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Abstract-We obtain optimal resource allocation policies 
for a single user single-carrier system and a multiple-access 
multi-carrier-CDMA system when the transmitter adapts 
to the variations in the short-term mean (slow fade) in a 
combined slow and fast fading (composite fading) environ- 
ment. For the single user system, we maximize the average 
throughput achieved by the user, while in the uplink MC- 
CDMA system, we maximize the sum of average rates of 
the users in the system. For each system, we find the op- 
timal resource allocation policies for two scenarios. The 
first is when is system is designed for voice transmission, 
where the bit error rate (BER) of each user, averaged over 
the fast fade, is maintained at a desired value. The sec- 
ond is when the system is designed for data transmission, 
where the BER of each user is maintained b&w a desired 
value for a given percentage of time. We find that, for the 
single-user system, the solution for both the voice and data 
transmission cases is waterfiZZing, and that waterfilling is the 
asymptotically optimal solution to multi-user problems in 
both scenarios, i.e is nearly optimal for a large number of 
users. We also find that, when dealing with a voice system, 
the solution is independent of the distributions of the slow 
and fast fades and similar to the solutions obtained for 
noncomposite fading environments (fast or slow fading). 

I. INTRODUCTION 

The requirements and expectations of wireless systems 
are increasing as rapidly as their popularity. To compete 
with wired systems, adaptive schemes have been recog- 
nized as pivotal and are an integral part of future wireless 
systems [l]. In this context, there has been a great focus 
on adaptive modulation for single user systems [2] [3], and 
to some extent for multiuser code-division multiple access 
(CDMA) systems [4]. Most of the literature in this area 
focuses on maximizing the average throughput achieved 
by the system, defined as the average rate achieved by 
a single user, or the sum of rates of users in a multiuser 
system, with constraints on the bit error rate (BER) and 
power of each user. 

Adaptive modulation algorithms typically assume per- 
fect and instantaneous knowledge of the channel gain at 
the transmitter, which is unrealistic. Specifically, channel 
estimation at the receiver and feedback to the transmit- 
ter have inherent delays, and thus the transmitter cannot 
rely on obtaining instantaneous estimates to determine 
its power policy. This is especially true in systems where 
the fade decorrelates over a time period that is of the 
same order as the estimation and feedback delay. Also, in 
most practical systems [l], the bandwidth of the feedback 
channel is very small, leading to small feedback channel 
capacity and hence imperfect estimates at the transmit- 
ter. 

Wireless channels typically exhibit multipath fading 
and/or shadowing where the multipath fading changes 

much faster than the shadowing. Hence, the former is re- 
ferred to as fast fading and the latter as slow fading. We 
will refer to the case when both are present as compos- 
ite fading and the case when only one is present as non- 
composite fading. In this paper, we consider a channel 
model with composite fading and assume that the trans- 
mitter adapts only to the slow fading where this slow 
fading has been estimated and fed back by the receiver. 
This allows for delay in estimation and feedback, since 
the short-term mean remains constant for a much larger 
duration than the typical delays involved in these pro- 
cesses. This model has been previously applied to study 
truncated power control in CDMA systems in [5]. 

We study adaptive modulation for both voice and data 
systems in this paper. The requirements of a voice system 
translate into a constraint that the short-term bit error 
rate (BER) (i.e the BER averaged over the fast fade) be 
maintained below some desired value for each user when- 
ever that user is transmitting. We shall refer to this as 
the short-term BER constraint case. For data systems, 
we require that BER at every time instant (as a function 
of the total fade) of each user be maintained below a de- 
sired maximum. Since the transmitter has knowledge of 
only the slow fade, and hence can vary its power and rate 
only with the slow fade, it is clear that this requirement 
cannot be met all the time for all types of fast fading 
distributions. Hence, we allow for a percentage of time 
(called outage) when the system cannot achieve a BER 
lower than the maximum. We shall refer to this as the 
instantaneous BER with outage constraint case. 

We develop the system model for the single user case 
in Section II-A, and find the optimum resource alloca- 
tion strategies for the single user system in II-B and II- 
C. In Section III-A, we introduce the system model for 
an uplink single cell multi-carrier-CDMA (MC-CDMA) 
system and find the corresponding asymptotically opti- 
mal resource allocation strategies in III-B and III-C. In 
Section IV, we show that the results obtained when the 
short-term BER of the system is constrained to be con- 
stant is independent of the distributions of the fast and 
slow fades. We conclude with Section V. 

