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On the Capacity of the Finite Field Counterparts
of Wireless Interference Networks
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Abstract—This work explores how degrees of freedom (DoF)
results from wireless networks can be translated into capacity
or linear capacity results for their finite field counterparts that
arise in network coding applications. The main insight is that
scalar (SISO) finite field channels over Fpn are analogous to
n× n vector (MIMO) channels in the wireless setting, but with
an important distinction – there is additional structure due to
finite field arithmetic which enforces commutativity of matrix
multiplication and limits the channel diversity to n, making
these channels similar to diagonal channels in the wireless
setting. Within the limits imposed by the channel structure, the
DoF optimal precoding solutions for wireless networks can be
translated into capacity or linear capacity optimal solutions for
their finite field counterparts. This is shown through the study
of capacity of the 2-user X channel and linear capacity of the
3-user interference channel. Besides bringing the insights from
wireless networks into network coding applications, the study
of finite field networks over Fpn also touches upon important
open problems in wireless networks (finite SNR, finite diversity
scenarios) through interesting parallels between p and SNR, and
n and diversity.

I. INTRODUCTION

Precoding based network alignment (PBNA) is a network
communication paradigm inspired by linear network coding
and interference alignment principles [1]–[3]. While inter-
mediate nodes only perform arbitrary linear network coding
operations which transform the network into a one-hop linear
finite field network, all the intelligence resides at the source
and destination nodes where information theoretically optimal
encoding (precoding) and decoding is performed to achieve
the capacity of the resulting linear network. The two restricting
assumptions — restricting the intelligence to the source and
destination nodes, and restricting to linear operations at inter-
mediate nodes — are motivated by the reduced complexity
of network optimization and also by the potential to apply
the insights and techniques developed for one-hop wireless
networks. Indeed, the PBNA paradigm gives rise to settings
that are analogous to 1-hop wireless networks, albeit over
finite fields. To highlight this distinction, we simply refer to
these networks as finite field networks. There is a finite field
counterpart to every 1-hop wireless network and vice versa. A
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number of interesting interference alignment techniques have
been developed for 1-hop wireless networks and shown to
be optimal from a degrees of freedom (DoF) perspective.
Translating the DoF optimal schemes for wireless networks
into capacity optimal schemes for finite field networks is
therefore a promising research avenue. For example, the CJ
scheme originally conceived for the K user time-varying
wireless interference channel in [4] is applied to the 3 unicast
problem by Das et al. in [1]–[3]. While the CJ scheme has also
been applied successfully to the constant channel setting in
wireless networks by using the rational dimensions framework
of Motahari et al. in [5], the constant channel setting remains
much less understood. In this work, we study constant channel
settings, but over the finite field Fpn .

The main contributions of this work are general insights into
the correspondence between degrees of freedom of wireless
networks and capacity or linear capacity results for their
finite field counterparts. In the wireless setting, constant scalar
(SISO) channels are challenging because they lack the diver-
sity needed for linear interference alignment schemes. Con-
stant finite-field channels over Fpn however, can be naturally
treated as non-trivial n×n MIMO channels. A single link over
Fpn has capacity n log(p), similar to n channels of capacity
log(p) each. There is an immediate analogy to n parallel
wireless channels which would have a first order capacity
≈ n log(SNR), establishing a correspondence between n and
“diversity” (number of parallel channels) and between p and
SNR. Indeed, while scalar channels in Fpn can be treated as
n× n MIMO channels over the base field Fp, these channels
exist in a space with diversity limited to n, i.e., any n + 1
of these n × n channel matrices are linearly dependent over
Fp. Also, because of their special structure these channel
matrices satisfy the commutative property of multiplication
(inherited from the commutative property of multiplication in
Fpn ). Contrast this with generic n×n MIMO channels in Fp,
which occupy a space of diversity n2 and generally do not
commute. The difference is consistent with the interpretation
of Fpn channels as similar to diagonal channels which have
diversity only n, and are also commutative. These insights are
affirmed by translating the DoF results from fixed diversity
wireless networks to their Fpn counterparts. Especially in the 3
user interference channel, the role of n as the channel diversity
becomes clear.

Other interesting aspects of this work are finer insights
into linear interference alignment and the techniques used
to prove resolvability of desired signals from interference.
Whereas in wireless networks, linear interference alignment
is feasible for either almost all channel realizations or almost
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Fig. 1: Wired network modeled as 2-user X channel

none of them and is relevant primarily to the slope of the
capacity curve in the infinite SNR (DoF) limit, in the finite
field setting the fraction of channels where linear alignment
is feasible can be a non-trivial function of p, so that not
only we have the p → ∞ behavior which corresponds to the
wireless DoF results, but also we have an explicit dependence
of linear alignment feasibility on p for finite values of p.
By analogy to finite SNR, this is intriguing for its potential
implications, even if the analogy is admittedly tenuous at this
point. Since these finer insights are a priority in this work,
we will not rely only on p→∞ assumptions to establish the
capacity of the finite field networks. Instead, our goal will be
to identify the capacity for all p as much as possible. Because
of this focus on constant channels and finite p, the linear
independence arguments required to show resolvability of
desired and interfering signals, become a bit more challenging
for finite p, and require a different, somewhat novel approach.
Finally, while we focus primarily on the X channel and 3 user
interference channel to reveal the key insights, the insights
seem to be broadly applicable and sufficient for extensions
beyond these settings.

We begin with the X channel.

II. X CHANNEL

An X network is an all-unicast setting, i.e., there is an in-
dependent message from each source node to each destination
node. In this work we study an X network with 2 source nodes,
2 destination nodes, and 4 independent messages as illustrated
in Fig. 1, also known simply as the X channel.

A. Prior Work

The X channel, which contains broadcast, multiple access
and interference channels as special cases, is one of the
simplest, and also one of the earliest settings for interference
alignment in wireless networks [6], [7]. With A antennas at
each node, and constant channels, the achievability of b 4A

3 c
DoF was shown by Maddah-Ali, Motahari and Khandani in
[6]. Jafar and Shamai showed in [7] that 4A

3 DoF were achiev-
able when M > 1 for constant channels, and also proved that
this was the information theoretic outer bound for all M . For
the scalar (SISO) case, i.e., M = 1, Jafar and Shamai showed

that 4
3 DoF were achievable when the channels were time-

varying. The DoF of the SISO case with constant and complex
channels were settled in [8] by Cadambe, Jafar and Wang,
who introduced asymmetric complex signaling, also known
as improper Gaussian signaling and showed that it achieves
the optimal value of 4

3 for the complex SISO X channel. The
SISO case with constant and real coefficients was shown to
achieve the optimal value of 4

3 DoF in [5] by Motahari, Gharan
and Khandani, who introduced a real interference alignment
framework based on rational-independence and diophantine
approximation theory. Generalized degrees of freedom (GDoF)
results for a symmetric SISO real constant X channel were ob-
tained in [9] by Huang, Jafar and Cadambe, who also found a
sufficient condition under which treating interference as noise
is capacity optimal in the fully asymmetric case. A capacity
approximation for the real SISO constant X channel within a
constant gap, subject to a small outage set, was obtained by
Niesen and Maddah-Ali in [10] using a novel deterministic
channel model. For X networks, i.e., with arbitrary number
(M ) of transmitters and arbitrary number (N ) of receivers,
Cadambe and Jafar show in [11] that the SISO setting with
time-varying channel coefficients has MN

M+N−1 DoF. The result
is extended to the real constant SISO setting using the rational
independence framework by Motahari et al. in [5]. Partial
characterizations of the DoF region are found by Wang in [12].
Cadambe and Jafar show in [13] that the DoF value remains
unchanged when relays and feedback are included. DoF of
the time-varying MIMO X channel with A > 1 antennas at
each node are settled in [14] by Sun et al. who identify a
one-sided decomposability property of X networks, and show
that the spatial scale invariance conjecture of Wang, Gou and
Jafar [15] (that the DoF scale with the number of antennas)
holds in this case. The DoF of a layered multihop SISO
X channel with 2 source nodes and 2 destination nodes are
characterized in [16] by Wang, Gou and Jafar, who show that
the DoF can only take the values 1, 4

3 ,
3
2 ,

5
3 , 2 and identify the

networks that correspond to each value. Note that all the DoF
results mentioned above are meant in the ‘almost surely’ sense,
i.e., they hold for almost all channel realizations but in every
case there are channels for which the DoF remain unknown.
The problem is particularly severe for rational alignment and
diophantine approximation based schemes for real constant



3

Fig. 2: Normalization in X channel

channels, where while the DoF value applicable to almost all
channels is known, the DoF of any given channel realization
is unknown for almost all channel realizations.

For wired networks, if intermediate nodes are intelligent,
i.e., operations at intermediate nodes can be optimized, then
the sum-capacity of an all-unicast network, i.e., an X network,
has been shown to be achievable by routing [16]. However,
due to practical limitations, optimization of intermediate nodes
may not be possible. While the overhead and complexity of
learning and optimizing individual coding coefficients at all
intermediate nodes may be excessive, it is much easier to learn
only the end-to-end channel coefficients, e.g., through network
tomography, with no knowledge of the internal structure
of the network or the individual coding coefficients at the
intermediate nodes. This is the setting that we explore in this
work.

B. Finite Field X Channel Model

Consider the finite field X channel

ȳ1(t) = h11x̄1(t) + h12x̄2(t)

ȳ2(t) = h22x̄2(t) + h21x̄1(t)

where, over the tth channel use, x̄i(t) is the symbol sent
by source i, hji represents the channel coefficient between
source i and destination j and ȳj represents the received
symbol at destination j. All symbols x̄i(t), hji, ȳj(t) and
addition and multiplication operations are in a finite field Fpn .
The channel coefficients hji are constant and assumed to be
perfectly known at all sources and destinations. There are four
independent messages, with Wji denoting the message that
originates at source i and is intended for destination j.

A coding scheme over T channel uses, that assigns to each
message Wji a rate Rji, measured in units of Fpn symbols
per channel use, corresponds to an encoding function at each
source i that maps the messages originating at that source into
a sequence of T transmitted symbols, and a decoding function
at each destination j that maps the sequence of T received
symbols into decoded messages Ŵji.

Encoder 1: (W11,W21)→ x̄1(1)x̄1(2) · · · x̄1(T ) (1)
Encoder 2: (W12,W22)→ x̄2(1)x̄2(2) · · · x̄2(T ) (2)
Decoder 1: ȳ1(1)ȳ1(2) · · · ȳ1(T )→ (Ŵ11, Ŵ12) (3)
Decoder 2: ȳ2(1)ȳ2(2) · · · ȳ2(T )→ (Ŵ21, Ŵ22) (4)

Each message Wji is uniformly distributed over
{1, 2, · · · , dpnTRjie}, ∀i, j ∈ {1, 2}. An error occurs if
(Ŵ11, Ŵ12, Ŵ21, Ŵ22) 6= (W11,W12,W21,W22). A rate
tuple (R11, R12, R21, R22) is said to be achievable if there
exist encoders and decoders such that the probability of error
can be made arbitrarily small by choosing a sufficiently large
T . The closure of all achievable rate pairs is the capacity
region and the maximum value of R11 + R12 + R21 + R22

across all rate tuples that belong to the capacity region, is
the sum-capacity, that we will refer to as simply the capacity,
denoted as C, for brevity. Since we are especially interested
in linear interference alignment, we will also define Clinear as
the highest sum-rate possible through vector linear coding
schemes (see, e.g., [17]), also known as linear beamforming
schemes, over the base field Fp.

C. Zero Channels

First, let us deal with trivial cases where some of the channel
coefficients are zero.

Theorem 1: If one or more of the channel coefficients hji
is equal to zero, the capacity is given as follows.

1) If h12 = h21 = 0 and h11, h22 6= 0, then C = Clinear = 2.
2) If h11 = h22 = 0 and h12, h21 6= 0, then C = Clinear = 2.
3) If h11 = h12 = h21 = h22 = 0, then C = Clinear = 0.
4) In all other cases where at least one channel coefficient

is zero, C = Clinear = 1.
Proof: Cases 1, 2, 3 are trivial. The resulting channel for Case
4 is a MAC, BC or Z channel. MAC and BC have capacity 1 by
min-cut max-flow theorem, and the proof for the Z channel
follows from the corresponding DoF result presented in [7]
(Theorem 1, 2) for the wireless setting.

D. X Channel Normalization

Based on Theorem 1, henceforth we will assume that all
channel coefficients are non-zero. Without loss of generality,
let us normalize the channel coefficients at the sources and
destinations as shown in Fig. 2. Since these are invertible
operations, they do not affect the channel capacity.
The normalized X channel is represented as

y1 = x1 + x2

y2 = hx1 + x2
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wherein we have reduced the channel parameters to a single
channel coefficient h, defined as

h =
h12h21

h11h22
(5)

E. Capacity of the Finite Field X Channel

As mentioned in the review of prior work, the multiple input
multiple output (MIMO) wireless X channel where each node
is equipped with n antennas has 4n

3 DoF [7], [8]. For almost
all channel realizations in the wireless setting, the DoF are
achieved through a linear vector space interference alignment
scheme. If n is a multiple of 3, no symbol extensions are
needed and spatial beamforming is sufficient. For example, if
each node is equipped with 3 antennas, then it suffices to send
1 symbol per message, each along its assigned 3 × 1 signal
vector. The vectors are chosen such that the two undesired
symbols at each destination align in the same dimension
leaving the remaining 2 dimensions free to resolve the desired
signals. If n is not a multiple of 3 then 3 symbol extensions
(i.e., coding over 3 channel uses) are needed to create a vector
space within which a third of the dimensions are assigned to
each message. When translating these insights into the finite
field X channel with only scalar inputs and scalar outputs
(SISO) we are guided by the main insight presented below.

