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Abstract

The index coding problem is studied from an interference alignment perspective providing new results
as well as new insights into, and generalizations of, previously known results. An equivalence is established
between the capacity of the multiple unicast index coding (where each message is desired by exactly one
receiver), and groupcast index coding (where a message can be desired by multiple receivers), which settles
the heretofore open question of insufficiency of linear codes for the multiple unicast index coding problem
by equivalence with groupcast settings where this question has previously been answered. Necessary and
sufficient conditions for the achievability of rate half per message in the index coding problem are shown
to be a natural consequence of interference alignment constraints, and generalizations to feasibility of
rate 1

L+1
per message when each destination desires at least L messages, are similarly obtained. Finally,

capacity optimal solutions are presented to a series of symmetric index coding problems inspired by the
local connectivity and local interference characteristics of wireless networks. The solutions are based on
vector linear coding.
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1 Introduction

Much progress in network information theory can be attributed to the pursuit of the capacity of simple-
to-describe canonical network communication models. Simplicity in the network communication models
often affords a clear formulation of techniques involved in the communication system. The focus of this
paper is the index coding problem which is arguably the simplest multiuser capacity problem because it
is a communication network that has only one link with finite capacity. Yet, this turns out to be the
proverbial case where appearances can be quite deceiving. More than a decade after it was introduced by
Birk and Kol in [1, 2], the index coding problem not only remains open, but also has been shown to include
as special cases a number of difficult problems in both wired and wireless settings — such as the general
multiple unicast problem with linear network coding [3], multi-way relay networks [4], and the topological
interference management problem in wireless networks [5, 6], to name a few. Remarkably, the index coding
problem is also the origin of the fundamental idea of interference alignment [2], which was re-discovered,
extensively studied and developed in a variety of forms in wireless networks [7, 8, 9]. Interference alignment
has recently found applications in network coding problems such as the distributed data storage exact repair
problem [10, 11] and the 3 unicast problem [12, 13]. In this paper, we attempt to bring this idea “home”, by
applying the understanding of the principles of interference alignment, into the original setting — the index
coding problem.

The essence of the index coding problem lies in its focus on a single bottleneck network. Having only
one link with finite capacity concentrates the challenge of network coding in one place, highlighting some of
the most fundamental, challenging, and surprising aspects of the network coding problem. Understanding
the role of a single bottleneck edge in a network when the rest of the network is composed only of trivial
links (of infinite capacity), is a natural stepping stone toward a broader understanding of communication
networks1. We start with a discussion of similarly motivated single-bottleneck settings for both wired and
wireless networks.

1.1 Single Bottleneck Wired Networks – Index Coding

Consider a general network coding setting shown in Figure 1(a) where the source nodes on the left communi-
cate with the destination nodes on the right through a network (possibly containing cycles) of intermediate
nodes connected via directed, orthogonal, noiseless, capacitated links. If only one link (shown in black) in
the intermediate network has finite (unit) capacity, and all the other links have infinite capacity, then the re-
maining problem is the index coding problem. Clearly, the only non-trivial message flows are those for which
every path between the source and the desired destination(s) must pass through the finite capacity link. All
other messages have either rate zero or infinity, and can be eliminated. The remaining network contains
three kinds of infinite capacity links in addition to the finite capacity link. First, the remaining source nodes
must connect to the transmitter of the finite capacity link via infinite capacity links. Second, the destination
nodes must connect to the receiver of the finite capacity link through infinite capacity links. Third, if there
are infinite capacity paths between any sources and their non-desired destinations, those paths are replaced
with infinite capacity links known as “antidote” links. An example is shown in Figure 1(b) where 5 messages
originate at the sources on the left and are desired by the destination nodes on the right. The bottleneck link
(finite capacity link) is shown at the top of the figure in black and carries a sequence of symbols from a finite
alphabet Sn ∈ Sn, which are chosen with full knowledge of all messages. The antidote links are shown in
red. Clearly, the best use of the antidote links, which have infinite capacity, is to convey all the information,
i.e., the messages, from the transmitters to the receivers of the antidote links. These antidotes comprise the
side information that makes the problem interesting and quite challenging in general. Each destination must

1The edge-removal problem introduced in [14, 15] is another intriguing open problem that seeks to understand the role of a
single edge in a network, and has been shown to be closely related to the general question of whether zero-error capacity and
ε-error capacity are the same for general network coding instances[16].

3It is worth noting that in some related works, the index coding problem is pictorially depicted using the side information
graph where the bottleneck link is not explicitly shown (See, for example, [17]). In contrast, our graphs explicitly show the
bottleneck link since we interpret the index coding problem as a special case of a network coding problem on a directed acyclic
graph.



Figure 1: (a) General network coding problem: If only one link (shown in black) in the intermediate network has
finite (unit) capacity, and all the other links have infinite capacity, then the remaining problem is the index coding
problem. (b) Example of an index coding setting3.

be able to decode its desired message based on the sequence of symbols sent over the bottleneck link and
the set of undesired messages available to it as antidotes.

Index coding can also be seen as “source coding with side information”, or as a broadcast channel with
cognitive receivers, i.e., where certain receivers have full knowledge of certain messages a-priori.

1.2 Single Bottleneck Wireless Networks – Wireless Index Coding

Consider a wireless network shown in Figure 2(a) comprised of the source nodes shown on the left, which
communicate with destination nodes shown on the right, through an intermediate network of relay nodes.
Depending on propagation path loss different pairs of nodes may be connected or disconnected. Because
this is a wireless setting, signals emerging from the same transmitter are broadcast, and signals arriving at
the same receiver interfere. All transmitters are subject to power constraint P , and generally the receivers
experience additive white Gaussian noise (AWGN) in addition to the superposition of fading signals from
connected transmitters. As an analogue to the index coding problem defined by a single bottleneck link, let
us assume only one of the receivers in the intermediate network experiences AWGN, e.g., of unit variance,
while all other receivers experience no noise. It means all the other receivers have infinite resolution of
the complex valued signals, essentially providing them infinite capacity links to their respective connected
transmitters. Eliminating messages that have infinite capacity paths between their sources and all their
desired destinations, what remains is the wireless index coding problem, introduced in [5]. Depending on the
wireless network topology, the resulting wireless index coding problem can in general be quite challenging.
The problem can be quite involved, for example, if the wireless network contains cycles that provide feedback
from the output of the bottleneck receiver to the distributed or partially cooperating nodes transmitting to
the bottleneck receiver. Fig. 2(b) shows a relatively simple example of the wireless index coding problem
that corresponds to the index coding problem of Fig. 1(b), in the sense that the capacity of the index coding



Figure 2: (a) Wireless network: If only one receiver (shown with incoming signals in black) in the intermediate
network has non-zero (unit) AWGN variance, and all the other receivers have zero noise (infinite capacity), then the
remaining problem is the wireless index coding problem. (b) Example of a wireless index coding setting.

problem maps directly to the degrees of freedom (DoF) of the wireless index coding problem. As we show
later in the paper (Section 4.3, Theorem 5,) the capacity per message of the index coding problem in Figure
1(b) is 2/5, as is the DoF value per message for the wireless index coding problem in Fig. 2(b), and in both
cases the “unit” for measurement is the capacity/DoF of the bottleneck link/receiver. The index coding
problem normalizes the bottleneck link capacity to unity, so that the rates of all the messages are measured
as multiples of the bottleneck link capacity. Similarly, the wireless index coding problem normalizes the
number of signal dimensions (DoF) available to the bottleneck receiver to unity, and the DoF of all the
messages are measured as multiples of the bottleneck DoF. As explained in [5], the relationship between
the index coding problem and the wireless index coding problem goes much further, and much more can be
said about their similarities and differences. For instance, if full cooperation is allowed between all sources
directly transmitting to the bottleneck receiver in a wireless index coding problem, the DoF of the resulting
network is the same as the capacity of the corresponding index coding problem (in their respective units).
The DoF of the wireless index coding problem are, in general, bounded above by the capacity of the index
coding problem. It also highlights the main difference between the index coding problem and the wireless
index coding problem — all sources are necessarily allowed to fully cooperate in the former because the
bottleneck transmitter has full knowledge of all messages, but not necessarily in the latter (depending on
the topology of the original network in Figure 2(a)). However, if the index coding problem has a capacity
optimal vector linear coding solution that can be translated to the complex field, then the same solution
may be applied in the wireless index coding problem as well. This is because vector linear solutions are
comprised of a superposition of separately encoded messages, and a superposition over complex field is
naturally provided by the wireless medium [5]. Somewhat surprisingly, this is a very common situation, e.g.,
all the instances of the index coding problems studied in this paper have capacity optimal vector linear coding
solutions that translate to the complex field, thereby simultaneously providing the DoF characterization for



the corresponding wireless index coding problem.
In the wireless index coding problem discussed above, the bottleneck is concentrated at one receiver,

lending the bottleneck a multiple access character. Another formulation of the wireless index coding problem
is also conceivable where the bottleneck may be concentrated at one transmitter, e.g., all receivers experience
additive noise and there is only one transmitter with finite power (all other transmitters have infinite power),
which would lend the bottleneck a broadcast character, and which could be a similarly interesting and
promising research avenue.

The motivation for studying single bottleneck networks in both wired and wireless settings is evident from
an information-theoretical perspective as a stepping stone to a broader understanding of communication
networks. What is surprising is that the index coding problem, in spite of its simple formulation, not only
already captures much of the complexity of the full-fledged network capacity problem, but also contains a
class of problems known as topological interference management [5] problems (TIM) which are of immediate
practical interest for cellular wireless networks. Indeed, it is the TIM setting that motivates most of the
instances of index coding that we solve in this work.

1.3 Topological Interference Management Problem

Consider, as an example, the cellular downlink setting shown in Figure 3(a) comprised of 5 partially overlap-
ping cells depicted as circles. Each cell (circle) contains a transmitter (base station) near its center, shown
as a black square, and 3 receivers (users), shown as white squares. Propagation path loss is modeled by
the assumption that each base station transmitter (black square) is only heard within the circular region
defining its own cell. This gives rise to the connectivity pattern where each transmitter can be heard by three
receivers and each receiver can hear three transmitters. The resulting wireless network connectivity is shown
in Figure 3(b) where the links show the non-zero channel coefficients. The knowledge of non-zero channel
coefficient values, which are assumed to be drawn from identical distributions, is not available to the (blind)
transmitters. Depending upon the message sets, e.g., whether each transmitter sends a message to only one
user in its cell, or whether each transmitter sends 3 independent messages to the 3 users in its cell, we have
the partially connected interference channel or X channel setting, respectively (More details are provided
in Sections 3.2 and 3.3). Since both settings will benefit significantly from interference alignment and no
knowledge of non-zero channel coefficient values is assumed, this is known as the topological interference
management problem [5].

Figure 3: Topological Interference Management problem: (a) Cellular layout governing the connectivity pattern, (b)
Locally connected wireless network representation, (c) Corresponding index coding problem

The key to the TIM problem lies in its close relationship to a corresponding index coding problem.



