.
We demonstrate these two points in details in this paper.
Again, the proposed scheme does not require the knowledge
of channel values at the transmitter to align interference nor
at receivers to cancel interference. Thus, our scheme is a
promising candidate to increase the achievable rate of the
wireless network in practice.
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