1) Insight: MIMO interpretation: The main insight that
forms the basis of this work is that a SISO network over Fpn
is analogous to a n×n MIMO network, albeit with a special
structure imposed on the channel matrix due to finite field
arithmetic.

To appreciate this insight, let us briefly review the funda-
mentals. The finite field Fpn can be used to generate an n-
dimensional vector space as follows. Each element of Fpn can
be represented in the form

z = xn−1s
n−1 + xn−2s

n−2 + . . .+ x1s
1 + x0 (6)

wherein z ∈ Fpn , xi ∈ Fp.
As an example consider F33 which contains 27 elements
{0, 1, . . . , 26} and each element a ∈ F33 is of the form
32a2+3a1+a0, wherein a2, a1, a0 ∈ F3 with values from
{0, 1, 2}. Hence every element can be written in a vector
notation with coefficients [a2; a1; a0], e.g., a = 22 can be
written as [2 ; 1 ; 1].

Next, let us see how multiplication with the channel coef-
ficient h ∈ F33 is represented as a multiplication with a 3× 3
matrix with elements in F3. Consider the monic irreducible
cubic polynomial s3 + 2s + 1 which is treated as zero in
the field. The field itself consists of all polynomials with
coefficients in F3, modulo s3 + 2s+ 1. Since s3 + 2s+ 1 = 0
in F33 , it follows that

s3 = −2s− 1 = (3− 2)s+ (3− 1) = s+ 2 (7)
s4 = s(s3) = s(s+ 2) = s2 + 2s (8)

Since h, x ∈ F33 they can be represented as h = h2s
2 +h1s+

h0, x = x2s
2 + x1s + x0 where hi, xi ∈ F33 . The product

y = hx ∈ F33 can be written as

y = hx ≡ (h2s
2 + h1s+ h0)(x2s

2 + x1s+ x0) (9)
= s4(h2x2) + s3(h2x1 + h1x2) + s2(h2x0 + h0x2

+h1x1) + s(h1x0 + h0x1) + (h0x0)

= s2(h2x2 + h2x0 + h0x2 + h1x1) + s(2h2x2 + h2x1

+h1x2 + h1x0 + h0x1) + (h0x0 + 2h2x1 + 2h1x2)

Equivalently,

y = Hx =

 h2 + h0 h1 h2

2h2 + h1 h2 + h0 h1

2h1 2h2 h0

x2

x1

x0

 (10)

wherein x,y are 3×1 vector with entries from F3 and H is a
3× 3 matrix with its 9 entries from F3. Here the equivalence
of SISO channel over F33 and MIMO channel over F3 is
established through the 3 × 3 linear transformation, H. Note
also the structure inherent in the matrix representation H.
While there are 39 possible 3× 3 matrices over F3, there are
only 27 valid H matrices, because F33 has only 27 elements.
This leads us to the main challenge that remains.

2) Challenge: Channel Structure: Given the main insight,
the challenge that remains is dealing with the structural
constraints on the MIMO channels that arise due to finite field
arithmetic. Structured channels are also encountered in the
wireless setting — channels obtained by symbol extensions
have a block diagonal structure [7], asymmetric complex
signaling based schemes used for the SISO X channel have
a unitary matrix structure [8]. Channel structure can be de-
structive, e.g., loss of capacity in rank deficient channels.
However, channel structure can also be constructive, e.g.,
diagonal channel matrices enable the CJ scheme in [4], and
certain types of rank deficiencies have been shown to facilitate
simpler alternatives to interference alignment schemes [18].
On the one hand, the MIMO channels, which arise by viewing
Fpn as an n dimensional vector space over Fp, have a structure
that is neither diagonal nor unitary. On the other hand, diagonal
channel matrices, unitary channel matrices, as well as the
finite field channel matrices, all have the property that matrix
multiplication is commutative, which can be a very useful
property for interference alignment schemes. The impact of
channel structure in the SISO constant finite field X channel
setting is therefore an intriguing question.

3) Main Result: The capacity result for the finite field X
channel is presented in the following theorem.

Theorem 2: For the fully connected X channel over Fpn ,
with p > 2, if

h =
h12h21

h11h22
/∈ Fp (11)

then

C = Clinear =
4

3
(12)

in units of Fpn symbols per channel use. If h ∈ Fp, then
Clinear = 1.
Proof: The information theoretic outer bound of 4

3 follows
immediately from the DoF outer bound for the wireless setting
presented in [7] (Theorem 5, 6), a combination of the Z
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Table I: Summary — 2-user X channel over finite fields
Finite field # Symbol extensions # Fp Input symbols∗ Result
Fp3 1 1 Capacity = Linear capacity = 4

3 , for all p
Fpn 3 n Capacity = Linear capacity = 4

3 , for p > 2
Fp2 3 2 Capacity = Linear capacity = 4

3 , for all p

* — # Fp Input symbols denotes the number of input symbols from the field Fp, per message and per extended channel use.

channel bounds, with minor adjustments to account for finite
field channels. The linear capacity bound of 1 when h ∈ Fp
is also straightforward because in this case, regardless of
the number of channel extensions, all channel matrices are
simply scaled identity matrices. Since the scaling factors are
irrelevant for vector spaces, i.e., beamforming schemes, the
linear capacity is not changed if we replace all channel gains
with unity. But such a channel has only rank 1 (equivalently
min-cut value of 1) per channel use, so its sum-rate is bounded
by 1, which is therefore also an outer bound for linear capacity
on the original channel. Achievability of rate 1 is trivial in a
fully connected X channel. So this leaves us only to prove that
a sum rate of 4

3 is achievable through vector linear schemes
when h /∈ Fp. The achievability scheme is the simplest,
i.e., no symbol extensions are required and only scalar linear
coding (one stream per message) is sufficient, when n is
3. Proof of achievability involves showing that there exist
choices for beamforming vectors such that the desired signals
are resolvable from interference at all destinations. Whereas
in wireless setting the resolvability of desired signals from
interference is guaranteed “almost surely” due to the generic
properties of channels drawn from continuous distributions, in
the finite field setting it needs an explicit constructive proof.
This is the main source of added difficulty in dealing with
the finite field counterparts of wireless networks. For ease of
exposition, the achievability proof for this case, i.e., for the
X channel over Fp3 is presented first, in Section II-F. The
achievability proof over Fp2 , which requires a slightly different
approach, is presented in Appendix I. The proofs over Fp3 and
Fp2 are not restricted to p > 2. The achievability proof for
the remaining general case, over Fpn , p > 2, is presented in
Section II-G. Note that the proof over Fpn is for p > 2 because
of the technique used, and we expect the same capacity result
to hold for all p.

Remark 1: The setting where h ∈ Fp corresponds to the
real constant SISO wireless X channel. Linear DoF collapse
in this setting because even with symbol extensions, the
channel matrices are simply scaled identity matrices so that
the alignment of vector spaces is identical at both destinations,
making it impossible to have signals align at one destination
where they are undesired and remain resolvable at the other
destination where they are desired. Since h ∈ Fp is the only
exception where the capacity falls short of 4/3, it is evident
from Theorem 2 that the capacity results for the 2 user finite
field constant X over Fpn closely mirror the corresponding
DoF results for the real MIMO X channel where each user has
n antennas. Remarkably, even though the channels in the finite
field setting are highly structured, the structural constraints do
not impact the capacity result. The significance of channel

structure will become transparent when we study the 3 user
interference channel later in this paper.

Remark 2: Note that there are pn − 1 possible non-zero
values for h, out of which all but p − 1 have the capacity
value of 4

3 which is achieved by linear beamforming. The
fraction of degenerate fully connected channel instances, for
which Clinear = 1, is therefore as follows.

(p− 1)

(pn − 1)
=

1

1 + p+ p2 + · · ·+ pn−1
(13)

which approaches 0 as p → ∞. Note the similarity with
the constant X channel in the wireless setting for which
Cadambe et al. have shown in [8] for the complex case and
Motahari et al. have shown in [5] for the real case, that
interference alignment scheme achieves 4/3 DoF for almost
all channel realizations. Remarkably, in the finite field case the
fraction of channels with linear capacity 4/3 is non-trivial and
still precisely computable. While a tangible connection seems
elusive, it is an intriguing thought, whether interpreting p and
n in (13) as analogous to finite SNR and finite diversity in the
wireless setting might lead to finer insights there that are not
available directly from the coarse DoF metric.

F. Achievability over Fp3
Proof: Consider the normalized X channel which can be
characterized by single channel coefficient h = h12h21

h11h22
from

Fp3 . We use superposition coding at the sources, wherein mes-
sages from source 1, (W11,W21) are independently encoded
into symbols x11, x21, respectively, and added to obtain the
transmitted symbol x1 = x11 +x21 and messages from source
2, (W12,W22) are similarly encoded as x2 = x21 + x22.
Symbols xji are from the subfield Fp. Field Fp3 can be
split into a 3-dimensional space over subfield Fp so that
the output has 3 dimensions (each over Fp) within which
2 desired symbols and 2 interference symbols are present
at each destination. To achieve capacity, the 2 interference
symbols should be aligned at each destination such that they
occupy only one dimension at that destination while remaining
distinguishable at the other destination where they are desired.
To this end, we will assign a precoding “vector” vji ∈ Fp3 to
each symbol xji. Received symbols at the destinations are
given as

y1 = v11x11 + v12x12 + v22x22 + v21x21

y2 = v22x22 + hv21x21 + hv11x11 + v12x12

wherein h, yj ∈ Fp3 . Equivalently, using vector notation,

y1 = v11x11 + v12x12 + v22x22 + v21x21

y2 = v22x22 + Hv21x21 + Hv11x11 + v12x12
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Fig. 3: An instance of the X channel over F33 and its capacity optimal solution represented in scalar notation.

Fig. 4: The same example and solution as Fig. 3, illustrated in vector notation.

wherein yj ,vji ∈ F3×1
p are 3 × 1 vectors with Fp elements

and H ∈ F3×3
p is a structured 3× 3 matrix with Fp elements,

representing h ∈ Fp3 . For ease of exposition, an instance of the
problem and its solution are illustrated in Fig. 3 using scalar
notation and again in Fig. 4 using vector notation. At each
destination, interference can be aligned along one dimension
by choosing

v22 = v21 & v12 = Hv11 (14)

At the destinations, the spaces occupied by the two desired
symbols and the aligned interference symbol are represented
using matrices S1 (for destination 1) and S2 (for destination
2).

S1 = [v11 v12 v21] = [v11 hv11 v21] (15)
S2 = [v22 hv21 v12] = [v21 hv21 hv11] (16)

When h /∈ Fp, we will now show that we can choose v11 and
v21 such that elements of S1 and S2 are linearly independent
over Fp. Set v21 = 1. Then S1 and S2 can be written as

S1 = [v11 hv11 1] & S2 = [1 h hv11] (17)

Consider S1. Note that v11 and hv11, are linearly indepen-
dent over Fp since h /∈ Fp, i.e., H is not a scaled identity
matrix. Hence elements of S1 are linearly independent if 1

v11
is not a linear combination (with coefficients from Fp) of 1
and h. This is guaranteed if

v11 /∈ A ,

{
1

α+ βh
: α, β ∈ Fp, (α, β) 6= (0, 0)

}
∪ {0} (18)

Similarly, consider S2. Note that 1 and h are linearly
independent over Fp, since H is not a scaled identity matrix.
Hence, elements of S2 are linearly independent if v11 is not a
linear combination of 1

h and 1 over Fp. This is guaranteed if

v11 /∈ B ,

{
α+

β

h
: α, β ∈ Fp, (α, β) 6= (0, 0)

}
∪ {0} (19)

Since |A| ≤ p2 and |B| ≤ p2, and all p constant polynomi-
als are contained in both A and B, we must have

|A ∪B| ≤ 2p2 − p (20)

Unless A ∪ B contains all p3 elements of Fp3 there is at
least one choice of v11 that satisfies both (18) and (19). In
other words, the scheme works if

p3 > 2p2 − p (21)

which is true for all p ≥ 2. Thus, we have proved the
achievability of rate 1

3 per message, and a sum-rate of 4
3 , which

matches the capacity outer bound. Note that a Fp symbol
represents 1

3 of a Fp3 symbol and the capacity is measured
in Fp3 units because the original channel alphabet is from
Fp3 . Also note that the achievability proof applies to p = 2 as
well.

Similar to splitting a field Fp3 to form a 3-dimensional space
in field of order p, other fields of order pn can be split to a n-
dimensional field of order p. However, in order to achieve the
optimal capacity of 4

3 , symbol extensions would be required
when n is not a multiple of 3. The capacity result for the
general case is presented in the next section.
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G. Achievability over Fpn
Proof: Achievability proof for channels over field Fp2 is
presented in Appendix I. Here, we discuss achievability proof
for channels over field Fpn , n > 3.