For the TIM problem of Figure 3(a) and Figure 3(b), the corresponding index coding problem is shown in
Figure 3(c). In the corresponding index coding problem, the graph connecting black (transmitter) and white
(receiver) nodes in Figure 3(c) is complementary to that in Figure 3(b), i.e., a black and white node pair is
connected in the index coding problem of Figure 3(c) by an antidote link if and only if it is not connected in
the locally connected network representation of Figure 3(b). Thus, antidote links which allow a receiver to
subtract from its received signal the contribution from the corresponding undesired messages, especially in
a superposition based coding scheme as must be the case in the TIM problem due to the distributed nature
of the source nodes and the additive nature of the wireless medium, play the same role as a zero channel
coefficient value in the local connectivity pattern. The main difference in the index coding problem is that
full cooperation between sources is allowed, which makes the index coding capacity an outer bound on the
DoF of the TIM setting. However, as we will see in this paper, optimal solutions to the TIM based index
coding problems that we study are based on vector linear coding and robust to the choice of the underlying
field as the real or complex field. An important implication is that, for the scenarios that we study, our
optimal solutions of the index coding problem automatically yield optimal solutions to the corresponding
TIM problem as well (See [5] for more details).

Finally, we note that the TIM problem has a natural counterpart in the network coding setting, which is a
blind linear network coding problem4. Consider, for example, a wired network where the intermediate nodes
perform random linear network coding, creating a linear channel matrix comprised of polynomials in the
network coding coefficients of the intermediate nodes. Recent work [12, 20, 13, 21] has investigated how to
exploit the knowledge of these effective channel matrices at the source nodes to achieve interference alignment
by linear precoding, in a manner that mimics the wireless interference channel. However, suppose that the
source nodes only know the end-to-end connectivity but do not know the channel coefficient values, e.g.,
because they do not keep track of all the network coding coefficients. Aside from the significant distinction
of working over finite fields, the resulting blind network coding problem is virtually identical to the TIM
problem, and is similarly related to a corresponding index coding problem. For instance, if we take the
graph of Figure 3(b) to represent the resulting connectivity of a blind network coding problem, with no
knowledge of the channel realizations at the transmitters, then the corresponding index coding problem is
shown in Figure 3(c). Solving this index coding problem will solve both the corresponding TIM problem as
well as the corresponding blind network coding problem.

The preceding discussion of closely related problems sheds light on the significance of the index coding
problem. In spite of having only one finite capacity link, the richness of the index coding problem is evident.
The complexity of index coding problem is further underscored in the result by Rouayheb et al. in [3] and
its generalization by Effros et. al. in [22], where an equivalence is established between the general network
coding problem restricted to linear codes, and the index coding problem. On the other hand, the relative
simplicity of the index coding problem setting does make this setting more tractable in certain respects. As
an example, we note that the equivalence of ε-error capacity and zero-error capacity, which remains open in
the general network coding problem, has been established for the index coding problem [16].

1.4 Organization of this paper

The rest of this paper is organized as follows. In Section 2, we formally describe the index coding problem.
In Section 3, we show that the index coding problem can, in fact, be viewed as problem in interference
alignment. We will use instances of index coding problems motivated by the TIM setting as examples to
establish this connection. In Section 4, we present the main results of our paper. The interference alignment
perspective of Section 3 serves as a common thread that ties together all the results of Section 4. We conclude
the main part of this paper with some interesting open questions in Section 5. We present proofs of the
results of Section 4 in Appendices A-E.

4It is important to distinguish our blind network coding setting from the non-coherent network coding setting (See, for
example, [18, 19].) In the former setting, we assume that the transmitters are unaware of the network coding co-efficients,
whereas the receivers have perfect knowledge of the coding co-efficient matrix. In the latter setting, neither transmitters nor
receivers have knowledge of the network coding co-efficients.



2 Index Coding – Problem Formulation

The index coding problem consists of a set of M independent messages

W = {W1,W2, . . . ,WM},

and a set of K destination nodes
D = {D1, D2, · · · , DK},

with the kth destination node Dk identified as

Dk = (Wk,Ak),

where Wk ⊆ W is the set of messages desired by Dk, the set Ak ⊂ W is comprised of the messages available
to destination Dk as side information (antidotes). The set of antidotes Ak satisfies Wk ∩ Ak = φ, i.e., a
destination node does not desire a message that is already available to it.

An (S, n,R) index coding scheme corresponds to the choice of a finite alphabet S of cardinality |S| > 1,
a coding function, f , and a decoding function gk,i, for each desired message Wi at each destination Dk. The
coding function f maps all the messages to the sequence of transmitted symbols

f(W1,W2, · · · ,WM ) = Sn

where Sn ∈ Sn is the sequence of symbols transmitted over n channel uses. Here, ∀m ∈ {1, 2, · · · ,M},
message Wm is a random variable uniformly distributed over the set

Wm ∈ {1, 2, · · · , |S|nRm},

and R ∈ RM+ is simply a rate vector
R = (R1, R2, · · · , RM )

that satisfies the condition that |S|nRm an integer for every m ∈ {1, 2, . . . ,M}. At each destination, Dk,
there is a decoding function for each desired message

gk,i(S
n,Ak) = Ŵk,i, ∀i such that Wi ∈ Wk.

The decoding is said to be in error if any desired message is decoded incorrectly. The probability of error is

Pe = 1− Prob[Ŵk,i = Wi, ∀i, k such that Wi ∈ Wk].

A rate tuple R = (R1, R2, . . . , RM ) ∈ RM+ is said to be achievable if for every ε, δ > 0 there exists a

(S, n, (R1, R2, · · · , RM )) coding scheme, for some S, n, such that ∀m ∈ {1, 2, . . . ,M}, Rm ≥ Rm − δ, and
the probability of error Pe ≤ ε. The capacity region of the index coding problem is defined as the set of all
achievable rate tuples (R1, R2, . . . , RM ) and is denoted by C.

As an example of the notation, in Figure 1(b), we have M = K = 5, W = {W1,W2, · · · ,W5},
D1 = ({W1}, {W5,W2}), D2 = ({W2}, {W1,W3}), D3 = ({W3}, {W2,W4}), D4 = ({W4}, {W3,W5}),
D5 = ({W5}, {W4,W1}).

The definition of capacity region presented above is in the classical sense of asymptotically vanishing
probability of error, also known as ε-error capacity, which can in general be larger than the zero-error
capacity where only achievable schemes with Pe = 0 are allowed. Even for networks comprised of noise-
less links, e.g., in the network coding problem, the equivalence of the two is not known. Remarkably, for
index coding, it has been shown by Langberg and Effros in [16] that the ε-error capacity is the same as the
zero-error capacity.

For a (n,S,R) coding scheme, the parameter n may be interpreted as the blocklength and S to be the
alphabet of coding. It is noteworthy that we could have chosen S to be an arbitrary fixed set above without



changing the capacity region. For instance, we can equivalently5 define the capacity region to be the set of
all rates (R1, R2, . . . , RM ) such that, for every ε, δ > 0, there exists a ({0, 1}, n, (R1, R2, . . . , RM )) coding
scheme, where Rm ≥ Rm − δ, whose probability of error smaller than ε. Nonetheless, we explicitly identify
the parameter S in our definitions above mainly because this parameter helps distinguish between linear and
non-linear coding schemes, or scalar and vector coding (See Definitions 2 and 3).

We refer to the general index coding problem statement presented above as the groupcast setting,
where each message may be desired by multiple destination nodes. This general term includes within its
scope both the multiple unicast setting where each message is desired by exactly one destination node, and
the multisource multicast (or simply, multicast) setting where each message is desired by all destination
nodes.

Notation: For any subset of messages W ⊂W we define the compact notation,

Wc 4
=W −W

as the set of messages inW that are not inW. Further, we use the compact notationWi,j = {Wi,Wj},Wi,j,k =
{Wi,Wj ,Wk}, etc. Also we define the compact notation, Ri1:L = Ri1 + Ri2 + . . . + RiL , K = {1, 2, . . . ,K}
and M = {1, 2, . . . ,M}

A few important classes of the index coding problem are formalized next.

Definition 1 —Multiple Unicast Index Coding
The index coding problem is called a multiple unicast index coding problem if and only if

∀k1, k2 ∈ K, k1 6= k2, Wk1 ∩Wk2 = φ (1)

In other words, a multiple unicast index coding problem is one where no message is desired by more than
one destination.

Definition 2 —Scalar Index Coding Scheme
An (S, n,R) index coding scheme is called a scalar coding scheme if and only if

R =

(
1

n
,

1

n
, · · · , 1

n

)
(2)

In other words, a scalar index coding scheme sends one symbol for each message over n channel uses.

Definition 3 — Linear Index Coding Scheme
A linear (S, n,R) index coding scheme, achieving the rate vector R =

(
P1

n ,
P2

n , · · · ,
PM

n

)
over n channel

uses, corresponds to a choice of

1. a finite field F = S as the alphabet

2. Vm ∈ Fn×Pm ,∀m ∈M as precoding matrices

3. Um,k ∈ FPm×n,∀m ∈M,∀k such that Wm ∈ Wk, as receiver combining matrices

such that the following properties are satisfied

Property 1: Um,kVi = 0, ∀m, i ∈M, k ∈ K such that m 6= i,Wm ∈ Wk,Wi /∈ Ak
Property 2: det (Um,kVm) 6= 0, ∀m ∈M, k ∈ K such that Wm ∈ Wk

where all operations are over F.

5This equivalence can be shown by “simulating” a different alphabet S over {0, 1} by accumulating several symbols together
and coding over them. Specifically a coding scheme of blocklength m over S can be simulated over {0, 1} over blocklength of
dm log2 |S|e through a one-to-one mapping between |S|m and {0, 1}n. The rate of such a coding scheme over {0, 1, } could be
smaller than the rate over S because of an integrality gap, but this gap will vanish as m→∞. We omit a formal proof of this
equivalence here for brevity. We note that a linear coding scheme over one alphabet, when mapped in this manner to another
alphabet, may however lead to a non-linear coding scheme over the latter alphabet.



The transmitted symbol sequence Sn ∈ Fn×1 in a linear index coding scheme is

Sn =

M∑
m=1

VmXm (3)

where Xm = (xm,1, xm,2, · · · , xm,Pm
)T ∈ FPm×1 is a Pm×1 vector representing Wm. In other words, message

Wm is split into Pm independent scalar streams, each of which carries one symbol from F, and is transmitted
along the corresponding column vectors (the “beamforming” vectors) of the precoding matrix for Vm. The
decoding operation for message Wm ∈ Wk, desired at destination Dk, is

X̂m = (Um,kVm)
−1

Um,k

(
Sn −

∑
Xi:Wi∈Ak

ViXi

)
. (4)

The above decoding operation can be interpreted as occurring in three steps. In the first step, the contribution
from undesired messages available as antidotes, Wi ∈ Ak, is eliminated from Sn, then in the second step,
the remaining undesired symbols are zero-forced by Property 1, and in the final step, the desired symbols
Xm are recovered by the invertibility of Um,kVm, which is guaranteed by Property 2.

Note that a linear encoding scheme, as explained above, is a zero-error encoding scheme. The linear
coding scheme described above is also called vector linear coding schemes. This includes the special case
where Pi = 1,∀i ∈ {1, 2, · · · ,M}, which is called a scalar linear encoding scheme.