II. RESOURCE ALLOCATION IN A SINGLE USER 
SYSTEM 

We use boldface for vectors, with h = [hihs . . . hN], 
and lEf (z) for the expectation of x with respect to f. We 
use f = [g]+ to mean f = g for g > 0 and f = 0 otherwise. 

A. System Model 

In the single user case, we consider uncoded transmis- 
sion in flat fading where the received symbol at time n is 
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given by 

y(n) = G(n)x(n) + w(n), (1) 
with h(n) denoting the fade, x(n) the data symbol, and 
w(n) AWGN noise with variance one. h(n) is modeled 
as r(n)h(nl, where r(n) is fast (Rayleigh) fading of unit 
mean, and h(n) is the slow fading, and also the short term 
mean of h(n). We assume that both the transmitter and 
the receiver have perfect knowledge of h, at time n. We 
shall henceforth drop n for notational convenience. The 
short term mean L(n) is fed back to the transmitter. The 
user has an average power constraint of p. 

To adapt its resources, the transmitter may change 
its transmission bandwidth (hence the symbol time) or 
the size of its (complex) constellation (M) from which 
symbols are picked for transmission. Clearly, the former 
scheme is highly complex to implement in real systems. 
Many modems and third generation systems use the lat- 
ter idea, that of variable constellation size. Thus, the 
transmitter changes its transmission rate and its trans- 
mit power by varying the constellation size M and the 
average power of this constellation. 

Although realistically M can take only discrete values, 
we assume that it can take on all non-negative real val- 
ues. There are many reasons why this assumption is use- 
ful. First, it helps us understand the maximum limits 
that such a scheme can achieve, i.e the added constraint 
of discrete values can only degrade system performance. 
Secondly, it transforms problems that are very hard to 
solve (often NP-Complete, see [6]) into simpler problems, 
many of which are convex. In fact, this method of trans- 
forming discrete variables into continuous ones is often 
used in optimization literature [7]. 

To proceed with the problem definition, we need an ex- 
pression for the performance measure (the BER) in terms 
of the remaining system parameters (the power and rate). 
These have been obtained for additive white Gaussian 
noise (AWGN) channels in [2] [3]. The instantaneous BER 
(BER at any time instant n) can be obtained for MQAM 
or MPSK modulation as [3]: 

(2) 

where cl, cs, are constants and P is the transmit power 
used when the channel state equals h. It is found [3] that 
these exponential approximations are tight to within a 
dB of simulation results. Finding the average of C&,,(h) 
over the distribution of T gives us the short-term BER 

(Ct(W. 

B. Short-term average constraints on the BER 

Averaging (?& (h) over the fast fade r (assumed 
Rayleigh) we obtain 

Next, we shall use the expression developed above to for- 
mulate an optimization problem that maximizes the av- 
erage throughput of the system. 

We desire that the short-term av_erage BER given by 
Equation (3) be held constant at CZ whenever the user 
transmits. Note that this is equivalent to saying that: 

where K = (q/s - l)/cs. We can use Equation (4) to 
write M in terms of P or vice versa. Noting that we can 
obtain the instantaneous rate of the user from the con- 
stellation size M as log(M), we formulate the throughput 
maximization problem as: 

Problem Definition I: 

maxlE,log 1.9) 
( 

such that 

QP(h) = P. 
Observati,on 1: Problem 1 is a convex problem in its 

variable P(h). 
_ Proof: The objective to be maximized is concave in 

P(h) and the constraint is linear, hence it is a convex 
optimization problem. 

Hence, a unique solution for this problem can be ob- 
tained by framing the dual (Lagrangian) problem. We 
can now perform an unconstrained optimization of the 
dual problem to obtain the optimal power policy as: 

[ 1 
+ P(h) = k-F ) 

hP(L) 
M(h)=l+-. 

where X is a (Lagrangian) constant that can be obtained 
by using the power policy expression (5) in the power 
constraint. The solution in (5) is waterfilling [2] relative 
to the short term channel average h,i.e. the power is 
increased as the average channel gain h increases above a 
given cutoff value. Note that the optimal power adapta- 
tion for adaptive modulation in [2] and [3] and for chan- 
nel capacity in [8] for noncomposite fading channels, with 
perfect and instantaneous channel information at trans- 
mitter and receiver is also waterfilling relative to the in- 
stantaneous channel. Thus, there is a similarity between 
the two solutions. 

We can prove a much more general result that the wa- 
terfilling nature of the optimum power policy is indepen- 
dent of the fast and slow fading distributions. This is 
formally stated and proved in Section IV. 