Let us use 3 symbol extensions, so that we operate in a
3n dimensional vector space over Fp. Each message Wji is
encoded into n streams represented by the elements of the
column vector xji ∈ Fn×1

p , and the n streams are sent along
the n column vectors of the precoding matrix Vji ∈ F3×n

pn .
Thus, the sum data rate is 4

3 in units of Fpn symbols per
channel use, and it remains to be shown that the desired
symbols are resolvable from interference. Over each extended
channel use, the received signals, y1,y2 ∈ F3×1

pn at each
destination are expressed as:

y1 = V11x11 + V12x12 + V22x22 + V21x21

y2 = V22x22 + hV21x21 + hV11x11 + V12x12

Note that similar to Fp3 , above relations can also be repre-
sented using vector notation. At each destination, interference
can be aligned along n dimensions by choosing

V22 = V21 & V12 = hV11 (22)

At each destination, 2n desired symbols and n aligned in-
terference symbols are represented using matrices S1 ∈ F3×3n

pn

(for destination 1) and S2 ∈ F3×3n
pn (for destination 2).

S1 = [V11 V12 V21] = [V11 hV11 V21] (23)
S2 = [V22 hV21 V12] = [V21 hV21 hV11] (24)

We will now show that when h /∈ Fp, we can choose V11

and V21 such that the columns of S1 and S2 are linearly
independent over Fp. Let us denote V21 as just V and choose
V11 = gV21 = gV with a non-zero g ∈ Fpn and V ∈ F3×n

pn .
Then S1 and S2 can be written as

S1 = [gV hgV V ] (25)
S2 = [V hV hgV ] (26)

wherein beamforming matrix V has n columns, denoted as
v1, . . . ,vn ∈ F3×1

pn . In Fig. 5, we illustrate the recursive proof
described hereafter.

Choose v1 as the all-ones vector. We first consider columns
containing v1. There are three such columns, and they need
to be linearly independent over Fp, in both S1 and S2.

From S1 : [gv1 hgv1 v1] (27)
From S2 : [v1 hv1 hgv1] (28)

Consider columns of S1. Note that gv1 and hgv1 are
linearly independent over Fp, since h /∈ Fp, i.e., h is not a
constant polynomial, and g,v1 6= 0. Hence, elements of S1 are
linearly independent over Fp if 1

g is not a linear combination
of 1 and h over Fp. Similarly, elements of S2 are linearly
independent over Fp if g is not a linear combination of 1 and
1
h over Fp . These are guaranteed if

g /∈ A & g /∈ B (29)

wherein A,B are defined as in 18 and 19. Since |A| ≤
p2, |B| ≤ p2 and A and B both contain all p elements of

Fp, we must have |A ∪B| ≤ 2p2 − p. Therefore, a choice of
g that satisfies both conditions of (29) is guaranteed to exist
if pn > 2p2 − p which is true ∀n ≥ 3.

If vk 6= 0, the same choice of g ensures that the following
columns from S1 and S2 are linearly independent over Fp,
∀k ∈ {1, . . . , n}.

From S1 : [gvk hgvk vk] (30)
From S2 : [vk hvk hgvk] (31)

We now present the recursive proof for linear independence
over Fp of desired and interference symbols at destinations.
At iteration k, column vector vk+1 will be chosen based
on previously chosen columns v1, . . . ,vk and g. We already
chose v1 to be the vector of ones. So now v2 will be chosen
such that following columns are linearly independent over Fp
in S1 and S2 :

From S1 : [gv1 hgv1 v1 gv2 hgv2 v2] (32)
From S2 : [hv1 hgv1 v1 hv2 hgv2 v2] (33)

Linear independence over Fp for (32) and (33) is guaranteed,
respectively, if

v2 /∈ A ,

{(
α1g + α2hg + α3

α4g + α5hg + α6

)
v1 : (34)

α1, · · · , α6 ∈ Fp, (α4, α5, α6) 6= (0, 0, 0)

}
v2 /∈ B ,

{(
β1h+ β2hg + β3

β4h+ β5hg + β6

)
v1 : (35)

β1, · · · , β6 ∈ Fp, (β4, β5, β6) 6= (0, 0, 0)

}
Now we note that

A ∩B ⊇
{(

β2hg + β3

β5hg + β6

)
v1 :

β2, β3, β5, β6 ∈ Fp, (β5, β6) 6= (0, 0)

}
|A| ≤ (p3 − 1)p3

p− 1
= p5 + p4 + p3

|B| − |A ∩B| ≤ (p3 − 1)p3

p− 1
− (p2 − 1)p2

p− 1
= p5 + p4 − p2

|A ∪B| = |A|+ |B| − |A ∩B| ≤ 2p5 + 2p4 + p3 − p2

Since there are p3n possible choices for v2, there must exist
at least one choice that satisfies both (34) and (35) if

p3n > 2p5 + 2p4 + p3 − p2 (36)

which is true for all p > 2. Similarly this recursion is carried
out for choosing vectors v3, . . . ,vn−1. We will now describe
the last stage of recursion, i.e., choosing vector vn for given
h, g,v1, . . . ,vn−1. We want to design vn such that all 3n
columns are linearly independent over Fp in S1 and S2 :

S1 : [gv1 hgv1 v1 gv2 hgv2 v2 . . . gvn hgvn vn]

S2 : [hv1 hgv1 v1 hv2 hgv2 v2 . . . hvn hgvn vn]
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begin h ∈ Fp? stop

Given h, choose g such that [g hg 1] and [h hg 1] are each linearly independent over Fp

Choose any non-zero v1 ∈ F3×1
pn , e.g., the vector of all ones

Given h, g,v1, choose v2 ∈ F3×1
pn such that the 6 columns in S1 and the

6 columns in S2 that contain v1,v2, are each linearly independent over Fp

Given h, g,v1,v2, · · · ,vk−1, choose vk ∈ F3×1
pn such that the 3k columns in S1 and

the 3k columns in S2 that contain v1,v2, · · · ,vk are each linearly independent over Fp

Given h, g,v1,v2, · · · ,vn−1, choose vn ∈ F3×1
pn such that the 3n columns in S1 and

the 3n columns in S2 that contain v1,v2, · · · ,vn are each linearly independent over Fp

stop

yes

no

Fig. 5: Algorithm for the construction of precoding vectors.

The linear independence over Fp is guaranteed if

vn /∈ A ,

{ n−1∑
l=1

(
α3l−2g + α3l−1hg + α3l

α3n−2g + α3n−1hg + α3n

)
vl :

α1, · · · , α3n ∈ Fp, (α3n−2, α3n−1, α3n) 6= (0, 0, 0)

}
(37)

vn /∈ B ,

{ n−1∑
l=1

(
β3l−2h+ β3l−1hg + β3l

β3n−2h+ β3n−1hg + β3n

)
vl :

β1, · · · , β3n ∈ Fp, (β3n−2, β3n−1, β3n) 6= (0, 0, 0)

}
(38)

⇒ A ∩B ⊇
{ n−1∑
l=1

(
β3l−1hg + β3l

β3n−1hg + β3n

)
vl :

β1, · · · , β3n ∈ Fp, (β3n−1, β3n) 6= (0, 0)

}
(39)

Next we bound the cardinalities as follows.

|A| ≤ (p3 − 1)p3n−3

p− 1
= p3n−1 + p3n−2 + p3n−3

|B| − |A ∩B| ≤ (p3 − 1)p3n−3

p− 1
− (p2 − 1)p2n−2

p− 1

= p3n−1 + p3n−2 + p3n−3 − p2n−1 − p2n−2

|A ∪B| = |A|+ |B| − |A ∩B| ≤
2p3n−1 + 2p3n−2 + 2p3n−3 − p2n−1 − p2n−2

Since there are p3n possible choices for vn, there must exist
at least one choice that satisfies both (37) and (38) if

p3n > 2p3n−1(1 +
1

p
+

1

p2
)− p2n−1 − p2n−2 (40)

which is easily shown to be true for all p ≥ 3 as follows. If
p ≥ 3 then the RHS is bounded above by 2p3n−1(1+ 1

3 + 1
9 ) =

26
9 p

3n−1 whereas the LHS is bounded below by 3p3n−1.

III. INTERFERENCE CHANNEL

As noted previously, the impact of channel structure due
to finite field operations in Fpn is not evident in the capacity
of the X channel as characterized in Theorem 2, because the
capacity results for the Fpn channels mimic the DoF results
for the generic Rn×n real MIMO X channels in the wireless
setting. In this section we will extend our study beyond the
X channel, to the 3 user interference channel, where the
distinction between a generic Rn×n MIMO setting and the
Fn×np MIMO representations of the finite field Fpn becomes
evident. In particular, we will study the linear sum-capacity,
Clinear, of a finite field 3-user interference channel with 3 source
nodes, 3 destination nodes and 3 independent messages as
illustrated in Fig. 6.
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Fig. 6: Wired network modeled as 3-user interference channel

A. Prior Work

The K user interference channel, with K > 2, has been
extensively studied in recent years. Cadambe and Jafar showed
in [4] that the K-user fully connected interference channel
with M antennas at each node has MK

2 sum-DoF over a
time-varying or frequency-selective channel, based on the CJ
scheme. The DoF value of the 3 user constant complex MIMO
interference channel with M > 1 antennas at each node
was also shown by Cadambe and Jafar, to be 3M

2 using an
eigenvector solution. The DoF of asymmetric MIMO settings
were characterized in [15], [19]–[21] and the linear capacity
of generic MIMO interference channels without symbol ex-
tensions was studied in [15], [22]–[28].

For the complex constant 3 user SISO interference channel,
Cadambe et al. showed in [8] that the linear DoF value is 6

5 us-
ing asymmetric complex signaling scheme which precodes the
real and imaginary parts of the signal separately. The constant
complex SISO channel setting can be interpreted as having
diversity 2. Bresler and Tse characterized the DoF of the 3
user time-varying/frequency-selective interference channel as
a function of the channel diversity, L, in [29]. While DoF of
3
2 can be achieved over channel with infinite diversity through
the CJ scheme, Bresler and Tse showed that the linear DoF of
the 3-user interference channel with finite channel diversity L,
is 3D

2D+1 where D = 2L−bL/2c−1 is known as the alignment
depth. Channel diversity, L, was shown to limit the extent to
which interference signals can be aligned while maintaining
the resolvability of the desired signals from interference. With
finite diversity, non-linear schemes are needed to achieve
the optimal DoF. Non-linear schemes, which include ideas
from diophantine approximations, rational dimensions, Renyi
information dimensions, and non-trivial combinatorial outer
bound arguments, are not well understood even in the wireless
setting. While these are promising directions for the finite
field setting (especially the combinatorial aspects), non-linear
schemes are beyond the scope of this paper.

In the context of network coding, the 3 unicast problem
which is the counterpart of the 3 user interference channel,
was studied in [1]–[3] by Das et al., Ramakrishnan et al., and

Meng et al., who introduced the Precoding-Based Network
Alignment (PBNA) framework and found conditions under
which half the source-destination min-cut was achievable for
each user. The results were extended to networks with delay
in [30]. These works require time-varying channel coefficients
due to a direct translation from the CJ scheme originally
designed for the time-varying interference channel. However,
in this work we will focus only on the constant channel
setting over Fpn , viewed as a constant Fn×np MIMO setting.
In particular, we wish to understand the significance of the
channel structure.

B. Finite Field Interference Channel Model

Consider the finite field 3-user interference channel

ȳ1(t) = h11x̄1(t) + h12x̄2(t) + h13x̄3(t)

ȳ2(t) = h21x̄1(t) + h22x̄2(t) + h23x̄3(t)

ȳ3(t) = h31x̄1(t) + h32x̄2(t) + h33x̄3(t)

where, over the tth channel use, x̄i(t) is the symbol sent by
source i, hji represents channel coefficient between source i
and destination j and ȳj represents the received symbol at
destination j. All symbols x̄i(t), hji, ȳj(t) and addition and
multiplication operations are in a finite field Fpn . The channel
coefficients hji are constant across t channel uses and assumed
to be perfectly known at all sources and destinations. There
are three independent messages, with Wi denoting the message
that originates at source i and is intended for destination i.

A coding scheme over T channel uses, that assigns to each
message Wi a rate Ri, measured in units of Fpn symbols per
channel use, corresponds to a encoding function at each source
i that maps the messages originating at that source into a
sequence of T transmitted symbols, and a decoding function at
each destination that maps the sequence of T received symbols
into decoded messages Ŵi.