2.1 Discussion on Index Coding Nomenclature

Our definitions and choice of nomenclature are motivated by commonly used of terminology in classical
network coding and information theory. However, the quantities defined here are sometimes referred to by
different names in some index coding literature. We discuss some of these differences here.

Symmetric Capacity

Consider an achievable rate point (R1, R2, . . . , RM ) and let R = minm∈{1,2,...,M}Rm. The quantity R is
often referred to in information theory literature as an achievable symmetric rate. The maximum achievable
symmetric rate is known as the symmetric capacity of the problem. Note that the quantity 1

R can be
interpreted as the average number of time slots required for all the destinations to get a message from S.
In much of the index coding literature, the minimum value of 1

R over the set of all achievable rates - or
equivalently, the reciprocal of the symmetric capacity - is the primary object of study and is often denoted
as β (e.g. [17, 23, 24, 25, 26]). Indeed, in these works, the index coding problem is formulated as one where
the goal is to minimize β, which is equivalent to determining the symmetric capacity of the problem.

Groupcast and Multiple Unicast Index Coding Problem

For the multiple unicast index coding problem, note that there is no loss of generality in assuming that
Wk = {Wk}, i.e., the kth destination intends to decode the kth message. Under this assumption, the directed
graph, whose vertex set is K and edge set is {(k, j) : j ∈ Ak, k ∈ K}, is known as the side information
graph of the index coding problem. Thus, a multiple unicast index coding problem can be equivalently
represented using its side information graph. In fact, as we shall discuss later in Section 4.1, references
[2, 27] describe an achievable rate for the index coding problem in terms of a certain functional of this side
information graph. To distinguish from the multiple unicast setting, the groupcast index coding problem is
sometimes referred to as index coding over hypergraphs. The motivation for this nomenclature comes from
[26], where the groupcast index coding problem was modeled via hypergraphs. We refer the interested reader
to the mentioned reference for details. In reference, [28], which is concurrent to our paper, the groupcast
setting is also referred to as bipartite index coding since the problem is modeled in the reference using
directed bipartite graphs. Finally, it is worth noting that the groupcast setting is also sometimes referred



to as multiple multicast in some network coding literature (See, for example, [29]). Our nomenclature of
groupcast, which describes a particular structure of the messages that generalizes the multiple unicast setting,
follows conventions in information theoretic literature where the message demand structure is often separated
from the physical communication scenario. Thus the term groupcast can be used in the context of various
network communication scenarios, such as wireless index coding. We use the term groupcast instead of the
term “multiple multicast” to avoid ambiguity, especially since the term multisource multicast (or simply,
multicast) is sometimes used to refer to the scenario where there are multiple sources, and every destination
intends to decode every one of the sources (see, for example, [30]).

3 Index Coding as an Interference Alignment Problem

In wireless communications, interference is a natural phenomenon because of the broadcast nature of the
medium. In wireline network communications, interference occurs because of multiple data streams con-
tending for a common link. Indeed this scenario is best exemplified by the index coding problem where a
single bottleneck link is shared by all data streams. In wireless systems, interference alignment provides
surprising gains by exploiting the inherent diversity in distributed linear systems - i.e., the notion that every
receiver sees a different alignment of signal dimensions, and therefore signals can be designed to align at one
receiver and stay separable at a different receiver. In the index coding problem too, we exploit the inherent
diversity that exists among the receivers because the set of antidotes is different for different receivers. This
diversity ensures that even if two signals align along the bottleneck link, they can be decoded at the desired
receivers if they have the appropriate set of antidotes. This alignment frees up the available dimensions (on
the bottleneck link) for other messages and hence makes the system more efficient.

To better understand the role of interference alignment in the index coding problem, let us examine
a (n,S,R) linear index coding scheme, where R = (P1

n ,
P2

n , . . . ,
PM

n ). For simplicity of exposition, let us
consider a symmetric rate setting, i.e., Pm = P,∀m ∈ M. For any subset of the set of messages B ⊂ W, we
use the following notation.

VB = {v ∈ Fn : v is a column vector of Vi, i ∈ B},

i.e., VB is the set of all column vectors which belong to at least one matrix Vi : i ∈ B.
Receiver k receives a n dimensional vector Sn which is a linear combination of the MP column vectors

of VW . If all the MP column vectors are linearly independent, then, clearly the desired signal is resolvable
and a symmetric rate of 1/M per message is achievable. Note that this is the rate achieved by “routing”,
where each of the M messages occupies P time-slots that do not overlap with the time-slots occupied by any
of the remaining M − 1 messages6. The routing solution is in fact one such realization of VW . In general,
however, the messages may be resolvable even if the MP column vectors of VW are linearly dependent,
because of the presence of antidotes. In fact, a rate greater than 1/M is possible only by making the column
vectors of VW linearly dependent. Consider, for instance a receiver, say destination Dk, that wants to decode
messages Wk and has antidotes for messages Ak. It receives the linear combination of MP vectors in an n
dimensional space, of which it can cancel the impact of |Ak|P vectors, VAk

, using the antidotes. Therefore,
from the perspective of destination Dk, it observes (after cancellation), the linear combination of |Wk|P
desired vectors along VWk

, and (M − |Ak| − |Wk|)P interfering vectors along the columns of VW−(Ak∪Wk).
A necessary condition for the resolvability of messages Wk at destination Dk can be expressed as

span(VWk
) ∩ span(VW−(Ak∪Wk)) = {0}. (5)

This means that a necessary condition for resolvability at destination Dk, is that the dimension of interference
span(VW−(Ak∪Wk)) should be smaller than n−|Wk|P (because the vectors are all observed in an n dimensional
space). Clearly, if n−|Wk|P < |W − (Ak ∪Wk)|P , then, the interfering vectors need to align in an n−|Wk|P
dimensional space.

6More formally, routing involves partitioning the column vectors of the MP ×MP identity matrix into M partitions of P
vectors each, and forming a linear index coding scheme by respectively setting the precoding matrix of each message to the set
of column vectors of one of these M partitions.



Next we illustrate the role of interference alignment in index coding, with a series of examples presented
in increasing order of complexity.

3.1 Example 1: Scalar linear index coding with One-to-One Alignment

Figure 4: A simple example where interference alignment is useful in the index coding problem. In the example, the
alignment is realized with V2 = V3. The alignment enables transmission of 3 scalars to the 3 corresponding users in
a 2 dimensional vector space, ensuring that a rate of 1/2 is achievable. The field F can be chosen arbitrarily.

A simple interference alignment solution for an index coding problem is demonstrated in Figure 4, where
K = 3 and each user sends P = 1 vector. Because of alignment of V2 and V3, user 1 is able to resolve
x1. For instance, one may choose V1 = [0, 1]T , V2 = V3 = [1, 0]T , so that the two transmitted symbols
on the bottleneck link are S2 = (S1, S2) = (x2 + x3, x1), from which each destination is able to recover its
desired message. Since only one symbol is sent per message, this is an example of a scalar linear index coding
solution. Furthermore, since the alignment of vectors takes place in a one-to-one fashion, i.e., V2 aligns with
V3, we refer to this as a one-to-one alignment solution, to be distinguished from the subspace alignment
solutions to be presented soon.

3.2 Example 2: Vector linear index coding with One-to-One Alignment

The next index coding example comes from the TIM setting shown in Figure 3(a), (b), (c). Depending upon
whether each base station transmitter has a message only for one corresponding receiver, or an independent
message for each of the receivers that are within-range, we have the interference channel or the X channel
setting, respectively. Here we consider the interference channel setting.

The interference channel setting means that base station (source) i, 1 ≤ i ≤ 5, has only one message,
Wi, for its corresponding receiver (destination) i. In the corresponding index coding problem, as in the
interference channel setting, there are M = 5 distinct messages and K = 5 destinations. The goal is to
achieve a symmetric rate of 2

5 per message, which is also the capacity optimal solution. The problem is
essentially identical to the setting considered in [26] to show that vector linear index coding outperforms
scalar linear index coding. The achievable scheme is a vector linear scheme operating over 5 channel uses.
The precoding vectors Vi, 1 ≤ i ≤ 5 are 5×2 matrices and Xi is a 2×1 vector Xi = [xi,1, xi,2]T representing
Wi. Therefore, the transmitted symbol sequence S5 is

S5 =

5∑
i=1

ViXi. (6)



Figure 5: Index coding problem corresponding to a TIM interference channel setting, (a) Desired message and
antidote sets, (b) Capacity optimal solution shows the 5 dimensional S5 space, along which 2 symbols per message
are sent with one-to-one pairwise alignments along the 5 orthogonal basis vectors. The field F can be chosen arbitrarily.

To see why interference alignment is necessary, note that each destination has access to the 5-dimensional
symbol S5, and it also observes 2 messages as cognitive information. After removing the known streams from
S5 the receiver is left with 6 remaining unknown symbols in a 5-dimensional space. Since each destination is
interested in two desired streams which span a 2-dimensional space, the remaining 4 streams that constitute
interference must align in way that they occupy at most a 3-dimensional space.

Suppose T1,T2,T3,T4,T5 are 5 linearly independent vectors over the 5-dimensional space. These 5
vectors can be chosen to be the columns of 5 × 5 identity matrix. At destination D1, messages W2 and
W5, each composed of two independent scalar streams, should align such that they together occupy a 3-
dimensional space. One way to do so is to perfectly align the precoding vector of one of two streams of W2

with one of two streams of W5, e.g., V2,2 = V5,1 = T1. Similarly, in order to satisfy the alignment constraint
at all the destinations, the precoding vectors are chosen to be

V2,2 = V5,1 = T1, V5,2 = V3,1 = T2, V3,2 = V1,1 = T3, V1,2 = V4,1 = T4, V4,2 = V2,1 = T5. (7)

Thus, the 4 undesired signal vectors are aligned at each destination such that they occupy only 3 dimen-
sions. Now what we need to prove is the resolvability of desired messages at the corresponding destinations.
They are resolvable because at each destination Di, the desired messages are received in a space VWi that is



linearly independent from the space of interfering messages denoted as Ii.

VW1 =


0 0
0 0
1 0
0 1
0 0

 , I1 =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

 VW2
=


0 1
0 0
0 0
0 0
1 0

 , I2 =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0



VW3
=


0 0
1 0
0 1
0 0
0 0

 , I3 =


1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

 VW4
=


0 0
0 0
0 0
1 0
0 1

 , I4 =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0



VW5 =


1 0
0 1
0 0
0 0
0 0

 , I5 =


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (8)

Finally, if we choose the receiver combining matrices as follows, we can easily verify that both property 1
and property 2 are satisfied

At destination D1: U1,1 =

[
0 0 1 0 0
0 0 0 1 0

]
, At destination D2: U2,2 =

[
0 0 0 0 1
1 0 0 0 0

]
At destination D3: U3,3 =

[
0 1 0 0 0
0 0 1 0 0

]
, At destination D4: U4,4 =

[
0 0 0 1 0
0 0 0 0 1

]
At destination D5: U5,5 =

[
1 0 0 0 0
0 1 0 0 0

]
(9)

Note that the field can be chosen arbitrarily, i.e., any choice of F works for the linear solution presented above.
The solution also translates to the real or complex fields, thereby establishing the DoF for the corresponding
TIM problem as 2/5 per message (See [5] for more details).