C. Instantaneous Constraints on BER with outage 

The requirement that the instantzneous BER given by 
Equation (2) be upper bounded by CZ can be rewritten as: 

hP(h) 

M(h) - 1 Z 

log(c1) - log(Z) 

c2 

Since the transmit power and rate are functions of h and 
not of h, this requirement cannot be met for fast fading 
distributions that can take on values that are arbitrar- 
ily close to zero. Note that the Rayleigh distribution is 
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one such distribution. Hence, we meet this requirement a 
fixed percentage 100X of the time. We say that the sys- 
tem is in outage, i.e cannot meet its BER requirement, 
with probability 1 - 2. For Rayleigh fast fading, these 
requirements can be equivalently written as 

hoP(@ 
M(TL) - 1 

= l%(Cl) -hm 

c2 

for some ho such that 

Equations ( 7) and (8) can be combined and written as 

where K = : -(log(ci)-log(@)/(cs log(x)). Note that the 
constraint imposed by (9) is identical to (4), except for 
a different value for the constant K. Since the objective 
and the remaining constraints on the system are the same 
as in Problem 1, the solution obtained is identical in form 
to (5) and hence can be written as 

P(h) = [l/X - K/h]+ (10) 

This concludes our analysis of single user throughput 
maximization problems. We can also consider an anal- 
ogous problem of “power minimization” which is of the 
form: 

Problem Definition 2: 

minQP(h) 

such that 

Er, log (1+ S) = R 

Here,we desire that the system achieve an average data 
rate R, and wish to minimize the power consumed by this 
process while meeting a short-term average BER require- 
ment at the receiver. Such a problem is interesting from 
the point of view of increasing battery lifetime in the sys- 
tem. Problem 2 is the dual optimization problem [7] to 
Problem 1. It is also convex, and hence its Lagrangian 
formulation provides a unique solution. Moreover, this 
unique solution is the same as that obtained for the pri- 
mal problem (5) and (lo), except that the constant X is 
now calculated using the throughput constraint instead 
of the power constraint. 

III. RESOURCE ALLOCATION IN UPLINK 
MULTI-CARRIER CDMA SYSTEMS 

A. System Model 

We consider uncoded transmission over a synchronous 
flat fading multiple-access (uplink) MC-CDMA discrete- 
time system with N users and L sub-carriers (referred to 
as sub-bands) for each user. The signal received at time 
n is given by 

where xi,j(n) denotes the transmitted symbol, si,j the 
spreading sequence, wi,j(n) the additive Gaussian noise 
and hi,j (n) the stationary and ergodic channel gain corre- 
sponding to User i in sub-band j. The hi,j (n) are assumed 
to be i.i.d., and to result from a combination of fast (as- 
sumed Rayleigh) fading and slow fading. Equivalently, 

hi,j (n) = ri,j (n)k,j (n) 

i.e, hi,j results from the product of a fast fade rid(n) 
and a slow fade hi,j(n). We assume ri,j(n) to be unit 
mean. Equivalently, hi,j(n) is the short-term mean of 
hi,j(n) (hence the symbol hi,j for the slow fade). We 
assume that hi,j(n) is known perfectly at the transmitter 
and receiver at time n. 

Note that, with appropriate scaling, we may assume 
that the noise variance is unity.The short-term means 
hi,j (n) for each user and each sub-band are fed back from 
the base-station to all the users in the system. For nota- 
tional convenience, we shall henceforth drop the depen- 
dence of the system parameters on n. 

Since most CDMA systems in use today use the con- 
ventional matched filter receiver, we assume the same for 
our MC-CDMA system, with one matched filter for every 
spreading sequence si,j. We assume that any two spread- 
ing sequences have a constant cross correlation given by 

P- 
We now characterize the constraints imposed on this 

system by practical requirements. The power of each User 
i is required not to exceed p on average, where the aver- 
age is over the composite fading distribution hi,j (n). Con- 
structing a matrix H(n) whose (i, j)th element is hi,j(n) 
and denoting the power of User i in sub-channel j by Pi,j , 

we have EH cj”=, Pi,j = p for 1 5 i 5 N. 

First, we analyze the MC-CDMA system given by 
Equation (11) with one sub-band per user, i.e with 
L = 1. This is equivalent to a synchronous CDMA sys- 
tem without inter-symbol interference (ISI). There are 
three well known techniques for dynamic rate adaptation 
CDMA systems: multi-code, multi-bit-rate and variable- 
constellation size methods, which are explained in [9]. To 
maintain continuity with previous sections, we focus on 
variable-constellation size schemes in this paper. 