Encoder 1: (W1)→ x̄1(1)x̄1(2) · · · x̄1(T ) (41)
Encoder 2: (W2)→ x̄2(1)x̄2(2) · · · x̄2(T ) (42)
Encoder 3: (W3)→ x̄3(1)x̄3(2) · · · x̄3(T ) (43)
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Fig. 7: Normalization in 3-user Interference Channel

Decoder 1: ȳ1(1)ȳ1(2) · · · ȳ1(T )→ (Ŵ1) (44)
Decoder 2: ȳ2(1)ȳ2(2) · · · ȳ2(T )→ (Ŵ2) (45)
Decoder 3: ȳ3(1)ȳ3(2) · · · ȳ3(T )→ (Ŵ3) (46)

Each message Wi is uniformly distributed over
{1, 2, · · · , dpnTRie}, ∀i ∈ {1, 2, 3}. An error occurs if
(Ŵ1, Ŵ2, Ŵ3) 6= (W1,W2,W3). A rate tuple (R1, R2, R3) is
said to be achievable if there exist encoders and decoders such
that the probability of error can be made arbitrarily small by
choosing a sufficiently large T . The closure of all achievable
rate pairs is the capacity region and the maximum value of
R1 +R2 +R3 across all rate tuples that belong to the capacity
region, is the sum-capacity, C. Since we are interested in
linear interference alignment, we will again define linear
capacity, Clinear, as the highest sum-rate possible through
vector linear coding schemes over the base field Fp.

C. Interference Channel Normalization

As noted in the X channel, since the main insights come
from the fully connected setting, we will assume that all
channel coefficients are non-zero. Channel settings where
some of the channels are zero are dealt with separately in
the Appendix II. Without loss of generality, let us normalize
the channel coefficients at the sources and destinations shown
in Fig. 7. Since these are invertible operations, they do not
affect the channel capacity.

The normalized 3-user interference channel can be repre-
sented as

y1 = h̄11x1 + x2 + x3

y2 = x1 + h̄22x2 + x3

y3 = x1 + h̄x2 + h̄33x3

wherein we have reduced channel parameters to four channel

coefficients h̄11, h̄22, h̄33, h̄, defined as

h̄11 =
h11h23

h13h21
, h̄22 =

h22h13

h23h12
, (47)

h̄33 =
h33h21

h31h23
, h̄ =

h13h21h32

h12h23h31
(48)

D. Linear-scheme Capacity of the Finite Field Interference
Channel

In the study of the X channel, we noted how scalar channels
over Fpn can be viewed as n × n MIMO channels over Fp.
Let us see if the same insight can be carried over to the 3
user interference channel. For the 3 user MIMO interference
channel, an eigenvector based interference alignment solution
that achieves the optimal DoF value, is introduced by Cadambe
and Jafar in [4]. Let us see if the same solution applies in
the finite field setting as well. As we will show, while the
eigenvector solution holds in the wireless case for almost
all channel realizations, because of channel structure in the
finite field case, the solution holds only in certain ‘degenerate’
settings, that are increasingly rare as the base field size
increases, so that in the limit of infinite p, the eigenvector
solution does not hold, almost surely.

Theorem 3: Fully connected 3-user interference channel
over Fpn has capacity C = Clinear = 3

2 for all p > 3, if

h̄kk /∈ Fp, k ∈ {1, 2, 3} (49)
h̄ ∈ Fp (50)

Proof: The outer bound of 3
2 extends from [4] with only

minor adjustments to account for operating over finite fields.
Achievable scheme is presented here. Let us denote the n×n
linear transformation corresponding to product by h̄ as H .
i.e., h̄ ∈ Fpn and H ∈ Fn×np . The achievable scheme involves
beamforming vectors V̄1, V̄2, V̄3 ∈ Fn×1

p at the 3 sources
such that interference is aligned at all destinations. Note
that we need eigenvectors of H (and also the eigenvalues)
to be in Fp. This implies that the eigen vector solution of
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[4] can be used only when h̄ ∈ Fp to achieve linear-scheme
capacity of 3

2 . Note that this is analogous to the asymmetric
complex signaling setting studied in [8] where because the
scalar complex channels become rotation matrices over reals,
they do not have eigenvectors over reals unless the rotation
is identity. Since h̄ ∈ Fp, H is a scaled identity matrix,
and every vector is an eigenvector of this matrix. Let us
choose the same beamforming matrices at the 3 sources,
V̄ = V̄1 = V̄2 = V̄3. This ensures that interference is aligned
at all destinations for the normalized 3-user interference
channel. At destination 3, interference from source 2 (h̄V̄ )
spans the same space as interference from source 1 (V̄ ), since
h̄ ∈ Fp. Having aligned interference at the destinations, we
now discuss construction of the beamforming matrix, such
that desired and interference symbols are linearly independent
at all destinations. Above theorem is stated for all p > 3,
owing to the proof technique used, and we expect the result
to hold for p = 2.

Achievability:
In the achievability proof, depending on whether n is odd

or even, number of symbol extensions m and input symbols
per channel use t take different values.

When n is odd (n = 2l+ 1), m = 2 symbol extensions are
used, we choose V̄ ∈ F2×t

pn and send t = n input symbols per
channel use (x1, . . . , xn ∈ Fp) from each source. Interference
will be aligned at all destinations in an n dimensional space.

When n is even (n = 2l), symbol extensions are not
required (m = 1), we choose V̄ ∈ F1×t

pn and send t = l input
symbols per channel use (x1, . . . , xl ∈ Fp) from each source.
Since V̄ = V̄1 = V̄2 = V̄3, it can be noted that interference
will be aligned at all destinations in l dimensional space.

Let us denote the t columns of V̄ as v1,v2, . . . ,vt. Then,
the signal space at Destination k can be represented as

Sk = [h̄kkV̄ V̄ ] = [h̄kkv1, h̄kkv2, . . . , h̄kkvt, v1,v2, . . . ,vt]

We now describe how to choose columns of V̄ such that
desired and interference symbols are linearly independent at
all destinations. Let us choose v1 to be vector of ones. This
implies that the 2 columns [h̄kkv1 v1] in Sk are linearly
independent over Fp since h̄kk /∈ Fp, k ∈ {1, 2, 3}. Now
let us construct v2 such that 4 columns of Sk are linearly
independent over Fp for k ∈ {1, 2, 3}.

From Sk, v2 /∈ Ak ,

{
(α1h̄kk + α2)v1

β1h̄kk + β2
: (51)

α1, α2, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
Now we note that

|Ak| ≤
(p2 − 1)p2

p− 1
= p3 + p2, k ∈ {1, 2, 3} (52)

|A1 ∪A2 ∪A3| ≤ 3(p3 + p2) (53)

There are pmn choices for v2, and since pmn > 3(p3 + p2)
for all p > 3, there exist choices for v2 such that all 3
conditions of (51) hold. Choosing v2 from those, we note that
4 columns of S1, S2, S3 are linearly independent over Fp. We

proceed recursively in a similar manner, for choosing columns
v3,v4, . . . ,vt−1 such that 6, 8, . . . , 2(t− 1) columns are lin-
early independent over Fp respectively, in all Sk, k ∈ {1, 2, 3}.
Now consider the last iteration wherein column vt is chosen
such that all 2t columns are linearly independent over Fp in all
Sk, k ∈ {1, 2, 3}, given that 2t−2 columns are already linearly
independent with appropriate choices of v1,v2, . . . ,vt−1.

From Sk, vt /∈ Ak ,

{
1

β1h̄kk + β2

(
(α1h̄kk + α2)v1 +

(α3h̄kk + α4)v2 + · · ·+ (α2t−3h̄kk + α2t−2)vt−1

)
:

αi, β1, β2 ∈ Fp, i ∈ {1, . . . , 2t− 2}, (β1, β2) 6= (0, 0)

}
(54)

Now we note that

|Ak| ≤
(p2 − 1)p2t−2

p− 1
= p2t−1 + p2t−2, k ∈ {1, 2, 3} (55)

|A1 ∪A2 ∪A3| ≤ 3(p2t−1 + p2t−2) (56)

There are pmn choices for vt, and since pmn > 3(p2t−1 +
p2t−2) for all p > 3, there exist choices for vt such that
all 3 conditions of (54) hold. Choosing vt from those, we
note that all 2t columns of S1, S2, S3 are linearly independent
over Fp. Hence, desired and interference symbols are linearly
independent at all destinations. Thus, sum rate of 3

2 is achieved
over Fpn for all n with p > 3, if h̄kk /∈ Fp, k ∈ {1, 2, 3} and
h̄ ∈ Fp.

Remark 3: The fraction of channel realizations for which
the conditions h̄kk /∈ Fp, k ∈ {1, 2, 3} and h̄ ∈ Fp hold, is
given by

p

pn
× (

pn − p
pn

)3. (57)

which goes to 0 as p→∞.
Remark 4: The implications of the structure of the channel

become evident now. While we have n× n MIMO channels,
they behave like channels with diversity n, e.g, like diagonal
channels, where also the eigenvector solution does not work
except over a measure 0 set. To strengthen this insight, we
explore the 3-user interference channel further.

1) Insight: Channel Diversity: As noted for X networks
earlier, the finite field Fpn is analogous to a n × n MIMO
network with special channel structure. The main insight that
arises out of exploring the 3-user interference channel is that n
is analogous to channel diversity. This is similar to saying that
a scalar channel over Fpn is analogous to n parallel channels
over Fp. In the remainder of this work, we will focus only on
linear capacity Clinear and reinforce the parallels between n
and channel diversity.

2) Main Result: It is known from [29] that the 3-user
interference channel over Fpn has channel diversity n, and so
has linear capacity of 3D

2D+1 when using linear beam forming
schemes with alignment depth D = 2n − bn/2c − 1. The
alignment depth, i.e., the length of the longest chain of one-
to-one alignments, which is a function of channel diversity, is
the primary limiting factor impacting both achievability and
converse arguments. The achievable scheme is essentially the
asymptotic interference alignment scheme of [4]. Similar to
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Table II: Summary — 3-user Interference channel over finite fields
Finite field # Symbol extensions # Fp Input symbols at

the 3 sources∗
Result

Fp3 1 2, 1, 1 Linear capacity = 4
3 , for all p

Fpn , odd n = 2l + 1 1 l + 1, l, l Linear capacity = 3l+1
2l+1 , for all p

Fp2 5 4, 4, 4 Linear capacity = 6
5 , for all p

* — # Fp Input symbols at the 3 sources denotes the number of input symbols from the field Fp, sent from the 3 sources per
extended channel use.

the 2-user X channel, proof of achievability involves showing
that there exist choices for beamforming vectors such that
the desired signals are resolvable from interference at all
destinations. Resolvability of the desired signals from inter-
ference does not follow like in wireless channels wherein
linear independence is shown using generic properties of the
channels, and so, explicit constructive proofs are needed for
finite field channels. Outer bounds for linear schemes come
from the argument that the alignment depth cannot be more
than D, and suppose it were, then desired signal would lie in
span of the interference signal at the destinations. The result
translates into the finite field setting as follows. We will focus
mainly on the case where n is odd (the cases where n is even
follow similarly and will be touched upon briefly).

Theorem 4: The 3-user interference channel over Fpn with
odd n = 2l + 1 has linear capacity Clinear = 3l+1

2l+1 if

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: αk, βm ∈ Fp,

(β0, . . . , βl) 6= (0, . . . , 0)

}
(58)

h̄22 /∈ B ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp,

(β0, . . . , βl−1) 6= (0, . . . , 0)

}
(59)

h̄33 /∈ C ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: αk, βm ∈ Fp,

(β0, . . . , βl−1) 6= (0, . . . , 0)

}
(60)

βlh̄
l + . . .+ β1h̄+ β0 6= 0 : β0, . . . , βl ∈ Fp,

(β0, . . . , βl) 6= (0, . . . , 0) (61)

The outer bound on linear capacity is presented in Appendix
II, Section V-B. The achievable scheme is presented next,
which is summarized in the following table.

E. Achievability

Over Fp2l+1 , we will show that 3l + 1 symbols can be
transmitted (l+ 1 symbols from source 1 and l symbols each
from sources 2 and 3), and all desired symbols are resolvable
at the destinations. Symbol extensions will not be necessary
here. Note that h̄ is equivalent to the T matrix used in the
CJ scheme [4], since beamforming directions are identified
with varying powers of h̄. We will first discuss the achievable
scheme over Fp3 and then show how it extends to all odd n,
Fp2l+1 .

1) Achievability over Fp3 : Proof: Let us consider the
normalized 3-user interference channel over Fp3 so that
h̄11, h̄22, h̄33, h̄ ∈ Fp3 . We will show that linear schemes can
achieve the rate of 4

3 . Consider the finite field network wherein
source 1 sends 2 symbols, x1

1, x
2
1 ∈ Fp, while sources 2 and

3 send only one symbol each, x2, x3 ∈ Fp.
Because of the channel normalization, we use the same

beamforming direction v ∈ Fp3 for symbols sent by sources
2 and 3, so that interference is aligned at destination 1
(v2 = v3 = v). At source 1, we use 2 beam forming directions
h̄v and v so that, one symbol aligns at destination 2, and
another aligns at destination 3 (v1

1 = v, v2
1 = h̄v). With these

choices for beamforming directions, the received symbols can
be represented as

y1 = h̄11(vx1
1 + h̄vx2

1) + vx2 + vx3

y2 = vx1
1 + h̄vx2

1 + h̄22vx2 + vx3

y3 = vx1
1 + h̄vx2

1 + h̄vx2 + h̄33vx3

Note that interference is aligned along v at destinations 1 and
2, while interference at destination 3 is aligned along h̄v. We
have 3 dimensions at each destination over Fp, within which
desired and interference symbols need to be resolved. Signal
spaces containing desired and interference symbols need to
have linearly independent elements.