3.3 Example 3: Scalar linear index coding with Subspace Alignment

Like the previous example, this example also corresponds to the TIM problem in Fig. 3(a),(b),(c). The
difference is in the message sets. While in the previous example, each base station served only one receiver,
here we assume that each base station has 3 independent messages, one for each of the 3 receivers that are
within receiving range of the base station. In the parlance of wireless networks, while the previous setting
is an interference network, the current setting is an X network. In an X network, there is an independent
message to be communicated between each transmitter-receiver pair that are within range of each other, i.e.,
have a non-zero channel coefficient between them.

The index coding problem for the X network setting is also well defined. There is an independent message
between each source and destination pair that are not connected via an antidote link. The specific index
coding problem that we solve in this example is shown in Figure 6. Notice that an X network setting is a
mulitple unicast setting, since each message has a unique source and a unique destination. It is also sometimes
referred to as the all unicast setting, since here all possible non-trivial unicast flows are simultaneously active
(the unicast flows between source destination pairs connected by infinite capacity antidote links are ignored
because they trivially have infinite rate). Also note that as always it is possible, without loss of generality, to
represent this index coding problem with only one message per source and only one message per destination
by increasing the number of sources and destinations, but we prefer the compact representation shown in
Figure 6 which directly reflects the X channel setting. X networks often lead to interesting interference
alignment problems. Indeed, that is the case with this example as well, where one-to-one alignment does not



suffice and the optimal index coding scheme is a scalar linear subspace alignment scheme. Next we proceed
to describe the alignment solution.

Figure 6: Index coding problem corresponding to a TIM X channel setting, (a) Desired message and antidote sets,
(b) Capacity optimal solution shows the 6 dimensional S6 space, along which 15 symbols are sent. The field F can
be chosen arbitrarily.

There are M = 15 distinct messages and K = 5 destinations. Each black square on the left is a base
station (source) sending 3 distinct messages. Base station (source) i, 1 ≤ i ≤ 4 sends messages W3i+1:3i+3

and the 5-th base station sends W1:3. We have

W1 = {W3,5,7}, A1 = {W1,2,4,6,8,9 ∪W1}c

W2 = {W6,8,10}, A2 = {W4,5,7,9,11,12 ∪W2}c

W3 = {W9,11,13}, A3 = {W7,8,10,12,14,15 ∪W3}c

W4 = {W12,14,1}, A4 = {W10,11,13,15,2,3 ∪W4}c

W5 = {W15,2,4}, A5 = {W13,14,1,3,5,6 ∪W5}c

Our goal is to achieve the symmetric rate of 1
6 per message, which is also the capacity of this network (the

outer bound follows from a subsequent solution of a broader class of X networks, presented in Section 4.3.3).
The achievable scheme is a scalar linear achievable scheme over 6 channel uses and hence the precoding
vectors Vi, 1 ≤ i ≤ 15, are 6× 1 vectors. Therefore, the transmitted symbol sequence S6 is

S6 =

15∑
i=1

Vixi (10)

where the scalar symbol xi represents message Wi. To see why interference alignment is necessary, note that
each destination has access to the 6-dimensional symbol S6, and it also observes 6 messages as cognitive
information. After removing the known symbols from S6 the receiver is left with 9 remaining unknown
symbols in a 6-dimensional space. Since each destination is interested in 3 desired symbols, they must
occupy a 3-dimensional space, leaving only 3 dimensions within which the remaining 6 undesired symbols
that constitute interference, must align.

Suppose T1,T2,T3,T4,T5,T6 are 6 linearly independent vectors over 6-dimensional space. These 6
vectors can be chosen to be the columns of 6× 6 identity matrix. Since W3,5,7 are desired at destination D1,
they should span a 3-dimensional space and therefore are sent over 3 linearly independent vectors T1,T2,T3.
On the other hand, W2,4 are the interfering messages at destination D1 and both are desired at destination
D5. So these two messages should be sent over vectors that are linearly independent of each other and



linearly independent from T1,T2,T3. Therefore, we send W2,W4 over T4,T5, respectively. Also W1 is
desired at destination 4 and is considered as an interfering message at both destination D1 and destination
D5. So W1 should be sent over a vector that is linearly independent from T1, . . . ,T5 and is chosen to be
sent along T6.

Interfering messages W1,W2,W4 occupy a 3-dimensional space at destination D1. The remaining inter-
fering messages at destination D1, i.e., W6,8,9, should be sent along precoding vectors chosen such that they
remain in the same span as span(T4,T5,T6), i.e.,

span(V6,V8,V9) ∈ span(T4,T5,T6) (11)

One way to satisfy (11) is by choosing V6 = T6, V9 = T5. The remaining precoding vector is designed later
to satisfy the following

At destination D1 : span(V8) ∈ span(T4,T5,T6) (12)

Similarly, to satisfy the requirement of aligning interfering messages in 3-dimensional space at different
destinations, we design the precoding vectors as follows:

At destination D2 : span(V11) ∈ span(T2,T3,T5) (13)

At destination D3 : span(V14) ∈ span(V8,T3,V10) (14)

At destination D4 : span(V2) = span(T4) ∈ span(V11,V10,T1) (15)

At destination D5 : span(V5) = span(T2) ∈ span(V14,T1,T6) (16)

V12 = T3, V15 = V10, V13 = T1 (17)

leading to the formulation

V8 = a1T4 + a2T5 + a3T6 (18)

V11 = b1T2 + b2T3 + b3T5 (19)

V10 = c1V14 + c2T3 + c3V8 (20)

V10 = d1V11 + d2T1 + d3T4 (21)

V14 = e1T1 + e2T2 + e3T6 (22)

where a1, b1, . . . , d3, e3 are linear combination coefficients. In order to satisfy (18)-(22), the only thing that
restricts us from choosing the linear combination coefficients to be random is that V10 should satisfy both
(20) and (21). If we substitute from (18),(19) and (22) into (20) and (21), V10 should satisfy the following
two equations

V10 = c1e1T1 + c1e2T2 + c2T3 + c3a1T4 + c3a2T5 + (c3a3 + c1e3)T6 (23)

V10 = d2T1 + d1b1T2 + d1b2T3 + d3T4 + d1b3T5 (24)

To satisfy (23) and (24), we have the following

d2 = c1e1 (25)

d1b1 = c1e2 (26)

d1b2 = c2 (27)

d3 = c3a1 (28)

d1b3 = c3a2 (29)

c3a3 + c1e3 = 0 (30)

Clearly, there are many solutions. One of the solutions for these system of nonlinear polynomial equations
is a1 = a2 = a3 = b1 = b2 = c1 = c2 = d1 = d2 = e1 = e2 = e3 = 1, b3 = c3 = d3 = −1, according to which,



the precoding vectors are chosen as follows

V8 = T4 + T5 + T6

V11 = T2 + T3 −T5

V14 = T1 + T2 + T6

V10 = T1 + T2 + T3 −T4 −T5

Note that this is not a one-to-one alignment solution, e.g., V8 does not align with T4,T5,T6 individually.
In fact it is pairwise linearly independent of all three. V8 aligns only within the subspace spanned by
T4,T5,T6. This is referred to as subspace alignment.

After satisfying all the alignment constraints, we need to prove the resolvability of desired messages at
the corresponding destinations. They are resolvable because at each destination Di, the desired messages
are received in a space denoted as VWi

which is linearly independent from the space of interfering messages,
Ii.

VW1
= [V3 V5 V7] =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 , I1 =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



VW2
= [V6 V8 V10] =


0 0 1
0 0 1
0 0 1
0 1 −1
0 1 −1
1 1 0

 , I2 =


0 0 0
1 0 0
0 1 0
0 0 0
0 0 1
0 0 0



VW3 = [V9 V11 V13] =


0 0 1
0 1 0
0 1 0
0 0 0
1 −1 0
0 0 0

 , I3 =


0 0 1
0 0 1
0 1 0
1 0 0
1 0 0
1 0 1



VW4 = [V12 V14 V1] =


0 1 0
0 1 0
1 0 0
0 0 0
0 0 0
0 1 1

 , I4 =


1 0 0
0 0 1
0 0 1
0 1 0
0 0 −1
0 0 0



VW5
= [V15 V2 V4] =


1 0 0
1 0 0
1 0 0
−1 1 0
−1 0 1
0 0 0

 , I5 =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1


Finally, the receiver combining matrices are chosen as follows, so that both property 1 and property 2 are
satisfied

At destination D1: U3,1 = [1 0 0 0 0 0], U5,1 = [0 1 0 0 0 0], U7,1 = [0 0 1 0 0 0]

At destination D2: U6,2 = [−1 0 0 − 1 0 1], U8,2 = [1 0 0 1 0 0], U10,2 = [1 0 0 0 0 0]



At destination D3: U9,3 = [0 1 0 0 1 − 1], U11,3 = [0 1 0 1 0 − 1], U13,3 = [1 0 0 1 0 − 1]

At destination D4: U12,4 = [0 0 1 0 1 0], U14,4 = [0 1 0 0 1 0], U1,4 = [0 − 1 0 0 − 1 1]

At destination D5: U15,5 = [0 0 1 0 0 0], U2,5 = [0 0 1 1 0 0], U4,5 = [0 0 1 0 1 0].

Note that the field can be chosen arbitrarily, i.e., any choice of F works for the linear solution presented above.
The solution also translates to the real or complex fields, thereby establishing the DoF for the corresponding
TIM problem as 1/6 per message.

4 Background and Results

In this section we present the results of this work along with the relevant background comprised of related
prior work. In particular, we demonstrate the power of the interference alignment alignment perspective,
which was described in the previous section, through the following results.

1. Our first result settles an open question related to the sufficiency of linear coding for multiple unicast
index coding problems. We show in Theorem 1 in Section 4.1 that linear codes are insufficient for the
multiple unicast index coding problem.

2. In our second main result presented in Theorem 3 in Section 4.2, we explicitly characterize the index
coding scenarios where a rate of 1

L+1 per message is achievable in index coding scenarios where each
destination desires to decode at least L messages. Our result generalizes a result of Blasiak et. al. [17],
where the acheivability of a rate of 1/2 was characterized.

3. In Theorems 5 and 6 presented in Section 4.3, we solve the index coding problem for certain sym-
metric antidote structures, some of which are motivated by applications to topological interference
management.