In a variableconstellation size scheme, each user is as- 
signed a single spreading sequence, but can vary his con- 
stellation size J&i(H) (and hence his rate) and his trans- 
mit power Pi(H) with the channel fi. In this scenario, we 
wish to obtain the power and rate allocation policies that 
maximize the sum of throughputs of the users in the sys- 
tem (called the sum rate). As in Section II, we desire to 
relate the performance measure (BER) of each user with 
the power vector P(H) and rate policy vector M(H) of 
all the users in the system. For this, we use the BER 
expressions for non-adaptive transmission in AWGN and 
fading channels in [lo] and modify them suitably. We find 
the AWGN BER for User i to be approximated by: 

-czhiPi 

(13) 
i=l j=l 
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We find that the BER averaged over fast Rayleigh fading 
for User i (called the short-term averaged BER) can be 
approximated by 

qq M 
Cl 

’ + (M-l)(l~;~;+i hjPj) 

In the expression above, we make a Gaussian approxi- 
mation on the interference and replace the instantaneous 
interference by its average over the fast fade as done in 
[lo]. As discussed in [ll], these assumptions hold when 
dealing with a large number of users with long codes. 

B. Short-term constraints on the BER 

As in the single user case, we set the-short-term aver- 
aged BER of User i to be constant at ei whenever User 
i is transmitting. This constraint allows us to write the 
instantaneous rate of User i (log(Mi)) in terms of the 
transmit powers of the users as 

. (15) 

Calling (Cl/i-l)/ cs as Ki, the sum rate objective, power 
constraint and the short-term BER requirements give the 
problem definition as 

Problem Definition 5’: 

max 
&Pi 

& czl l”dl + l+p Cjfi hjPj k) 

subject to 

&Pi=P. l<i<N 
This problem is not convex in the variables Pi. Thus, 

solving for the global optimum explicitly is in general a 
very difficult problem. Hence, numerical techniques like 
steepest descent, simulated annealing etc. must be used 
to obtain the optimum solution. These algorithms, how- 
ever, are computationally intensive, and do not provide 
any intuition about the final solution. Next, we shall 
present a simple algorithm termed “iterative waterfilling” 
that is asymptotically optimal, i.e that is near-optimal 
when the number of users N is large. This algorithm is 
as follows: 
Iterative Waterfilling Algorithm: 
1. Initialize P = 0. 
2. Repeat for i running from 1 to N: Find the maximum 
rate User i can achieve, given the power policies of Users 
1 7”’ 7 i - 1, i + 1,. . . N. 
3. Repeat Step 2 until the powers Pi of all the users 
converge. 

This algorithm is essentially the greedy algorithm in 
competitive equilibrium [12], where each user maximizes 
his rate individually. Since the rate of each user is max- 
imized when he “waterfills” to the noise and interference 
he observes, this algorithm is termed “iterative waterfill- 
ing” . This algorithm is asymptotically optimal because 
when the number of users are large, the choice of power 
policy Pi of User i does not significantly affect the in- 
terference seen by the other users and hence their power 
policy. Thus, it is optimal for each user to choose the 
greedy policy of maximizing his own rate. 

This greedy policy is also near-optimal if K1 M Kz M 
. . . KN M K M l/p for any value of N. For this case, the 
iterative waterfilling algorithm finds that only the user 
with the best channel hi should transmit at any given 
time. The conditions for optimality of a solution to Prob- 
lem 3 can be obtained by forming the Lagrangian and 
differentiating it. We get 

Nhi 

K + Cj hjPj 
-c hi 

rcfi K + -& hjPj 
=Xi l<i<N 

where Xi is the Lagrangian constant. Note that the user 
with the best channel transmitting alone and waterfilling 
to the noise satisfies the condition for optimality above. 

This iterative waterfilling algorithm has been used to 
calculate the optimum power and rate policies to achieve 
sum rate capacities for multi-antenna multiple access 
channels (MIMO MAC) in [13]. Note that a multiple 
access system with multiple receive antennas and a mul- 
tiple access CDMA system are analogs of one another 
[14]. Also note that waterfilling has been found to be 
asymptotically optimal for achieving sum rate capacity 
for MAC CDMA [14]. Thus, some of the results obtained 
for single user and multiuser capacity problems are also 
true for practical adaptive communication systems. 