S1 = [h̄11h̄v h̄11v v] = h̄11[h̄ 1
1

h̄11
]v (62)

S2 = [h̄22v h̄v v] = [h̄22 h̄ 1]v (63)
S3 = [h̄33v h̄v v] = [h̄33 h̄ 1]v (64)

When h̄ /∈ Fp, h̄ and 1 are linearly independent over Fp.
Hence, elements of S1 can be linearly dependent only if 1

h̄11

is a linear combination of h̄ and 1. Similarly elements of S2

and S3 can be linearly dependent only if h̄22 or h̄33 is a linear
combination of h̄ and 1, respectively. Thus, the scheme works
when the following conditions are satisfied.

h̄11 /∈ A ,

{
1

β0 + β1h̄
: β0, β1 ∈ Fp,

(β0, β1) 6= (0, 0)

}
∪ {0} (65)

h̄22 /∈ B ,
{
α0 + α1h̄ : α0, α1 ∈ Fp

}
(66)

h̄33 /∈ C ,
{
α0 + α1h̄ : α0, α1 ∈ Fp

}
(67)

h̄ /∈ Fp (68)

Hence we can achieve the rate of 4 Fp symbols per channel
use, i.e., 4

3 Fp3 symbols per channel use. Fig. 8 illustrates the
achievable scheme described for Fp3 .
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h̄11h̄v h̄11v v

h̄22v h̄v v

h̄33v h̄v v

Desired

Desired

Desired

Fig. 8: 3-user Interference channel over Fp3

Remark 5: We can rewrite the conditions in terms of orig-
inal channel coefficients as follows.

1

h11
/∈ A ,

{
α1

h32

h12h31
+ β1

h23

h13h21
: α1, β1 ∈ Fp

}
(69)

h22 /∈ B ,
{
α2

h21h32

h31
+ β2

h12h23

h13
: α2, β2 ∈ Fp

}
(70)

h33 /∈ C ,
{
α3

h13h32

h12
+ β3

h31h23

h21
: α3, β3 ∈ Fp

}
(71)

These conditions, which are obtained for the constant chan-
nel setting, are similar to the conditions for feasibility of
PBNA derived in [2] for the time-varying setting, wherein
6 cofactors of off-diagonal channel coefficients are involved
in the feasibility criteria. However, note that in this finite
field channel, the combining coefficients αk, βk, k ∈ {1, 2, 3}
can be from Fp whereas in [2], only binary coefficients were
involved.

Remark 6: Each of the direct channels hii can take one
of p3 values. At most p2 of these can be linear combination
of the cross channel functions. Hence, there are at least
p3 − p2 choices for each direct channel such that the linear
independence conditions are met and so desired symbols are
resolvable. The fraction of channel realizations for which hii
is not a linear combination of cross channel functions, is
therefore at least

p3 − p2

p3
= 1− 1

p
→ 1 for large p (72)

The fraction of channels for which the scheme works,
considering all conditions simultaneously is therefore at least

(
p3 − p
p3

)× (1− 1

p
)3 = (1− 1

p2
)× (1− 1

p
)3 → 1 for large p

Note that unlike the wireless case where the DoF results
are proved in an almost surely sense, the guarantee on the
fraction of channels for which the scheme works is much more
interesting.

2) Achievability over Fpn , n = 2l + 1: Proof: Now
let us show that the sum-rate of 3l+1

2l+1 can be achieved
over Fp2l+1 , which generalizes the proof for Fp3 discussed
earlier, to any odd n. Suppose source 1 sends l + 1 symbols,
x1

1, x
2
1, . . . x

l+1
1 ∈ Fp, while sources 2 and 3 sends l symbols

each, x1
2, . . . , x

l
2, x

1
3, . . . , x

l
3 ∈ Fp.

We use the same set of beamforming directions,
h̄l−1v, . . . , h̄v, v with v ∈ Fp2l+1 for the l symbols sent by
sources 2 and 3, so that interference is aligned at destination
1 in span([h̄l−1v . . . h̄v v]). At source 1, we use l + 1
beamforming directions h̄lv, . . . , h̄v, v so that, l symbols align
at destination 2, and l symbols align at destination 3. With
these choices of beamforming directions for input symbols,
the received symbols at the destinations can be represented as

y1 = h̄11(h̄lvxl+1
1 + . . .+ h̄vx2

1 + vx1
1) +

h̄l−1vxl2 + . . .+ vx1
2 + h̄l−1vxl3 + . . .+ vx1

3 (73)
y2 = h̄22(h̄l−1vxl2 + . . .+ vx1

2) + h̄l−1vxl3 + . . .+ vx1
3

+h̄lvxl+1
1 + . . .+ h̄vx2

1 + vx1
1 (74)

y3 = h̄33(h̄l−1vxl3 + . . .+ vx1
3) + h̄l−1vxl2 + . . .+ vx1

2

+h̄lvxl+1
1 + . . .+ h̄vx2

1 + vx1
1 (75)

In order to resolve desired symbols at the destinations,
signal spaces containing desired and interference symbols need
to have linearly independent entries.

S1 = [ h̄11h̄
lv . . . h̄11h̄v h̄11v h̄l−1v . . . h̄v v ]

= [ h̄11h̄
l . . . h̄11h̄ h̄11 h̄l−1 . . . h̄ 1 ]v (76)

S2 = [ h̄22h̄
l−1v . . . h̄22h̄v h̄22v h̄lv . . . h̄v v ]

= [ h̄22h̄
l−1 . . . h̄22h̄ h̄22 h̄l . . . h̄ 1 ]v (77)

S3 = [ h̄33h̄
l−1v . . . h̄33h̄v h̄33v h̄lv . . . h̄v v ]

= [ h̄33h̄
l−1 . . . h̄33h̄ h̄33 h̄l . . . h̄ 1 ]v (78)

The desired and interference symbols are resolvable and
3l + 1 symbols can be decoded at the destinations when the
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Desired

Desired

Desired

Fig. 9: 3-user Interference channel over Fpn , n = 2l + 1

following conditions are satisfied.

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: (79)

αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
h̄22 /∈ B ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: (80)

αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
h̄33 /∈ C ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: (81)

αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
βlh̄

l + . . .+ β1h̄+ β0 6= 0 : (82)
β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

Fig. 9 illustrates the achievable scheme described for Fpn
with n = 2l + 1. Note that a Fp symbol represents 1

2l+1 of
an Fp2l+1 symbol and rate is measured in Fp2l+1 units. Hence
we have proved achievability of linear capacity of 3l+1

2l+1 for all
odd n = 2l + 1.

Remark 7: Each of the direct channels hii can be from one
of the p2l+1 choices. The fraction of channel realizations for
which direct channels satisfy the conditions is at least

Fraction of channels with h11 not in A

≥ p2l+1 − (p2l + . . .+ pl)

p2l+1
(83)

= 1− {1

p
+

1

p2
+ . . .+

1

pl+1
} → 1 for large p

Fraction of channels with h22 or h33 not in B or C

≥ p2l+1 − (p2l + . . .+ pl+1)

p2l+1
(84)

= 1− {1

p
+

1

p2
+ . . .+

1

pl
} → 1 for large p

Also, following condition on cross channel h̄ needs to be met

βlh̄
l + . . .+ β1h̄+ β0 6= 0 : β0, . . . , βl ∈ Fp,

(β0, . . . , βl) 6= (0, . . . , 0) (85)

The l + 1 combining coefficients can represent no more than
pl+1 distinct polynomials, and since each has degree l or
less, each polynomial can have at most l zeros. Therefore,
the number of possible h̄ that can violate (85) is no more than
lpl+1. So, the fraction of h̄ values for which the scheme works
is at least

p2l+1 − lpl+1

p2l+1
= 1− l

pl
(86)

which approaches 1 as either p or l approaches infinity. Putting
everything together, the fraction of all channels for which the
scheme works is at least

(1− l

pl
) × (1− {1

p
+

1

p2
+ . . .+

1

pl+1
})

× (1− {1

p
+

1

p2
+ . . .+

1

pl
})2 → 1 for large p

3) Achievability over Fp2 : Having established the
achievability proof over Fpn for odd n, we will omit the
general case of even n, except to mention that it can be
translated from [29] using the same principles as illustrated
for odd n and does not offer new insights. However, we will
present the achievability proof for the case of n = 2 because
the corresponding result in [8] uses the asymmetric complex
signaling approach which may be of interest. As before, Fp2
can be viewed as a 2-dimensional vector space over subfield
Fp, much like the field of complex numbers can be viewed as
a 2-dimensional vector space over reals, so that an achievable
scheme similar to asymmetric complex signaling of [8] can
be used. Hence, we translate the DoF result of [8] into the
finite field setting as follows.
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Theorem 5: The 3-user interference channel over Fp2 has
linear capacity, Clinear = 6

5 , if

h̄11 =
h11h23

h13h21
/∈ Fp, h̄h̄11 =

h11h32

h12h31
/∈ Fp

h̄22 =
h22h13

h23h12
/∈ Fp,

h̄

h̄22
=
h21h32

h22h31
/∈ Fp

h̄33 =
h33h21

h31h23
/∈ Fp,

h̄

h̄33
=
h32h13

h33h12
/∈ Fp

Proof: The outer bound follows from [8] (Theorem 4) in
much the same fashion as the outer bound for the previous
section follows from [29] (Theorem 7). Here we present only
the achievability proof. Consider a 5 symbol extension of the
normalized 3-user interference channel over Fp2 . Over these 5
symbol extensions, 4 input symbols denoted by x1

k, x
2
k, x

3
k, x

4
k

are precoded and transmitted at source k. Each input symbol
xik, i ∈ {1, 2, 3, 4}, k ∈ {1, 2, 3} is from Fp. Correspond-
ing 5 × 1 beam forming vectors are denoted using vectors
v1
k,v

2
k,v

3
k,v

4
k ∈ F5×1

p2 , k ∈ {1, 2, 3}. Each destination has
10 dimensions of order p over the symbol extended channel.
Desired symbols from corresponding source would occupy 4
dimensions and for resolvability, interference need to occupy
only 6 dimensions of order p. Hence at each destination, two
of the 8 interference vectors from 2 unintended sources, need
to be aligned. To this end, we make the following choices for
certain beam forming vectors.

v3
1 = h̄v1

2, v4
1 = v2

3, v3
2 = v1

3, (87)

v4
2 =

1

h̄
v2

1, v3
3 = v1

1, v4
3 = v2

2 (88)

Desired and Interference signal space at the three destinations
are illustrated in Fig. 10. Due to interference alignment, these
signal space matrices can be equivalently re-written as

S1 =

[
h̄11

[
v1

1 v2
1 h̄v1

2 v2
3

]
v1

2 v2
2 v1

3

1

h̄
v2

1 v2
3 v1

1

]
S2 =

[
h̄22

[
v1

2 v2
2 v1

3

1

h̄
v2

1

]
v1

3 v2
3 v1

1 v2
2 v2

1 h̄v1
2

]
S3 =

[
h̄33

[
v1

3 v2
3 v1

1 v2
2

]
v1

1 v2
1 h̄v1

2 v2
3 h̄v2

2 h̄v1
3

]
In order to resolve desired signals at all destinations, the
columns of these 3 matrices need to be linearly independent
over Fp. Note that the following six conditions are required.

h̄11 /∈ Fp, h̄22 /∈ Fp, h̄33 /∈ Fp, (89)

h̄h̄11 /∈ Fp,
h̄

h̄22
/∈ Fp,

h̄

h̄33
/∈ Fp (90)

We will now choose beam forming vectors vik, i ∈
{1, 2}, k ∈ {1, 2, 3}, such that all three matrices Sk have their
10 columns linearly independent.

We choose v1
1 to be the vector of ones. Since h̄11, h̄33 /∈ Fp,

vectors in S1 : [h̄11v
1
1 v1

1] are linearly independent and so are
similar vectors in S3 : [h̄33v

1
1 v1

1]. We now choose vector v2
1

such that following conditions hold.

From S1, v2
1 /∈ A ,

{
(α1h̄11 + α2)v1

1

β1h̄11 + β2
1
h̄

:

α1, α2, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
(91)

From S2, v2
1 /∈ B ,

{
α1v

1
1

β1 + β2
h̄22

h̄

:

α1, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
(92)

From S3, v2
1 /∈ C ,

{
(α1h̄33 + α2)v1

1 : α1, α2 ∈ Fp
}

(93)

Now we note that

|A| ≤ (p2 − 1)p2

p− 1
= p3 + p2 (94)

|B| ≤ (p2 − 1)p

p− 1
= p2 + p, |C| ≤ p2 (95)

|A ∪B ∪ C| ≤ p3 + 3p2 + p (96)

There are p10 choices for v2
1 ∈ F5×1

p2 , and since

p10 > p3 + 3p2 + p (97)

for all p, there exist choices for v2
1 such that all 3 conditions

(91),(92),(93) hold. Choosing v2
1 from those, we note that 4

columns of S1 and 3 columns each of S2, S3 are linearly
independent over Fp.