4.1 Insufficiency of Linear Codes for Multiple Unicast Index Coding

The index coding problem was introduced in the multiple unicast setting by Birk and Kol in [2] and subse-
quently studied by Bar-Yossef et al. in [31], where the rate achievable by the optimal scalar linear code was
related to a graph functional that they called the minrank of the graph. For a fixed finite field, the minrank
of a graph G = (V,E) is defined as follows: An |E| × |E| matrix A = (ai,j) over the finite field is said to fit
graph G = (V,E) if ai,i 6= 0, and ai,j = 0 whenever (i, j) is not an edge of the side information graph. It was
recognized in [2, 31] that the reciprocal of the symmetric rate achievable by the optimal scalar linear code
over field F is equal to the minrank of the side information graph evaluated over F7. Algorithms for finding or
approximating the minrank function are proposed in [32] and [23]. Haviv and Langberg in [24] investigated
the minranks of random digraphs. Within the class of scalar index coding schemes, the insufficiency of linear
codes was established by Lubetzky and Stav in [25]. Alon et al. further established the sub-optimality of
scalar linear solutions in [26] by highlighting the benefits of vector linear coding. Since vector linear coding
is a more powerful form of linear coding than scalar linear coding, its optimality relative to non-linear coding
schemes has been a topic of great interest. This line of work has produced a series of results in general
contexts that have progressively closed in on the index coding problem. The series of breakthroughs started
with the work of Dougherty et al. in [33] who used the connections between the network coding problem
and representability of matroids to establish a gap between vector linear coding and non-linear coding for
the multiple unicast network coding problem. However, the gap result of Dougherty et al. did not apply to
the index coding problem which is a special case of the network coding problem. Building upon the work
of [33], Rouayheb et al. established connections between the representability of matroids and the problem
of groupcast index coding [3]. Most recently, Blasiak et al. further developed this relationship in [34], and
used the construction of lexicographic products of graphs to show that for the problem of groupcast index

7The connection of the achievable rate to the minrank of the graph was first shown in the context of coding over the binary
field in [2]. An extension of this concept to an arbitrary finite field was described in [31].



coding, vector linear codes are strictly out-performed by non-linear codes. However, the gap result for the
problem of groupcast index coding, does not apply to the multiple unicast index coding problem. Hence, in
the original setting of multiple unicast index coding, which is also the most commonly studied form of index
coding, the optimality of linear codes remains open.

Our first result, presented in Theorem 1, settles this issue.

Theorem 1 Linear coding is insufficient to achieve the capacity region of the multiple unicast index coding
problem.

The proof of Theorem 1 is presented in Appendix A. The key to this result is the construction of an
equivalent multiple unicast problem for an arbitrary groupcast setting. Loosely speaking, this equivalent
multiple unicast setting has the following two properties:

• Any rate that is achievable with linear coding in the groupcast setting is also achievable with linear
coding in the multiple-unicast setting and vice-versa.

• Any rate achievable in the groupcast setting (using any achievable scheme including possibly non-linear
strategies) is achievable in the multiple unicast setting8.

Since [34] has a construction of a problem of groupcast index coding where linear coding schemes are
insufficient, the above conditions imply that linear coding is insufficient in the equivalent multiple unicast
setting as well. Our equivalent multiple unicast construction is described formally next (See Construction
1). The above two properties are stated formally in Theorem 2. In the sequel, the overline notation is used
to describe entities in the multiple unicast index coding setting (for example, a destination in the multiple
unicast setting is denoted as Di,j .).

The basic idea of our construction of the equivalent multiple unicast index coding problem from a group-
cast index coding problem is to replace each groupcast message that is desired by multiple destinations in the
groupcast setting, with a new set of independent messages in the multiple unicast setting. Specifically, in the
multiple unicast construction, there is one independent message for each destination that originally desires
the groupcast message, implying that, as required for a multiple unicast setting, no message is required by
more than one destination. The equivalent multiple unicast construction has, in addition to the destinations
in the original groupcast setting, one auxiliary destination corresponding to each groupcast message. Thus,
the number of destinations in the multiple unicast construction is equal to the number of destinations in the
original groupcast setting plus the number of messages in the original groupcast setting. We next present a
formal description of our equivalent multiple unicast construction (Construction 1). Later, we state Theorem
2 and provide an intuitive overview of the proof, which uses the interference alignment perspective.

Construction 1 Consider an arbitrary problem of groupcast index coding where there are M messages and
K destination nodes. Without loss of generality9, we assume that

• each message is desired by L destinations, and

• each destination desires exactly one message, so that K = LM .

In this index coding problem, the set of messages, the set of destinations, and the set of antidotes are
respectively denoted by W,D, {Ak : k = 1, 2, . . . ,K}, where

Dk = ({Wm},Ak),m = dk/Le
8Note that this property goes only one way, i.e., we show that an arbitrary achievable scheme in the groupcast setting can be

translated to an achievable scheme in the multiple unicast setting. The question of whether a rate achievable via an arbitrary
coding scheme in the multiple unicast setting is also achievable in the groupcast setting is in fact an open problem. However
the property that we show suffices to establish the insufficiency of linear codes in the multiple unicast setting.

9There is no loss of generality in the first assumption because if there is a message desired by L′ < L destinations, then we
can add L − L′ virtual destinations with antidote sets identical to any of the L′ (original) destinations, and which desire the
appropriate subset of the messages desired by the original destinations. Similarly, there is no loss of generality in the second
assumption because if a destination desires multiple messages, it can be equivalently replaced by multiple copies of itself, each
interested in only one of the originally desired messages.



We now construct an equivalent multiple unicast index coding problem as follows. The multiple unicast
setting has LM+M messages and K+M destinations. In this multiple unicast index coding problem, denote
the messages as

W = {W 1,0,W 1,1,W 1,2, . . . ,W 1,L,W 2,0,W 2,1, . . . ,W 2,L, . . . ,WM,0,WM,1,WM,2, . . . ,WM,L}.

The destinations in the multiple unicast system are denoted as

Di,j : i = 1, 2, . . . ,M, j = 0, 1, 2, . . . , L

and the antidotes are denoted as

Ai,j , i = 1, 2, . . . ,M, j = 0, 1, 2, . . . , L

so that destination Di,j = (W i,j ,Ai,j). The set of antidotes is

Ai,j =

{
A(i−1)L+j,∗ ∪W∗,0 ∪ {W i,l : l 6= j}, j 6= 0
W −Wi,∗, j = 0

}
, (31)

where

Ak,∗ = {Wm,l : Wm ∈ Ak, l = 0, 1, 2, . . . , L} (32)

W∗,0 = {W 1,0,W 2,0, · · · ,WM,0} (33)

Wk,∗ = {W k,0,W k,1, · · · ,W k,L}. (34)

In this construction, W∗,0 is the set of auxiliary messages and Wk,∗ is the set of independent messages
that has replaced message Wk. We provide here an informal description of the construction. We will use an
instance of the construction depicted in Fig. 7 to aid our description.

In the groupcast setting, a messageWm is desired to be decoded by L destinations, D(m−1)L+1, D(m−1)L+2, . . . , DmL.
The equivalent multiple unicast construction described above can be intuitively viewed as one obtained by
replacing the message Wm by L independent messages Wm,1,Wm,2, . . . ,Wm,L — each of these L messages
desired uniquely by one destination as required for a multiple unicast index coding problem. In the example
of Fig. 7, messages W 1,1 and W 1,2 are the independent messages that replace the groupcast message W1.
Similarly messages W 2,1 and W 2,2 are the independent messages that replace the groupcast message W2.

There is a correspondence between destination D(m−1)L+j in the groupcast setting, and destination Dm,j

in the equivalent multiple unicast setting. This correspondence is maintained in the antidote structure which
is carried over from the groupcast setting to the multiple unicast setting. In particular, if a message Wl

is present as an antidote at destination D(m−1)L+j in the groupcast setting, then, destination Dm,j has

W l,1,W l,2, . . . ,W l,L as antidotes in the multiple unicast setting (and vice-versa). Notice this in the example
of Fig. 7, where the destination D2,2 has both W 1,1 and W 1,2 as antidotes.

Destination Dm,l has as antidotes, all the messages Wm,l′ , l
′ 6= l. For instance, in the example of Fig. 7,

D1,1 has W 1,2 as an antidote, and D1,2 has W 1,1 as an antidote. Similarly, D2,1 has W 2,2 as an antidote,
and D2,2 has W 2,1 as an antidote.

Finally, there is one auxiliary destination in the multiple unicast setting corresponding to each groupcast
message. The mth auxiliary destination, denoted as Dm,0, intends to decode an independent message Wm,0,
which is available as an antidote to all other destinations (including other auxiliary destinations) except those
that desire to decode Wm,1,Wm,2, . . . ,Wm,L. The mth auxiliary destination itself has all the messages
as antidotes except Wm,0,Wm,1,Wm,2, . . . ,Wm,L. For instance, in Fig. 7, destination D1,0 has W2,∗ as
antidotes, and similarly, destination D2,0 has W1,∗ as antidotes. Auxilliary message W 1,0 is available as an
antidote for all the destinations D2,j , j = 0, 1, 2. A similar observation can be made for the availability of
message W 2,0.

To summarize the construction, it is instructive to observe the set of “interferers” seen by each destination
in the multiple unicast setting. The set of interfering messages (i.e., those messages for which the antidotes
are unavailable) seen by destination Dm,j for j 6= 0 are



Figure 7: (a) A groupcast index coding problem where M = 2, L = 2 and each message is desired by two destinations
(b) Equivalent multiple unicast index coding problem

• W l,1,W l,2, . . . ,W l,M for every l such that Wl interferes with D(m−1)L+j in the groupcast setting, and

• the auxiliary message Wm,0.

The set of interferers seen by auxiliary destination Dm,0 is {Wm,1,Wm,2, . . . ,Wm,L}. The next step that we
take, loosely speaking, is to take an index coding scheme that is able to resolve interference in the groupcast
setting, and show that an analogous scheme can resolve the interference in the equivalent multiple unicast
setting , and vice-versa. More specifically, we describe in Theorem 2, which is stated next, a relation between
the rates achievable in the groupcast setting and the equivalent multiple unicast construction.

Theorem 2 For every groupcast index coding problem, the equivalent multiple unicast index coding problem
specified by Construction 1, satisfies the following properties:

Property 1: Rate tuple R = (R1, R2, . . . RM ) is achievable in the groupcast setting only if the rate
tuple

Ri,j =

{
Ri, j 6= 0

1−Ri, j = 0

}
(35)

is achievable in the equivalent multiple unicast problem, for all i ∈ {1, 2, . . . ,M}, j ∈ {0, 1, . . . , L}.

Property 2: Rate tuple R = (R1, R2, . . . RM ) is achievable via linear coding in the groupcast setting
if and only if the rate tuple

Ri,j =

{
Ri, j 6= 0

1−Ri, j = 0

}
(36)

is achievable via linear coding in the multiple unicast problem, for all i ∈ {1, 2, . . . ,M}, j ∈ {0, 1, . . . , L}.

We present a formal proof of Theorem 2 in Appendix A, where we also show Theorem 1. Here, we summarize
the intuition behind the proof.