C. Instantaneous constraints on the BER with outage 

As observed in the single user case, the instantaneous 
BER cannot be bounded above when the transmitter has 
no knowledge of the instantaneous channel. Thus, we 
allow an outage with probability 1 - 2 when this require- 
ment cannot be met. This translates into an equivalent 
constraint of the form 

FLiPi 

(Ali -l)(l+ PCjfi TLjPj) = K 
(16) 

where K = --. 10dcl/@ N 
c2 log(X) ote that this constraint is identi- 

cal to the BER constraint in the short-term average con- 
straint case, except with a different constant K. Since the 
objective and power constraints are identical, this system 
has a similar solution as that for Problem 3. 

We also point out that we can choose to minimize the 
sum of the average powers of the users, given that the 
users desire average rates R. As observed in the sin- 
gle user case (Section II), this problem has the similar 
solution for the power and rate policy as the sum-rate 
maximization problem solved above. 

The model we chose for the CDMA system was that of 
a single sub-band of an MC-CDMA system. This models 
CDMA poorly, since it neglects the frequency-selective 
nature of wide-band CDMA, which is one of the key fea- 
tures of modern day CDMA systems. We did so for two 
reasons. Firstly, the analysis of adaptive CDMA with IS1 
is almost impossible, and secondly, because we wish to 
use these results to analyze an MC-CDMA system with 
L sub-bands, where the assumptions of negligible IS1 are 
justified. (Please see [15] for further details) 

First, we point out that an MC-CDMA system with L 
sub-bands is similar to a single sub-band (CDMA) sys- 
tem described above, but with NL users and with the 

0-7803-7206-9/01/$17.00 © 2001 IEEE

1315



power constraints no longer over individual users, but 
across blocks of L users in the NL user system. Again, 
we limit analysis in this paper to the case when variable- 
constellation size schemes are used in each sub-band at 
each transmitter on the uplink. 

As in the single sub-band case (Problem 3), the prob- 
lem can be formulated as: 

Problem Definition 4: 

subject to 

Thus, the asymptotic solution” for this problem is two di- 
mensional waterfilling, where the transmitter waterfills to 
the noise and interference he observes in each sub-band 
and across his L sub-bands. If all the sub-bands have 
the same channel distribution, then this is equivalent to 
assigning an average power of P/L to each sub-band of 
User i, and waterfilling to the noise and interference in 
each sub-band. 

IV. INDEPENDENCE 0~ RESOURCE ALLOCATION 

POLICIES FROM THE FADING DISTRIBUTION 

Now we show the most important result of this paper. 
Main Theorem: The optimum power (and rate) policy 
solutions to all problems where the short-term average 
BER is constrained is independent of the actual distribu- 
tions of the fast and slow fades, except for the constants 
involved in these expressions. 

Proof: Let h = hr be the composite fading, where h 
is the slow fade and r is the unit mean fast fade. Let r 
have a probability distribution function f(r). Then the 
short-term probability of bit error can be obtained by 
averaging the instantaneous BER given in Equation (2) 
as follows: 

cd = 
s 

O” cl exd-c&(@f(r)dr, 
0 

where g(h = P(h)/(M(h) - 1). Substituting 
find that this is equivalent to 

s 
O” cl exp(-csrhg(h))f(r)dr = s 

0 

(17) 

h = Lr we 

For any distribution-f(r), the equality given in (18) will 
hold only when hg(h) is constant. In other words, irre- 
spective of the distributions of the fast and slow fades, 
the short-term BER constraint boils down to hg(h) being 
constant. 

Thus the solution to the short-term mean feedback case 
is as if the fast fade were absent. Note that the single 
fading environment handled in [3] is a special case where 
either the fast fade r = 1 or slow fade h is constant. 

Another important corollary of this theorem is that all 
the resource allocation policies obtained by researchers 
for the single fading environment with instantaneous per- 
fect feedback can be translated to the composite fading 
environment with short-term mean feedback. 

V. CONCLUSIONS 

In this paper, we identify the need for a more real- 
istic model for the information that is fed back to the 
transmitter from the receiver, and propose one where the 
short-term mean of a composite fading channel is fed back 
to the transmitter. To study the requirements of differ- 
ent applications, we study both a short-term average and 
an instantaneous constraint with outage on the BER. We 
show that, for both types of constraints, the solution is 
waterfilling in the single user case, and that waterfilling 
is asymptotically optimal in the multiuser multi-carrier 
CDMA case. We show that for a short-term constraint on 
the BER, the optimum power policy is independent of the 
fast and slow fade distributions and is similar in form to 
the case of a non-composite fading channel with instanta- 
neous and perfect channel information at the transmitter 
and receiver [2] [3]. 
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