Now we choose v1
2 similarly such that following conditions

hold

v1
2 /∈ A ,

{
(α1h̄11 + α2)v1

1 + (α3h̄11 + 1
h̄
α4)v2

1

β1h̄11h̄+ β2
: (98)

α1, α2, α3, α4, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
v1

2 /∈ B ,

{
α1v

1
1 + (α2 + α3

h̄22

h̄
)v2

1

β1h̄22 + β2h̄
: (99)

α1, α2, α3, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
v1

2 /∈ C ,

{
(α1h̄33 + α2)v1

1 + α3v
2
1

h̄
: (100)

α1, α2, α3 ∈ Fp
}

Now we note that

|A| ≤ (p2 − 1)p4

p− 1
= p5 + p4 (101)

|B| ≤ (p2 − 1)p3

p− 1
= p4 + p3, |C| ≤ p3 (102)

|A ∪B ∪ C| ≤ p5 + 2p4 + 2p3 (103)

There are p10 choices for v1
2, and since

p10 > p5 + 2p4 + 2p3 (104)

for all p, there exist choices for v1
2 such that all 3 conditions

(98),(99),(100) hold. Choosing v1
2 from those, we note that



16

Desired

v1
1 v2

1 v3
1 v4

1

v1
2 v2

2 v3
2 v4

2

v1
3 v2

3 v3
3 v4

3

h̄11v
1
1 h̄11v

2
1 h̄11v

3
1 h̄11v

4
1 v1

2 v2
2 v3

2 v4
2 v2

3 v3
3

Desired

h̄22v
1
2 h̄22v

2
2 h̄22v

3
2 h̄22v

4
2 v1

3 v2
3 v3

3 v4
3 v2

1 v3
1

h̄33v
1
3 h̄33v

2
3 h̄33v

3
3 h̄33v

4
3 v1

1 v2
1 v3

1 v4
1 h̄v2

2 h̄v3
2

Desired

Fig. 10: 3-user Interference channel over Fp2

6 columns of S1, 5 columns of S2 and 4 columns of S3 are
linearly independent over Fp.

Now we choose v2
2 similarly such that following conditions

hold

v2
2 /∈ A ,

{
(α1h̄11 + α2)v1

1 + (α3h̄11 +
1

h̄
α4)v2

1 + (105)

(α5h̄11h̄+ α6)v1
2 : αk ∈ Fp, k ∈ {1, . . . , 6}

}
v2

2 /∈ B ,

{
1

β1h̄22 + β2

(
α1v

1
1 + (α2 + α3

h̄22

h̄
)v2

1 +

(α4h̄+ α5h̄22)v1
2

)
: αk, β1, β2 ∈ Fp, (106)

k ∈ {1, . . . , 5}, (β1, β2) 6= (0, 0)

}
v2

2 /∈ C ,

{
1

β1h̄33 + β2h̄

(
(α1h̄33 + α2)v1

1 + α3v
2
1 +

α4h̄v1
2

)
: αk, β1, β2 ∈ Fp, (107)

k ∈ {1, . . . , 4}, (β1, β2) 6= (0, 0)

}
Now we note that

|A| ≤ p6, |B| ≤ (p2 − 1)p5

p− 1
= p6 + p5 (108)

|C| ≤ (p2 − 1)p4

p− 1
= p5 + p4 (109)

|A ∪B ∪ C| ≤ 2p6 + 2p5 + p4 (110)

There are p10 choices for v2
2, and since

p10 > 2p6 + 2p5 + p4 (111)

for all p, there exist choices for v2
2 such that all 3 conditions

(105),(106),(107) hold. Choosing v2
2 from those, we note that

7 columns each of S1, S2, and 6 columns of S3 are linearly
independent over Fp.

Now we choose v1
3 similarly such that following conditions

hold

v1
3 /∈ A ,

{
(α1h̄11 + α2)v1

1 + (α3h̄11 +
1

h̄
α4)v2

1 +

(α5h̄11h̄+ α6)v1
2 + α7v

2
2 : (112)

αk ∈ Fp, k ∈ {1, . . . , 7}
}

v1
3 /∈ B ,

{
1

β1h̄22 + β2

(
α1v

1
1 + (α2 + α3

h̄22

h̄
)v2

1 +

(α4h̄+ α5h̄22)v1
2 + (α6h̄22 + α7)v2

2

)
: (113)

αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 7}, (β1, β2) 6= (0, 0)

}
v1

3 /∈ C ,

{
1

β1h̄33 + β2h̄

(
(α1h̄33 + α2)v1

1 + α3v
2
1 +

α4h̄v1
2 + (α5h̄33 + α6h̄)v2

2

)
: (114)

αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 6}, (β1, β2) 6= (0, 0)

}
Now we note that

|A| ≤ p7, |B| ≤ (p2 − 1)p7

p− 1
= p8 + p7 (115)

|C| ≤ (p2 − 1)p6

p− 1
= p7 + p6 (116)

|A ∪B ∪ C| ≤ p8 + 3p7 + p6 (117)

There are p10 choices for v1
3, and since

p10 > p8 + 3p7 + p6 (118)

for all p, there exist choices for v1
3 such that all 3 conditions

(112),(113),(114) hold. Choosing v1
3 from those, we note that

8 columns each of S1, S3, and 9 columns of S2 are linearly
independent over Fp.
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Now we choose v2
3 similarly such that following conditions

hold

v2
3 /∈ A , { 1

β1h̄11 + β2

(
(α1h̄11 + α2)v1

1 + (α3h̄11 +

1

h̄
α4)v2

1 + (α5h̄11h̄+ α6)v1
2 + α7v

2
2 + α8v

1
3

)
: (119)

αk ∈ Fp, k ∈ {1, . . . , 8}, (β1, β2) 6= (0, 0)}

v2
3 /∈ B , {α1v

1
1 + (α2 + α3

h̄22

h̄
)v2

1 + (α4h̄+

α5h̄22)v1
2 + (α6h̄22 + α7)v2

2 + (α8h̄22 + α9)v1
3 : (120)

αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 9}}

v2
3 /∈ C , { 1

β1h̄33 + β2

(
(α1h̄33 + α2)v1

1 + α3v
2
1 +

α4h̄v1
2 + (α5h̄33 + α6h̄)v2

2 + (α7h̄33 + α8h̄)v1
3

)
: (121)

αk, β1, β2 ∈ Fp, k ∈ {1, . . . , 8}, (β1, β2) 6= (0, 0)}

Now we note that

|A| ≤ (p2 − 1)p8

p− 1
= p9 + p8, |B| ≤ p9 (122)

|C| ≤ (p2 − 1)p8

p− 1
= p9 + p8 (123)

|A ∪B ∪ C| ≤ 3p9 + 2p8 (124)

There are p10 choices for v2
3, and since

p10 > 3p9 + 2p8 (125)

for p > 3, there exist choices for v2
3 such that all 3 conditions

(119),(120),(121) hold. Choosing v2
3 from those, we note that

all columns each of S1, S2, S3 are linearly independent over
Fp.

Therefore, we have constructed beam forming vectors such
that desired and interference signals are linearly independent at
all destinations. This proves the achievability of linear-scheme
capacity of 6

5 for 3-user interference channel over Fp2 for all
p > 3 when the specified conditions are met. For p=2 and p=3,
we are able to solve numerically using MATLAB, completing
the achievability proof of sum-rate 6

5 for channel over Fp2 for
all p under the conditions of Theorem 5.

Remark 8: Conditions of Theorem 5 can be written in terms
of the original channels as follows.

h̄11 =
h11h23

h13h21
/∈ Fp, h̄h̄11 =

h11h32

h12h31
/∈ Fp

h̄22 =
h22h13

h23h12
/∈ Fp,

h̄

h̄22
=
h21h32

h22h31
/∈ Fp

h̄33 =
h33h21

h31h23
/∈ Fp,

h̄

h̄33
=
h32h13

h33h12
/∈ Fp

Note that these 6 conditions are equivalent to the 6 con-
ditions on the phase differences between channel coefficients
in the asymmetric complex signing scheme for wireless net-
works, as described in [8] (Theorem 2) to achieve DoF of
6
5 .

Remark 9: Each of the direct channels satisfy h̄ii /∈ Fp, i ∈
{1, 2, 3} The fraction of channel realizations for which direct
channels satisfy the 3 conditions is at least

(
p2 − p
p2

)3 = (1− 1

p
)3 → 1 for large p (126)

Further cross channel h̄ should satisfy the conditions h̄ 6=
α
h̄11

, h̄ 6= βh̄22, h̄ 6= γh̄33 for α, β, γ ∈ Fp. There are
atmost 3p channels such that one of these 3 conditions on
h̄ is violated. Hence there are at least p2 − 3p valid channel
realizations for h̄ for p > 3. Putting everything together, the
fraction of all channels for which the scheme works for p > 3
is at least

(1− 1

p
)3(

p2 − 3p

p2
) = (1− 1

p
)3(1− 3

p
)→ 1 for large p

IV. CONCLUSION

Capacity and linear capacity results are explored for the
2-user X channel and the 3-user interference channel re-
spectively, over the finite field Fpn , by translating precoding
based interference alignment schemes from corresponding
DoF results for the wireless setting. The main insight is that the
finite field Fpn can be viewed as analogous to diagonal n×n
wireless channels with diversity n. This insight appears to be
broadly true for linear precoding based schemes. While the
linear capacity is fully characterized, the information theoretic
capacity remains open for finite field networks over Fp, i.e., for
n = 1, where diversity is only 1. We expect that signal level
alignment schemes and combinatorial outer bound arguments
such as those presented in [31] should be useful in these cases.

V. APPENDIX

A. Appendix I - X Channel over Fp2

Fp2 can be viewed as a 2-dimensional vector space over
subfield Fp, much like the field of complex numbers can
be viewed as a 2-dimensional vector space over reals (R),
which is also the essential idea behind the asymmetric complex
signaling scheme used in [8] to achieve 4/3 DoF for the
constant SISO wireless X channel with complex coefficients.
We can represent each element of Fp2 as

z = x+ y
√
c or x+ ys (127)

wherein z ∈ Fp2 , x, y ∈ Fp and c is a quadratic non-residue
(an element that does not have a square root in Fp) similar to
−1 (which does not have a square root over reals) in the field
of complex numbers. (s =

√
c ≡ j).

For example, consider F32 with prime subfield F3 which
has c = −1(mod 3) = 2 as the quadratic non-residue, since√

2 does not exist in F3. Field F32 contains 9 elements and
every element a1s + a0 can be written in a vector notation
with coefficients [a1; a0] wherein a1, a0 ∈ F3 = {0, 1, 2} and
assigned a scalar integer label {0, 1, . . . , 8} as 3a1 + ao. For
example, the field element labeled a = 7 can be represented as
[2 ; 1] in vector notation, and as 2s+1 in polynomial notation.
Here, product with h can be represented using a 2× 2 linear
transformation (MIMO equivalent). Let h = h1s+ h0, x =
x1s + x0 and hi, xi ∈ F3. Then the product y = hx ∈ F32

can be written as

y = hx = (h1s+ h0)(x1s+ x0) (128)
= s2(h1x1) + s(h1x0 + h0x1) + (h0x0) (129)
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and in vector notation as

y = Hx =

[
h0 2h1

h1 h0

] [
x1

x0

]
(130)

wherein x ∈ F2×1
3 and H ∈ F2×2

3 . It can be noted that
above 2 × 2 linear transformation is equivalent to complex
multiplication and stacking the resulting real and imaginary
parts in a 2× 1 vector.

Achievability proof for X-channel over Fp2
Proof: Now we prove that sum rate of 4

3 is achievable (part of
Theorem 2 proof) for 2-user X-channel over Fp2 . We consider
the X channel with 3 symbol extensions, wherein we can
represent the channel between source i and destination j as
Hji = hjiI3 where I3 is the 3×3 identity matrix and hji is the
scalar channel coefficient from Fp2 . The inputs xji are chosen
from Fp and outputs yj over Fp2 and three channel uses can be
seen as a 6 dimensional vector space over Fp within which 4
desired symbols and 4 interference symbols are present at each
destination. In order to achieve capacity, interference should
be aligned within 2 dimensions at each destination. Received
symbols at the destinations, in vector notation, are given by

y1 = V11x11 + V12x12 + V22x22 + V21x21 (131)
y2 = V22x22 + H̄V21x21 + H̄V11x11 + V12x12(132)

Here yj ∈ F6×1
p , Vji ∈ F6×2

p , and xji ∈ F2×1
p represents

the symbols sent by source i for destination j. H̄ ∈ F6×6
p

is the linear transformation which is equivalent to multi-
plication by h ∈ Fp2 . Over 3 symbol extensions of the
channel, linear transformation for p > 2, is given by H̄ =
[h0I3 ch1I3;h1I3 h0I3], wherein I3 is the 3 × 3 identity
matrix, and c is the quadratic non-residue which exists for all
p > 2. In order to achieve sum rate of 4

3 , interference should
be aligned at both destinations, similar to Fpn . We choose
beamforming vectors as

V22 = V21 =

[
1 1 1 0 1 1
0 0 1 0 1 1

]T
(133)

V11 =

[
1 1 0 1 0 0
1 0 0 1 1 1

]T
V12 = H̄V11 (134)

At each destination, signal space can be represented using 6×6
matrices, S1 and S2.