Consider a linear coding achievable scheme in the groupcast setting. We can use this scheme to build
a scheme over the multiple unicast setting as follows. All messages in the set {Wm,1,Wm,2, . . . ,Wm,L},
simultaneously use (i.e., align in) Vm - the nRm dimensional space used by Wm in the linear coding scheme
in the groupcast setting. The auxiliary message Wm,0 occupies a n(1 − Rm) dimensional space that is



linearly independent of Vm. This strategy leads to an achievable linear coding scheme in the multiple unicast
setting. To see this, observe that the multiple unicast setting essentially inherits the antidote structure from
the groupcast setting allowing destination Dm,j to cancel any interference from W l,j′ for l 6= m. This is
because this interference arrives along Vl and achievability in the groupcast setting implies that the vectors
Vm are linearly independent of all the vectors of Vl. Also, notice that in our multiple unicast construction,
a destination that desires one of the messages Wm,1,Wm,2, . . . ,Wm,L has the remaining L − 1 messages
from this set as antidotes, hence allowing these messages to align in Vm without interfering with each other.
Therefore, the only other interference that a destination Dm,j faces is from the auxiliary message Wm,0.
This interference can be cancelled because by design of our scheme, the auxiliary messages chose precoding
vectors that are linearly independent of the precoding vectors Vm used by message Wm,j . Using a similar
argument, it can be noted that all the auxiliary destinations can resolve their interference as well. This means
that any achievable scheme in the groupcast setting naturally translates to the multiple unicast setting as
per the rates prescribed by Theorem 2.

For the converse establishing equivalence (in Property 2), we need to show that a linear scheme achieving
rate Rm for messages Wm,1, . . . ,Wm,L and rate 1−Rm for message Wm,0 in the multiple unicast setting can
be translated to a linear scheme achieving rate Rm for message Wm in the groupcast setting. The auxiliary
destinations Dm,0 play a key role ensuring that the achievable scheme can be translated from the multiple
unicast to the groupcast setting. The message Wm,0 desired by auxiliary destination Dm,0 is provided
as an antidote to all the other destinations and therefore does not affect achievability of rate Rl for any
other destination l 6= m. Destination Dm,0 faces interference from the messages Wm,0,Wm,1, . . . ,Wm,L.
This means that the space occupied by Wm,0 has to be linearly independent of Wm,1,Wm,2, . . .Wm,L.
Now, if this message Wm,0 has a rate of 1 − Rm, then the interfering messages faced by this destination –
Wm,1,Wm,2, . . . ,Wm,L – have to together occupy a space of dimension nRm. This implies that if each of
these interfering messages have to achieve a rate Rm, they have to align (nearly) perfectly. This aligned space
can be used in the groupcast setting to encode Wm at rate Rm. Since, the groupcast setting and the multiple
unicast setting have essentially similar antidote structures (with the exception of auxiliary messages), the
use of this aligned space leads to an achievable scheme in the groupcast setting where the interference can
be resolved, hence establishing the desired equivalence. The equivalence for non-linear schemes (Property
1) is based on random coding arguments and superposition coding for auxiliary messages, according to the
detailed proof presented in Appendix A.

Remark 1 It is worth noting that our result only shows the insufficiency of linear coding in the multiple
unicast setting for achieving the entire capacity region. The question of whether linear coding suffices for
the achievability of the symmetric capacity, a quantity that is commonly studied in previous index coding
literature, for the multiple unicast setting remains open. This is because in Theorem 2, the rate of an
auxiliary message is not equal to the rate of the other corresponding messages.

4.2 Feasibility of Symmetric Rate 1
L+1

when ∀k, |Wk| ≥ L

Recall thatWk denotes the set of messages that are intended to be decoded at destination Dk. Suppose that
∀k, |Wk| ≥ L, then, without loss of generality we can assume that |Wk| = L, ∀ k ∈ K, i.e., each destination
is interested in decoding exactly L distinct messages, i.e., Wk = {Wk1 ,Wk2 , . . . ,WkL}, ∀ki ∈ M. This is
because destinations that wish to decode more than L messages can be split into multiple destinations with
the same set of antidotes, that each wish to decode a subset of size L of the original messages, such that the
union of these subsets is the original set of desired messages.

Note that the assumption |Wk| ≥ L implicitly means that M ≥ L. If M = L or M = L + 1, it is easy
to achieve rate bigger than or equal to 1

L+1 per message by sending each message separately at each time

and each destination can achieve rate 1
L or 1

L+1 , respectively. If M > L+ 1, intuitively, since all the desired
messages must pass through the bottleneck link of capacity 1 and all messages must simultaneously achieve
rate 1

L+1 each, then some overlap of signal dimensions within the bottleneck symbol Sn is unavoidable.
The interfering messages that are available through antidote links can be subtracted. The desired signals
consume a fraction L

L+1 of the capacity of the bottleneck link, which must be free from interference. This



leaves only the remaining 1
L+1 of the signal space for interference within which all interfering messages, each

of which carries rate 1
L+1 , should overlap nearly perfectly. The intuitive explanation is formalized for all

possible coding schemes through a Shannon theoretic framework.
The following terminology is introduced specifically for the setting where each message wants to achieve

rate 1
L+1 .

• Alignment Relation: We define a relation Wi
k↔ Wj as follows. Wi

k↔ Wj iff Wi /∈ Ak, Wi /∈ Wk,
Wj /∈ Ak and Wj /∈ Wk for k ∈ K and distinct indices i, j ∈ M. In the 1

L+1 rate feasibility problem,

the relation Wi
k↔Wj represents the understanding that Wi and Wj must align (into 1

L+1 of the signal

space within the bottleneck link in order to leave the remaining L
L+1 of the signal space for Wk).

• Alignment Subsets: The set of messagesW is partitioned into alignment subsets, created as follows.

We use the notation Wi ↔ Wj to mean that Wi
k↔ Wj for some k ∈ K. If Wi ↔ Wj , then both

Wi, Wj belong to the same alignment subset. Further, if Wi ↔ Wj and Wj ↔ Wm then Wi, Wj ,
Wm all belong to the same alignment subset. For the 1

L+1 rate feasibility problem, we expect that
the messages within an alignment subset will need to align almost perfectly within the bottleneck link
signal space.

As an example, consider an index coding problem shown in Fig. 8, whereW1 = {W1,W2},W2 = {W1,W3},W3 =

{W2,W4},A1 = Ø,A2 = {W4},A3 = {W3}. In this example, the alignment relations are W3
1↔ W4 and

the alignment subsets are {W1}, {W2}, {W3,W4} and the rate 1
3 per message is feasible. Note that since the

alignment subsets form a partition of the messages, they can be interpreted as dividing the messages into
equivalence classes.

Figure 8: A groupcast index coding problem with M = 4,K = 3 and L = 2 where the rate 1
3 per message is

feasible

Based on this definition for the alignment subset, we have the following theorem for the 1
L+1 rate feasi-

bility.

Theorem 3 The rate tuple R with R1 = R2 = ... = RM = 1
L+1 is not achievable in the groupcast index

coding problem where |Wk| = L, ∀ k ∈ K, if and only if there exist distinct indices i, j ∈ M such that Wi,
Wj belong to the same alignment subset and Wj ∈ Wk and Wi /∈ Ak for k ∈ K

The statement of Theorem 3 is intuitively interpreted as follows. If messages Wi, Wj belong to the same
alignment set then they should overlap almost perfectly. Because of their overlap, it is not possible to recover
one of them unless the other message is available as an antidote. If such an antidote is not available then
the achievability of rate 1

L+1 for every message becomes infeasible. Note that our feasibility condition refers



to all possible coding schemes and not just linear coding schemes. The theorem also implies the converse,
specifically, the following: if for every pair of messages Wi,Wj that lie in the same alignment subset, a
destination that desires one of these messages has the other as an antidote, then a rate of 1

L+1 is achievable.
In addition, since an alignment subset can have more than one member only if M > L+1, it is automatically
implied by the theorem that if M = L or if M = L + 1, then the rate tuple R1 = R2 = . . . RM = 1

L+1 is
achievable. A proof of Theorem 3 is presented in Appendix B.

As a special case of Theorem 3, for L = 1, we recover the feasibility condition for achievability of rate
half per message, previously obtained by Blasiak et al. in [17].

Corollary 1 The rate tuple R with R1 = R2 = ... = RM = 1
2 is not achievable in the groupcast index coding

problem where each destination desires only one message, if and only if there exist distinct indices i, j ∈ K
such that Wi, Wj belong to the same alignment subset and {Wj} =Wk and Wi /∈ Ak for some k ∈ K.

The rate-half feasibility condition of Corollary 1 has previously been presented by Blasiak et al. in
[17] using graph theoretic terminology which involves notions such as almost-alternating cycles and graph-
compatible functions. While the two results are essentially identical, viewing the problem through the lens
of interference alignment allows a more intuitively transparent statement in terms of alignment subsets. It
is also worth comparing the feasibility condition of Corollary 1 to the graph coloring based achievable rate
of [17]. The authors of [17] note that the reciprocal of the fractional clique cover of the side information
graph also yields an achievable symmetric rate for the multiple unicast index coding problem. However, as
also noted in the reference, this achieved rate is not tight. Here, we simply remark that the fractional clique
cover based approach does not suffice for achievability, even for feasibility of a rate of 1/2. For example,
in an index coding problem with three users and messages where the kth destination intends to decode Wk

with antidotes A1 = {W1},A2 = {W3},A3 = {W1}, the fractional clique cover based solution yields a rate
of 1/3, whereas a rate of 1/2 is achievable as per Corollary 1.

While the feasibility conditions are not limited to linear schemes, remarkably, linear coding is sufficient
for achievability for feasible settings. The following theorem further elaborates on the linear coding scheme
and the required field size.

Theorem 4 Whenever rate half is feasible according to Corollary 1, it can be achieved through:

1. scalar linear coding over 2 channel uses if the finite field is large enough, specifically, |F| ≥ Z, or

2. vector linear coding over a given finite field F if the number of channel uses n is large enough, specifi-
cally, n/2 ≥ log|F| Z and n is even,

where Z is the number of alignment subsets.

Proof: From the detailed proof of achievability of Theorem 3 presented in Appendix B.1, it is evident that
what is needed for half-rate achievability is simply a one-to-one mapping, from each alignment subset, to
an n/2-dimensional subspace of an n-dimensional vector space, such that the subspaces assigned to any two
alignment subsets are non-intersecting. The number of pairwise non-intersecting Mt-dimensional subspaces

of an m-dimensional vector space over a field F is shown by [35] to be |F|m−1
|F|Mt−1 whenever Mt divides m. For

rate-half achievability, we have m = n, Mt = n/2, and the result of Theorem 4 follows.
Note that while it clearly takes only polynomial complexity to identify the alignment subsets (also

pointed out by Blasiak et al. [17]), finding the minimum possible number of alignment subsets is much
more challenging. This is because it is generally possible to further consolidate alignment subsets as long
as alignment constraints are not violated. In other words, two alignment subsets may be combined if there
does not exist a message in either subset that cannot be aligned with a message in the other subset. Recall
that two messages cannot be aligned if one of them is desired at any destination that does not have the
other message as an antidote. Finding the minimum number of alignment subsets for a feasible problem is,
however, NP-hard. As a consequence, deciding the feasibility of e.g., rate half, when both the field F and
the number of channel uses n is fixed, is NP-complete. This is noted specifically in the context of rate-half
feasibility over a binary field and 2 channel uses, by Dau et al. in [36]. On the other hand, as noted above,



if either the field size or the number of channel uses can be chosen to be large enough, then there is no
need to consolidate the number of alignment sets, and determining the feasibility of rate half involves only
polynomial complexity.