S1 = [V11 V12 V21] = [V11 H̄V11 V21] (135)
S2 = [V22 H̄V21 V12] = [V21 H̄V21 H̄V11] (136)

Determinant polynomials of matrices S1 and S2 are given as:
|S1| = ch2

1 and |S2| = h2
1(ch2

1 − h2
0). Determinant of matrix

S1 is non-zero since h1 6= 0 when h /∈ Fp, and a non-zero
quadratic non-residue exists for all p > 2. When considering
determinant polynomial of matrix S2, since h2

1 6= 0 (h /∈ Fp),
|S2| = 0 only if c =

h2
0

h2
1

. But this is clearly not possible since
the quadratic non-residue, c cannot be a square of any element
in Fp (h0

h1
∈ Fp). Hence, columns of matrices S1 and S2 are

linearly independent over Fp, implying that the desired and
interference signals do not overlap.

Note that F22 is a special case because there is no quadratic
non-residue, where the scheme is equivalent to having a 2 ×

2 MIMO channel, but not to asymmetric complex signaling.
For F22 , we are able to solve numerically using MATLAB by
constructing beamforming matrices V11 and V21. Thus, when
h /∈ Fp, we have shown that the desired signals are resolvable,
and sum rate of 4

3 is achievable for channels over Fp2 for all
p.

B. Appendix II - Linear outer bound for 3-user Interference
channel

In this section, we will prove the linear outer bounds for
3-user interference channel over Fpn . The proof follows along
the lines of [29] (Theorem 7) by showing that the alignment
depth can be at most D, which is a function of channel
diversity (in case of finite fields, n).

1) Linear outer bound over Fpn , n = 2l + 1:
Lemma 1: Alignment depth is at most D = 2n− bn2 c − 1

for the normalized 3-user interference channel, wherein chan-
nels h̄, h̄kk ∈ Fpn for odd n = 2l + 1 and satisfy

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: (137)

αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
h̄22 /∈ B ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: (138)

αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
h̄33 /∈ C ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: (139)

αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
βlh̄

l + . . .+ β1h̄+ β0 6= 0 : (140)
β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

Proof: Let us consider the normalized channel as described
in section III-C for odd n = 2l + 1, and at source 1, denote
a vector v of dimension m× 1 with entries from Fpn . Since
this is a converse proof, we assume that the desired symbols
can be decoded at all the destinations. Here m denotes the
number of symbol extensions of the channel. This vector of
source 1 needs to be aligned with a vector from source 3 at
destination 2, we can denote the vector at source 3 as γ1v
with γ1 ∈ Fp. Vector γ1v aligns with a vector from source
2 at destination 1, say β1v with β1 ∈ Fp. Vector β1v aligns
with a vector from source 1 at destination 3, say α1h̄v with
α1 ∈ Fp. So far, alignment chain length can be seen to be
4, and such an alignment chain can be extended upto length
D when operating in field of order pn. With n = 2l + 1 this
results in source 1 using l + 1 vectors, and sources 2 and 3
using l vectors each such that the alignment chain length is
D = 3l + 1. Then the vectors chosen so far at the 3 sources
can be represented as

V1 = [αlh̄
lv αl−1h̄

l−1v . . . α1h̄v v] (141)
V2 = [βlh̄

l−1v βl−1h̄
l−2v . . . β2h̄v β1v] (142)

V3 = [γlh̄
l−1v γl−1h̄

l−2v . . . γ2h̄v γ1v] (143)
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αlh̄
lv αl−1h̄

l−1v . . . α1h̄v v

βlh̄
l−1v . . . β2h̄v β1v

γlh̄
l−1v . . . γ2h̄v γ1v

βlh̄
l−1v . . . β2h̄v β1v

γl+1h̄
lv

γl+1h̄
lv

αlh̄11h̄
lv αl−1h̄11h̄

l−1v . . . α1h̄11h̄v h̄11v

Desired

Fig. 11: Alignment depth in 3-user Interference channel

wherein v is an m × 1 vector with entries from Fpn and
αi, βi, γi ∈ Fp, ∀i ∈ {1, . . . , l}. We will now argue that
alignment chain length cannot be extended beyond D. Suppose
on the contrary, alignment chain length was greater than D,
say D + 1. Then without loss of generality, we can choose
additional vector at source 3 such that at destination 2, it aligns
with the vector αlh̄lv used at source 1. This additional vector
at source 3 can be represented as γl+1h̄

lv. Then the vectors
sent by source 3 can be represented as

V̄3 = [γl+1h̄
lv γlh̄

l−1v γl−1h̄
l−2v . . . γ2h̄v γ1v] (144)

Let us consider the signal space at destination 1, S1 =
[h̄11V1 V2 V̄3]. Since l vectors from source 3 align with l
vectors from source 2, we can denote the signal space as S1 =
[h̄11V1 V2 γl+1h̄

lv]. Now we claim that h̄11V1 and V2 spans
the channel space, since all vectors are linearly independent.

[h̄11V1 V2] =

[
αlh̄11h̄

lv αl−1h̄11h̄
l−1v . . . α1h̄11h̄v

h̄11v βlh̄
l−1v βl−1h̄

l−2v . . . β2h̄v β1v

]
(145)

It can be noted that columns of above matrix are linearly
independent when all entries listed below are linearly inde-
pendent, since V is scaled by different powers of h̄, h̄11 and
other coefficients.

[αlh̄11h̄
l αl−1h̄11h̄

l−1 . . . α1h̄11h̄ h̄11

βlh̄
l−1 βl−1h̄

l−2 . . . β2h̄ β1] (146)

This is true when following conditions on h̄, h̄11 are met.

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
:

αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
(147)

βlh̄
l + . . .+ β1h̄+ β0 6= 0 :

β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0) (148)

Since n = 2l + 1 columns of [h̄11V1 V2] are linearly inde-
pendent, additional vector chosen γl+1h̄

lv must lie in span of

[h̄11V1 V2]. It cannot lie in the space spanned by V2 because
that would contradict (140). But if it does not lie in the space
spanned by V2 then the desired signal space h̄11V1 is not
resolvable from interference. This is a contradiction, since in
the converse we assume that the desired signal is resolvable
from interference. Therefore additional vector γl+1h̄

lv cannot
be chosen at source 3 such that it aligns at destination 1, i.e.,
alignment depth cannot be greater than D = 3l + 1. This is
illustrated in Fig. 11. Similarly alignment chains originating at
other sources and ending at other destinations can be shown
to be of depth not greater than D. Consolidating the linear
independence conditions for all such chains, we note that
alignment depth is at most D for channels satisfying conditions
((137),(138),(139),(140)). Thus, we have proved Lemma 1.

We now show the outer bound on linear-scheme capacity
for 3-user interference channel to be 3D

2D+1 . The proof of this
part is almost identical to that in [29] (Theorem 7), so it is
summarized only for the sake of completeness.

Theorem 6: For the 3-user interference channel over Fpn ,
outer bound on linear-scheme capacity is given by 3D

2D+1 , with
D = 2n−bn2 c−1 for odd n = 2l+1 wherein channels satisfy
the following conditions

h̄11 /∈ A ,

{
α0 + α1h̄+ . . .+ αl−1h̄

l−1

β0 + β1h̄+ . . .+ βlh̄l
: (149)

αk, βm ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)

}
h̄22 /∈ B ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: (150)

αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
h̄33 /∈ C ,

{
α0 + α1h̄+ . . .+ αlh̄

l

β0 + β1h̄+ . . .+ βl−1h̄l−1
: (151)

αk, βm ∈ Fp, (β0, . . . , βl−1) 6= (0, . . . , 0)

}
βlh̄

l + . . .+ β1h̄+ β0 6= 0 : (152)
β0, . . . , βl ∈ Fp, (β0, . . . , βl) 6= (0, . . . , 0)
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x1

x2

x3

x1

x2

x1

Clinear = 1.5 or 1 C = Clinear = 1.5C = Clinear = 2C = Clinear = 2C = Clinear = 2

Fig. 12: Distinct channel structures with 3 cross channels as 0

Proof: Let Vi↑k denote the signal space of user i (part of Vi)
aligned to depth k + 1 and di = dim(Vi), di↑k = dim(Vi↑k).
Lemma 8 of [29] follows since we have finite dimensional
subspaces, i.e., di↑k ≥ di↑k+a + di−b↑k+b − di−b↑k+a+b. For
a = −1, b = −1, we have

di↑k ≥ di↑k−1 + di+1↑k−1 − di+1↑k−2 (153)

Since alignment depth is at most D (Lemma 1), Vi↑D = {0}
for each i, and so similar to lemma 9 of [29], we have

di ≥ di−1↑1 + di↑D−1 (154)

Let us denote ck =
∑3
i=1 di↑k. Then using 153, we have

ck ≥ 2ck−1 − ck−2. Using induction, it can be deduced that
ck ≥ ick−i+1 − (i− 1)ck−i. For i = k = D − 1, we have

(D − 2)c0 ≥ (D − 1)c1 − cD−1 (155)

Using 154, it can be shown that c0 ≥ c1+cD−1. Combining
with 155, we have (D − 1)c0 ≥ Dc1. Let total dimension at
each destination be denoted by N = mn where m symbol
extensions of the channel is considered with channels from
Fpn . Since interference span must be linearly independent of
desired signal, and considering N dimensions at destination 1,
we have

Destination 1: dim(h̄11V1 + V2 + V3)

= d1 + d2 + d3 − d2↑1 ≤ N (156)
Destination 2: dim(V1 + h̄22V2 + V3)

= d1 + d2 + d3 − d3↑1 ≤ N (157)
Destination 3: dim(V1 + h̄V2 + h̄33V3)

= d1 + d2 + d3 − d1↑1 ≤ N (158)

Adding above inequalities and using (D − 1)c0 ≥ Dc1, we
can deduce as in [29] that

d1 + d2 + d3

N
≤ 3D

2D + 1
(159)

Thus we have proved the outer bound on linear-scheme ca-
pacity for 3-user interference channel over Fpn with channels
satisfying aforementioned linear independence constraints.

C. Appendix III - Zero Channels in 3-user Interference chan-
nel

Here, we deal with realizations of the 3-user interference
channel where some of the channel coefficients are zero.

Theorem 7: For the 3 user interference channel over Fpn ,
if one or more of the channel coefficients hji is equal to zero,
the capacity results are given as follows:

1) If all three direct channels are zero, then C = Clinear =
0.

2) If any two direct channels are zero, then C = Clinear =
1.

3) If exactly one direct channel is zero, then C = Clinear =
1 or C = Clinear = 2, depending on whether any of the
cross-channels between the other two users takes a non-
zero value or they are all zero, respectively.

4) If all direct channels are non-zero and all 6 cross channels
are zero, then C = Clinear = 3.

5) If all direct channels are non-zero and either 4 or 5 cross
channels are zero, then C = Clinear = 2.

6) If all direct channels are non-zero and either 2 or 3 cross
channels are zero, and if hij = hji = 0 for any one
{i, j} ∈ {1, 2, 3}, then C = Clinear = 2.

7) In all other cases, the linear capacity is either 1 or 1.5
for channels over Fpn with p > 3 (the specific cases for
each are identified in the proof).

Proof: Cases 1, 2, 3, 4, 6 are trivial. The remaining cases are
discussed below.
Case 5: For all these channel structures, it can be shown that
there always exists at least one {i, j} ∈ {1, 2, 3} such that
hij = hji = 0, and so only the sources {i, j} can be used
for transmission, leading to a sum rate of 2 being achievable.
Outer bound of 2 follows by removing all but one non-zero
cross-link.

Case 7:
For the achievability of sum rate of 1.5, consider the following:

1) All channels are from Fpn . For even n = 2l, we choose
beamforming matrices V ∈ F1×l

pn at some of the sources
and V ′ ∈ F1×l

pn at others, and precode n
2 = l symbols

x1
k, x

2
k, . . . , x

l
k ∈ Fp for each channel use, at all 3 sources.

We denote the l columns of V as v1,v2, . . . ,vl and those
of V ′ as v′1,v

′
2, . . . ,v

′
l. These beam forming matrices

would be chosen such that desired and interference sym-
bols are linearly independent over Fp at the destinations.
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2) When n is odd, 2 symbol extensions are used wherein the
beamforming matrix V ∈ F2×n

pn is used at some of the
sources and V ′ ∈ F2×n

pn at others. Over 2 channel uses,
n input symbols are precoded at each source. Columns
of V and V ′ are then chosen such that desired and
interference symbols are linearly independent over Fp at
all destinations. Linear independence arguments follow
similar to case of even n.

We describe only even n for various channel structures, for
brevity.

Let us first consider the setting where 3 cross channels are
zero. There are 5 distinct channel structures corresponding to
any three cross channels being zero, and all other channel
structures (

(
6
3

)
− 5 = 15) are isomorphic to them. These 5

channel structures are shown in Fig. 12. Of these, A, B, C
belong to Case 5, and are therefore trivial.
Structure D:
For this structure, interference from sources 1 and 2 need to
be aligned at destination 3. The normalized channel for this
structure is illustrated in Fig. 13.