4.3 Symmetric Instances of the Multiple Unicast Index Coding Problem

As with several multiuser capacity problems, part of the difficulty of the index coding problem lies in the
potentially unlimited number of parameters in the number of users and the desired and antidote message sets
for each user. In order to limit the number of parameters while still covering broad classes of index coding
problems, in this section we study symmetric instances of the multiple unicast index coding problem, e.g.,
where relative to its own position, each destination is associated with the same set of desired and antidote
messages.

Solutions to the multiple unicast index coding problem have been found for a variety of symmetric
settings. Since here M = K and destination Dk desires only message Wk, the problem can be represented
by a directed graph G on the vertex set M, in which a vertex i is connected to a vertex j if and only if the
destination Di knows Wj . Bar-Yossef et al. in [27] found the optimal symmetric rate for directed acyclic
graphs, perfect graphs, odd holes (undirected odd-length cycles of length at least 5) and odd anti-holes
(complements of odd holes). Also, Blasiak et al. in [17] found the capacity per message of the following
symmetric index coding instances (the parameters will become clear later on in this section).

• Neighboring antidotes where D = U , showing that the sum capacity is U+1
K per message.

• Ak = {Wk+1,Wk+K/2} for even K, showing that the sum capacity is 2
K per message.

• Neighboring interference for arbitrary K where U = D = 1 and showing that the sum capacity is bK/2cK
per message.

Berliner and Langberg in [37] characterized the solution of index coding problems with outerplanar
side information graphs in terms of the clique cover size of the information graph where the encoding
functions are (scalar) linear. Ong et.al in [38] defined uniprior index coding problems as the case where
Ai ∩ Aj = Ø for i 6= j and single uniprior as the case where | Ai |= 1, ∀i ∈ K. They derived the optimal
symmetric rate for all single uniprior index coding problems.

In the following subsections, we present our capacity results for various symmetric classes of the index
coding problem, mostly inspired by the natural settings for the TIM problem.

4.3.1 Neighboring antidotes

Consider a symmetric multiple unicast index coding problem where each destination has a total of U +D =
A < K antidotes, corresponding to the U messages before (“up” from) and D messages after (“down” from)
its desired message. For this setting, we state the index coding capacity in the following theorem.

Theorem 5 The capacity of the index coding problem with M = K <∞, (all subscripts modulo K)

Dk = ({Wk}, {Wk−U ,Wk−U+1, · · · ,Wk−1} ∪ {Wk+1,Wk+2, · · · ,Wk+D}) (37)

and

U,D ∈ Z (38)

0 ≤ U ≤ D (39)

U +D = A < K (40)

is

C =

{
1, A = K − 1

U+1
K−A+2U , A ≤ K − 2

(41)

per message.



As an example, consider the K = 5 user setting with A = 2 antidotes, U = D = 1, where the capacity is
2/5 per message. Incidentally, example 2 in Section 3.2 also has K = 5 users, A = 2 antidotes, and has the
same capacity of 2/5 per message. In general, however, for a fixed number of users, K, and a fixed number of
total antidotes, A, the capacity per message depends on the relative position of antidotes. Notably, for fixed
K,A values and neighboring antidotes as considered in Theorem 5, the capacity improves as the number of
antidotes on either side becomes more evenly distributed, i.e., as D − U becomes smaller. The best case
setting, i.e., the setting with the highest capacity, is when the antidotes are symmetrically distributed on
both sides, e.g., A = 2U = 2D, (for even A) which leads to a capacity of A+2

2K per message. The worst case
setting is when the antidotes are all on the same side, i.e., A = D,U = 0, which leads to a capacity of 1

K−A
per message. No interference alignment is needed in the latter case.

The achievability scheme in general is a vector linear coding scheme with one-to-one alignments, where
each message is sent through U + 1 scalar symbols over a U + 1 dimensional signal space. Adjacent messages
overlap in U dimensions. Because of this interference alignment, at any receiver, the total number of signal
dimensions occupied by the K−A−1 interfering messages is equal to U+(K−A−1). The U+1 dimensional
desired signal space is chosen to not have an intersection with the interference space, so that the dimension
of the total space, i.e., the number of channel uses n equals U + (K −A− 1) +U + 1 = K −A+ 2U and the
capacity (normalized by the number of channel uses) is (U + 1)/(K − A+ 2U) per message. The details of
the achievability proof and the converse are presented in Appendix C. See Figure 9 for an example.

Figure 9: Multiple unicast with neighboring antidotes where (D,U,K) = (2, 1, 8). (a) Desired message and antidote
sets, (b) Capacity optimal solution – 2 symbols per message are sent with one-to-one pairwise alignments and a rate
of 2

7
per message is achieved using the scheme pictorially depicted. z1, . . . , z8 may be chosen to be the 7 columns of

the 7 × 7 identity matrix and the all 1’s vector.

4.3.2 Neighboring interference

Consider the following TIM setting. We have a locally connected network with M = K = ∞ where each
receiver k has only one desired message Wk from its corresponding (base station) transmitter k. There are
totally U + D + 1 transmitters with non-zero channel coefficients to receiver k. One of them is the desired
transmitter k, U of them are the transmitters before (up from) and D of them are the transmitters after
(down from) the desired transmitter, as illustrated in Fig. 10. Basically, what is sent over the U + D
neighboring links constitutes interference for receiver k. The index coding problem for this locally connected
network has the antidote graph that is the complement of the connectivity graph shown in Fig. 10.

For such a network, we have the following:

Theorem 6 The capacity of the index coding problem associated with Fig. 10, where M = K =∞,

Dk =
(
{Wk}, {W c

k−U,k−U+1,··· ,k−1,k,k+1,k+2,··· ,k+D}
)

(42)



Figure 10: TIM setting: Locally connected network representation for multiple unicast with neighboring interference.
The corresponding index coding problem has the complementary antidote graph, i.e., there is an antidote link for
each transmitter receiver pair that are not connected above, and there is no antidote link for each transmitter receiver
pair that are connected in the picture shown above.

and

U,D ∈ Z (43)

0 ≤ U ≤ D (44)

(45)

is

C =
1

D + 1
(46)

per message.

Evidently, if each destination has totally L = U + D missing antidotes corresponding to the U messages
before (up from) and D messages after (down from) its desired message, the best case setting, i.e., the setting
with the highest capacity, is again when the missing antidotes are symmetrically distributed on both sides,
i.e., U = bL2 c and D = dL2 e, which leads to a capacity of 1/(dL2 e + 1) per message. The worst case setting
is when the missing antidotes are all on the same side, i.e., D = L, U = 0, which leads to a capacity of 1

L+1
per message. No interference alignment is needed in the latter case.

The achievability scheme in general is a scalar linear coding scheme with one-to-one alignments, where
each message is sent through one scalar symbol over a D + 1 dimensional signal space. U messages before
(up from) each desired message are aligned with the last U messages among D messages after (down from)
that desired message, respectively. Because of this interference alignment, at any receiver, the total number
of signal dimensions occupied by the D+U interfering messages is equal to D. The one dimensional desired
signal is chosen to not have intersection with the interfering signal space and over D + 1 channel uses, it is
resolvable. The details of the achievability proof and the converse are presented in Appendix D.

4.3.3 X network setting with local connectivity

Consider the following TIM setting. We have a locally connected network where each destination is connected
to L consecutive base stations. Suppose it is the X network setting where each base station has a distinct
message for each connected destination. Without loss of generality, we can rename the destinations such
that destination Di is connected to sources i, i+ 1, . . . , i+L− 1 as depicted in Figure 11. The index coding



Figure 11: TIM setting: X network setting with local connectivity representation. The corresponding index coding
problem has the complementary antidote graph, i.e., there is an antidote link for each transmitter receiver pair that
are not connected above, and there is no antidote link for each transmitter receiver pair that are connected in the
picture shown above.

problem for this locally connected network has the antidote graph that is the complement of the connectivity
graph shown in Fig. 11. For such a network, we have the following:

Theorem 7 The capacity of the symmetric index coding problem with M = KL and M,K →∞, where

Wk = {WkL,kL+L−1,(k+1)L+L−2,··· ,(k+i)L+L−i−1,··· ,(k+L−2)L+1},
Ak = {W(k−1)L+1:(k−1)L+L−1,··· ,(k+i)L+1:(k+i)L+L−i−2,(k+i)L+L−i:(k+i)L+L,··· ,(k+L−2)L+2:(k+L−2)L+L ∪Wk}c

is

C =
2

L(L+ 1)
(47)

per message.

The achievability scheme in general is a scalar linear coding scheme with one-to-one alignments, where

each message is sent through one scalar symbol over a L(L+1)
2 dimensional signal space. L2 − L interfering

messages are aligned into L(L+1)
2 −L dimensions using the pattern shown in (190). In particular, this pattern

is repeated for each group of L+ 1 consecutive transmitters for the shown TIM setting in Figure 11. The L

desired symbols are chosen to not have intersection with the interfering signal space and over L(L+1)
2 channel

uses, they are resolvable. The details of the achievability proof and the converse are presented in Section E.

5 Conclusion

As evident from this work, interference alignment is integral to the index coding problem. The interference
alignment perspective allows us to not only solve fairly complex index coding problems, but also it makes
the intuition behind the capacity optimal solutions quite transparent. As with wireless networks, while
much of the initial intuition from interference alignment schemes is based on dimension counting based on
linear codes, with few exceptions the dimension counting bounds are readily translated into tight information
theoretic bounds. It is also remarkable that the interference alignment perspective allows us to prove the
insufficiency of linear codes for multiple unicast index coding. As a side remark, we note that the capacity



results of the index coding settings explored in this work, since they rely only on vector linear achievable
schemes that readily translate into the field of complex numbers, directly establish corresponding DoF results
for the topological interference management settings as well. We end this paper with a couple of intriguing
questions.

First, it is not clear that auxiliary messages and destinations, while convenient for our purpose, are nec-
essary in the equivalent multiple unicast problem. Since the purpose of auxiliary messages and destinations
is only to force the expanded messages into alignment, the natural question is if auxiliary messages and
destinations are not included, would it be possible to achieve a higher min rate for the expanded messages
in the multiple unicast setting, presumably through a non-aligned solution? While this possibility seems
unlikely, we do not yet have a proof that it is impossible. Such a proof would be desirable because it would
make the equivalence between groupcast and unicast settings more direct.

The second question pertains to the capacity of the X channel setting with finite number of users. We
showed in Section 4.3.3 that the capacity solution for the case where the number of users is infinity, is 2

L(L+1)

per message, where L is the number of messages per transmitter or per receiver. However, note that the
finite user setting for the X channel, studied in Example 3 presented in Section 3.3 is also consistent with this
result. In that example, we have 3 messages per source/destination, i.e., L = 3 and we achieve rate 2

12 per
message, even though the number of users is finite. A similar observation can be made for the L = 2 setting
considered in [5]. This suggests an interesting possibility – is it always possible to achieve rate 2

L(L+1) per

message with finite number of users K? Note that the outer bound applies to finite K settings as well. On
the other hand, even if the optimal rate per message is the same for finite K as well as infinite K, evidently
the alignment solution can be much more complex for finite K settings. Note that a sophisticated subspace
alignment solution is needed in Section 3.3, but much simpler orthogonal solutions suffice when K is infinity,
as shown in Section E.