Fig. 13: Normalized channel of structure D

Beam forming matrix V is used at sources 1 and 2, and V ′

is used at source 3. Signal spaces at 3 destinations are then
given by

S1 = [h̄11V ] = [h̄11v1, h̄11v2, . . . , h̄11vl] (160)
S2 = [h̄22V V ] = [h̄22v1, h̄22v2, . . . , h̄22vl,

v1, v2, . . . , vl] (161)
S3 = [h̄33V

′ V ] = [h̄33v
′
1, h̄33v

′
2, . . . , h̄33v

′
l,

v1, v2, . . . , vl] (162)

Consider signal space at destination 2. Let us choose v1 as
1, then if h̄22 /∈ Fp, [h̄22v1 v1] are linearly independent
over Fp. Now let us construct v2 such that 4 columns of S2,
[h̄22v1 v1 h̄22v2 v2] are linearly independent over Fp.

From S2, v2 /∈ A ,

{
(α1h̄22 + α2)v1

β1h̄22 + β2
:

α1, α2, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
(163)

Now we note that

|A| ≤ (p2 − 1)p2

p− 1
= p3 + p2 (164)

There are pn choices for v2, and since pn > (p3 + p2)
for all p, there exist choices for v2 such that condition (163)

holds. Choosing v2 from those, we note that 4 columns of S2

are linearly independent over Fp. We proceed recursively in a
similar manner, for choosing columns v3,v4, . . . ,vl−1 such
that 6, 8, . . . , 2(l − 1) columns are linearly independent over
Fp respectively, in S2.

Let us now discuss the last iteration wherein we choose col-
umn vl such that all n = 2l columns are linearly independent
over Fp in S2, given that 2l − 2 columns are already linearly
independent with appropriate choices of v1,v2, . . . ,vl−1.

From S2, vl /∈ A ,

{
1

β1h̄22 + β2
((α1h̄22 + α2)v1 +

(α3h̄22 + α4)v2 + · · ·+ (α2l−3h̄22 + α2l−2)vl−1) :

αi, β1, β2 ∈ Fp, i ∈ {1, . . . , 2l − 2}, (β1, β2) 6= (0, 0)

}
(165)

Now we note that

|A| ≤ (p2 − 1)p2l−2

p− 1
= p2l−1 + p2l−2 (166)

There are pn = p2l choices for vl, and since p2l >
(p2l−1 + p2l−2) for all p, there exist choices for vl such that
condition (165) holds. Choosing vl from those, we note that
all n columns of S2 are linearly independent over Fp. Also,
it can be noted that l = n

2 columns of V in S1 and S3 are
linearly independent over Fp. Destination 1 does not receive
any interference and so desired symbols are resolvable.

Let us now consider destination 3 where interference is
aligned in n

2 = l linearly independent columns of V . Since
source 3 does not cause interference anywhere, V ′ is trivially
chosen to be 1

h̄33
times the remaining n/2 basis vectors.

Hence, desired and interference symbols are linearly indepen-
dent at all destinations. Thus, sum rate of 3

2 is achieved for
structure D in Fig. 13, with channels over Fpn for all even n,
if h̄22 /∈ Fp.

Fraction of channels for which scheme achieves 3
2 sum rate

is given by

pn − p
pn

= 1− 1

pn−1
→ 1 for large p, n (167)

3
2 is also an information theoretic outer bound on sum rate for
structure D because the sum-rate of any two users is bounded
by 1. However, when h̄22 = 1, then arguing along the lines of
[32] we find that destination 3 can decode all three messages,
so that the information theoretic sum-capacity bound = 1. For
all other cases where h̄22 ∈ Fp but h̄22 /∈ {0, 1}, the linear
capacity is still 1 (because the linear capacity does not depend
on the scaling of channel coefficients by non-zero Fp elements)
but the information theoretic capacity is unknown.

Thus, structure D has linear capacity of 1.5 if h̄22 /∈ Fp,
and 1 otherwise.
Structure E: For structure E, the sum rate of 1.5 is achieved
even without channel knowledge at the sources. For example,
source 1 sends an Fpn symbol only over the first channel use
and stays quiet over the second channel use, source 2 sends
a Fpn symbol over the second channel use and remains quiet
over the first channel use, and source 3 repeats its Fpn symbol
over both channel uses. This allows each destination to decode
its desired symbols. The outer bound of 1.5 applies because



22

x1

x2

Clinear = 1.5 or 1C = Clinear = 2 Clinear = 1.5 or 1 Clinear = 1.5 or 1 Clinear = 1.5 or 1

Fig. 14: Distinct channel structures with 2 cross channels as 0

the sum-capacity of any two users is 1. Thus, structure E has
C = Clinear = 1.5.

Next let us consider cases where 2 cross channels are 0,
shown in Fig. 14. Structure F belongs to Case 5, so it is trivial.

Fig. 15: Normalized channel of structure G

Structure G: The normalized channel for this structure is
illustrated in Fig. 15. For this structure, signals from sources 1
and 2 need to be aligned at destination 3 and remain resolvable
at destination 2. Following the proof for structure D, this
can be done if h̄22 /∈ Fp. Similarly, signals from sources 1
and 3 need to align at destination 2 and remain resolvable at
destination 3. This can be done if h̄33 /∈ Fp. We choose V such
that both S2 = [h̄22V V ] and S3 = [h̄33V V ] are linearly
independent over Fp, which can be shown to be possible for all
p > 2. Thus, sum rate of 3

2 is achieved for structure G in Fig.
15, with channels over Fpn for all even n, if h̄22, h̄33 /∈ Fp.
The outer bound of 3

2 follows from the pair-wise bounds. If
all non-zero channels are equal to 1, then the argument of
[32] shows that one destination can decode all messages, i.e.,
C = Clinear = 1. In all other cases with non-zero h̄kk ∈ Fp
for any k = 2, 3, the linear capacity is still one because
the linear capacity is not affected by a scaling of channel
coefficients by non-zero constants in Fp. Thus structure G has
linear-scheme capacity of 3

2 if h̄kk /∈ Fp, k ∈ {2, 3}, and 1
otherwise.
Structure H:
The normalized channel for this structure is illustrated in Fig.
16. For this structure, signals from sources 1 and 2 need to be
aligned at destination 3 and remain resolvable at destination
2. Following the proof for structure D, this can be done if
h̄22 /∈ Fp. We choose V ′ such that both S1 = [h̄11V V ′] and

S3 = [h̄33V
′ V ] are linearly independent over Fp, which can

be shown to be possible for all p > 2. Thus, sum rate of 3
2 is

achieved for structure H in Fig. 16, with channels over Fpn for
all even n, if h̄22 /∈ Fp. The outer bound of 3

2 follows from the
pair-wise bounds. If all non-zero channels are equal to 1, then
the argument of [32] shows that one destination can decode all
messages, i.e., C = Clinear = 1. In all other cases with non-
zero h̄22 ∈ Fp, the linear capacity is still one because the linear
capacity is not affected by a scaling of channel coefficients by
non-zero constants in Fp. Thus structure H has linear-scheme
capacity of 3

2 if h̄22 /∈ Fp, and 1 otherwise.

Fig. 16: Normalized channel of structure H

Structure I:
The normalized channel for this structure is illustrated in Fig.
17. For this structure, signals from sources 1 and 3 need to be
aligned at destination 2 and remain resolvable at destination
1. Following the proof for structure D, this can be done if
h̄11 /∈ Fp. We choose V ′ such that both S2 = [h̄22V

′ V ] and
S3 = [h̄33V V ′] are linearly independent over Fp, which can
be shown to be possible for all p > 2. Thus, sum rate of 3

2 is
achieved for structure H in Fig. 17, with channels over Fpn for
all even n, if h̄11 /∈ Fp. The outer bound of 3

2 follows from the
pair-wise bounds. If all non-zero channels are equal to 1, then
the argument of [32] shows that one destination can decode all
messages, i.e., C = Clinear = 1. In all other cases with non-
zero h̄11 ∈ Fp, the linear capacity is still one because the linear
capacity is not affected by a scaling of channel coefficients by
non-zero constants in Fp. Thus structure I has linear-scheme
capacity of 3

2 if h̄11 /∈ Fp, and 1 otherwise.
Structure J:
The normalized channel for this structure is illustrated in Fig.
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Fig. 17: Normalized channel of structure I

18. For this structure, signals from sources 1 and 3 need to be
aligned at destination 2 but remain resolvable at destinations 1
and 3. Following the proof for structure D, this can be done if
h̄11, h̄33 /∈ Fp. We choose V such that both S1 = [h̄11V V ]
and S3 = [h̄33V V ] are linearly independent over Fp, which
can be shown to be possible for all p > 2. Thus, sum rate of 3

2
is achieved for structure J in Fig. 18, with channels over Fpn
for all even n, if h̄11, h̄33 /∈ Fp. The outer bound of 3

2 follows
from the pair-wise bounds. If all non-zero channels are equal
to 1, then the argument of [32] shows that one destination
can decode all messages, i.e., C = Clinear = 1. In all other
cases with non-zero h̄kk ∈ Fp for any k = 1, 3, the linear
capacity is still one because the linear capacity is not affected
by a scaling of channel coefficients by non-zero constants in
Fp. Thus structure J has linear-scheme capacity of 3

2 if h̄kk /∈
Fp, k ∈ {1, 3}, and 1 otherwise.

Fig. 18: Normalized channel of structure J

Finally, let us now consider the setting where only one cross
channel is zero.
Structure K:
The normalized channel for this structure is illustrated in Fig.
19. For this single channel structure, interference from sources
2 and 3 need to be aligned at destination 1, and interference
from sources 1 and 3 need to be aligned at destination 2.

Beam forming matrix V is used at all 3 sources. Signal
spaces at 3 destinations are then given by

S1 = [h̄11V V ] = [h̄11v1, h̄11v2, . . . , h̄11vl,

v1, v2, . . . , vl] (168)
S2 = [h̄22V V ] = [h̄22v1, h̄22v2, . . . , h̄22vl,

v1, v2, . . . , vl] (169)
S3 = [h̄33V V ] = [h̄33v1, h̄33v2, . . . , h̄33vl,

v1, v2, . . . , vl] (170)

Let us choose v1 as 1, then if h̄11, h̄22, h̄33 /∈ Fp, [h̄11v1 v1],
[h̄22v1 v1] and [h̄33v1 v1] are linearly independent over
Fp. Now let us construct v2 such that 4 columns of Sk, k ∈
{1, 2, 3} are linearly independent.

From Sk, v2 /∈ Ak ,

{
(α1h̄kk + α2)v1

β1h̄kk + β2
:

α1, α2, β1, β2 ∈ Fp, (β1, β2) 6= (0, 0)

}
, k ∈ {1, 2, 3}(171)

Now we note that

|Ak| ≤
(p2 − 1)p2

p− 1
= p3 + p2 (172)

|A1 ∪A2 ∪A3| ≤ 3(p3 + p2) (173)

There are pn choices for v2, and since pn > 3(p3 + p2)
for all p > 3, there exist choices for v2 such that all 3
conditions of (171) hold. Choosing v2 from those, we note
that 4 columns of Sk, k ∈ {1, 2, 3} are linearly independent
over Fp. We proceed recursively in a similar manner, for
choosing columns v3,v4, . . . ,vl−1 such that 6, 8, . . . , 2(l−1)
columns are linearly independent over Fp respectively, in
Sk, k ∈ {1, 2, 3}.

For the last iteration, we choose column vl such that
all n = 2l columns are linearly independent over Fp in
Sk, k ∈ {1, 2, 3}, given that 2l−2 columns are already linearly
independent with appropriate choices of v1,v2, . . . ,vl−1.

From Sk, vl /∈ Ak ,

{
1

β1h̄kk + β2

(
(α1h̄kk + α2)v1 +

(α3h̄kk + α4)v2 + · · ·+ (α2l−3h̄kk + α2l−2)vl−1

)
:

αi, β1, β2 ∈ Fp, i ∈ {1, . . . , 2l − 2},

(β1, β2) 6= (0, 0)

}
, k ∈ {1, 2, 3}(174)

Now we note that

|Ak| ≤
(p2 − 1)p2l−2

p− 1
= p2l−1 + p2l−2 (175)

|A1 ∪A2 ∪A3| ≤ 3(p2l−1 + p2l−2) (176)

There are pn = p2l choices for vl, and since p2l >
3(p2l−1 + p2l−2) for all p > 3, there exist choices for vl such
that conditions of (174) hold. Choosing vl from those, we note
that all n columns of S1, S2, S3 are linearly independent over
Fp.

Fig. 19: Normalized channel of structure K

Hence, desired and interference symbols are linearly inde-
pendent at all destinations. Thus, sum rate of 3

2 is achieved
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for structure K in Fig. 19, with channels over Fpn for all even
n, if h̄11, h̄22, h̄33 /∈ Fp.

Fraction of channels for which scheme achieves 3
2 sum rate

is given by

(
pn − p
pn

)3 = (1− 1

pn−1
)3 → 1 for large p, n (177)

The outer bound of 3
2 follows from the pair-wise bounds.

If all channels are equal to 1, then the argument of [32]
shows that one destination can decode all messages, i.e.,
C = Clinear = 1. In all other cases with non-zero h̄kk ∈ Fp
for any k, the linear capacity is still one because the linear
capacity is not affected by a scaling of channel coefficients by
non-zero constants in Fp. Thus structure K has linear-scheme
capacity of 3

2 if h̄kk /∈ Fp, k ∈ {1, 2, 3}, and 1 otherwise.
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