Finally, we conclude with the observation that the index coding problem remains still an open problem
of great interest, and we expect that the insights from interference alignment will continue to be useful not
only in solving smaller networks or symmetric versions of extended networks as shown here, but perhaps also
in other directions not explored in this work — e.g., designing interference alignment inspired algorithms for
arbitrary index coding settings, and studying order optimality of interference alignment techniques in index
coding settings modeled as random graphs.

A Proof of Theorem 1: Insufficiency of Linear Codes for Multiple
Unicast Index Coding

This section contains a proof of Theorem 1. We first prove Properties 1 and 2 of Theorem 2 in Sections A.1
and A.2 respectively. In Section A.3, we show that Theorem 2 implies Theorem 1.
Notation: We use the overline notation to describe quantities in the equivalent multiple unicast setting. For
example, for a given achievable scheme over the multiple unicast setting S, n,R represent the alphabet, the
number of channel uses, and the rate vector respectively. The codeword and the encoding function for this
achievable scheme are denoted as S

n
and f(W 1,0,W 1,1, . . . ,WM,L) respectively. Also, we use the notation

〈V〉 to denote a full rank matrix whose column-span is equal to the column-span of a set of column vectors
V.

A.1 Proof of Theorem 2 - Property 1

The rate (R1, R2, . . . , RM ) is achievable in the groupcast setting. This means that, for every given δ > 0
there exists n and an encoding function f(W1,W2, . . . ,WM ) such that over n channel uses, destination
Dm can decode message Wdm/Le of rate Rdm/Le − δdm/Le with a probability of error equal10 to 0 for some
δdm/Le ≤ δ. Without loss of generality, assume that the alphabet for the achievable scheme is S = {0, 1}.
Now, we turn to the equivalent multiple unicast setting. In this setting, we will show that for any ε > 0
there exists an achievable encoding scheme (over the same alphabet S = S = {0, 1}) with rates as in (35)

10This is because, as noted in Section 2 the ε-error capacity is the same as the zero-error capacity in the index coding problem.



such that the probability of error for each message is smaller than ε. The encoding scheme for achievability
can be described in the following three steps.

Step 1: Re-use f to encode W i,j , j 6= 0, i = 1, 2, . . . ,M , and

Step 2: form a random codebook for messages W i,0, i = 1, 2, . . . ,M , and then,

Step 3: superpose the M + 1 codewords formed in Step 1 and Step 2.

We will show that this approach achieves the desired rates in the multiple unicast setting. For the achievable
scheme, we set the block length to be n = nn0 where n0 is chosen to be sufficiently large for purposes that
will be described. For this blocklength, we have |Wi,j | = 2nn0(Ri−δi). For Step 1 above, we first represent
W i,j as nn0(Ri − δi) bits, and then split it into n0 blocks of length n(Ri − δi). Thus, we have

W i,j = (W
[1]

i,j ,W
[2]

i,j , . . . ,W
[n0]

i,j ) (48)

where W
[k]

i,j is a bit vector of length n(Ri − δi). Now, we set

W
[m]

i =

L∑
j=1

W
[m]

i,j

where the sum above is a bit-wise XOR of all the messages. Note that W
[m]

i is a bit-vector of length n(Ri−δi).
Now, we are ready to form the codeword of Step 1, denoted as S

nn0

1 ∈ {0, 1}nn0 .

S
nn0

1 =


f(W

[1]

1 ,W
[1]

2 , . . . ,W
[1]

M )

f(W
[2]

1 ,W
[2]

2 , . . . ,W
[2]

M )
...

f(W
[n0]

1 ,W
[n0]

2 , . . . ,W
[n0]

M )

 4=


S
[1]

1

S
[2]

1
...

S
[n0]

1

 (49)

where S
[m]

1 is an n bit column vector.
Now, we proceed to Step 2. Message W k,0, is encoded in {0, 1}nn0 by treating the codeword as n0

block-symbols, each of size n, and using i.i.d. random coding for each block. In particular, we generate a
random codebook of length n0 over alphabet {0, 1}n, where each of the n0 entries are chosen uniformly over
all possible n-bit vectors, and independently of each other. We denote by S

nn0

i,0 , the codeword corresponding

to W i,0, and set

S
nn0

0 =

M∑
i=1

S
nn0

i,0 , (50)

where S0, Si,0 ∈ {0, 1}.
We are now ready for Step 3. The codeword sent on the multiple unicast channel is set as

S
nn0

= S
nn0

1 + S
nn0

0 ,

where S
nn0

1 and S
nn0

0 are chosen from (49) and (50), and the addition is bit-wise XOR of the corresponding
entries of the vector.

Now we need to show that each message can be decoded with a probability of error smaller than ε.
First, consider message W i,j , j 6= 0 to be decoded at destination Di,j . Note that this destination has, as

antidotes, W∗,0 because of (31). Therefore, it can compute S
nn0

0 and subtract it from the received codeword

to obtain f(W
[m]

1 ,W
[m]

2 , . . . ,W
[m]

M ) for m = 1, 2, . . . , n0. For all l such that Wl ∈ A(i−1)L+j , this destination

has, as antidote, {W l,j : j = 0, 1, 2, . . . , L} and can therefore compute W l. Now, destination Di,j resembles
destination D(i−1)L+j in the groupcast setting. In particular, the decoding strategy used by D(i−1)L+j in



the groupcast setting can be used by Di,j in the equivalent multiple unicast setting to decode W
[m]

i , free of

error. Also, note that the destination has {Wi,l : l 6= j} as antidotes. Therefore, it can decode W
[m]

i,j from

W
[m]

i .
Now, consider destination Di,0. This destination has W −Wi,∗ as antidotes. Therefore, it can compute

S
nn0

k,0 , k 6= i and cancel the effect of this to obtain S
nn0

1 + S
nn0

i,0 . Intuitively, the signal obtained after this
cancellation can be interpreted as an additive noise channel over alphabet {0, 1}n, where the noise vector

faced by the mth channel use is S
[m]

1 ,m = 1, 2, . . . , n0. Using the random coding argument, for sufficiently
large n0, W i,0 can be decoded by this destination with probability of error smaller than ε, for any ε > 0 for
any rate Ri,0 up to the mutual information

1

nno
I
(
S
nn0

1 + S
nn0

i,0 ,Ai,0;W i,0

)
=

1

nno
I
(
S
nn0

1 + S
nn0

i,0 ;W i,0|Ai,0
)

(51)

=
1

nno
H(S

nn0

1 + S
nn0

i,0 |Ai,0)− 1

nno
H(S

nn0

1 + S
nn0

i,0 |Ai,0,W i,0) (52)

= 1− 1

nno
H(S

nn0

1 |Ai,0,W i,0) (53)

= 1− (Ri − δi) (54)

where, (53) comes from the fact that S
nn0

i,0 is uniformly distributed over {0, 1}nn0 through the random coding

construction (and is independent of Ai,0). The final bound comes from the fact that given (Ai,0,W i,0), Snno
1

is an invertible function of W i and H(W i) = nno(Ri − δi).

A.2 Proof of Theorem 2 - Property 2

Here, we first consider the case where rate (R1, R2, . . . , RK) is achievable in the groupcast setting via a
linear coding based achievable scheme. This means that for any δ > 0, there exists a set of parameters
n,Ul,Vk, l = 1, 2, . . . ,ML, k = 1, 2, . . . ,M , such that

UlVk = 0, ∀l = 1, 2, . . . ,ML,Wk /∈ Al, k 6= dl/Le (55)

det
(
UlVdl/Le

)
6= 0, ∀l ∈ {1, 2, . . . ,ML}, (56)

where Vk is a n × n(Rk − δk) dimensional precoding matrix, and Ul is a n(Rdl/Le − δdl/Le) × n receive
combining matrix, where δk ≤ δ for every k. The encoding scheme for this setting is

Sn =

M∑
k=1

VkXk,

where S ∈ F and Xk is a n(Rk−δk)×1 vector carrying message Wk. Now, we turn to the equivalent multiple
unicast setting, where we provide linear encoding achievable scheme for rates

Ri,j =

{
Ri − δi, j 6= 0
1−Ri, j = 0

}
. (57)

Providing such a linear encoding scheme automatically implies achievability of rate (36). The encoding
scheme for the multiple unicast setting is formed by setting, for W i,j , i ∈ {1, 2, . . . ,M}j ∈ {1, 2, . . . , L}, the
precoding matrix Vi,j for message W i,j to be equal to the precoding matrix Vi used for the message Wi in
the groupcast setting. That is, we set Vi,j = Vi, for j 6= 0 implying that

S
n

=
∑
i,j

Vi,jXi,j =

M∑
i=1

Vi

(
Xi,1 +Xi,2 + . . .+Xi,L

)
+

M∑
i=1

Vi,0Xi,0



where S ∈ F, Xi,j is a n(Ri − δi) × 1 vector for j 6= 0 and n(1 − Ri) × 1 vector for j = 0. The precoding
matrix Vi,0 for the auxiliary message W i,0 is chosen to be any n× n(1−Ri) full rank matrix satisfying

colspan(Vi) ∩ colspan(Vi,0) = {0}.

Since rank(Vi) ≤ n(Ri − δi) there exists a matrix Vi,0 satisfying the above condition. This condition
automatically implies that there exists receive combining matrix Ui,0 such that

Ui,0Vi = 0,

det(Ui,0Vi,0) 6= 0.

Since {W i,j : j = 1, 2, . . . , L} are the only messages not present at Di,0 as antidotes, and all these messages
are encoded using Vi, the above equations imply that the destination can decode message W i,0. Now,
consider destination Di,j , j 6= 0. We can set the receiver combining matrices in the multiple unicast setting
as Ui,j = U(i−1)L+j . Then, we have for j 6= 0,

U(i−1)L+jVk = 0,∀k /∈ A(i−1)L+j , k 6= i

⇒ Ui,jVk,l = 0,∀W k,l /∈ Ai,j , k 6= i

and, because of (56), we have

det
(
Ui,jVi,j

)
= det

(
U(i−1)L+jVi

)
6= 0

as required. This ensures achievability of rates (36) via linear coding in the equivalent multiple unicast
setting.

Now, we consider the case where rates in (36) are achievable in the multiple unicast problem via linear
coding. This means that for any δ > 0 there exist precoding and receive combining matrices Vi,j ,Ui,j , i =
1, 2, . . . ,M j = 0, 1, 2, . . . , L in the multiple unicast construction, such that

Ui,jVk,l = 0,∀k, l s.t. W k,l /∈ Ai,j , (k, l) 6= (i, j) (58)

det(Ui,jVi,j) 6= 0

where Vi,j is a n × n(Ri − δi,j) matrix if j 6= 0 and n × n(1 − Ri − δi,0) matrix if j = 0, for some
δi,j ≤ δ, j = 0, 1, 2, . . . , L, i = 1, 2, . . . ,M . Similarly, Ui,j is a n(Ri − δi,j) × n matrix if j 6= 0 and it is a
n(1−Ri − δi,0)× n matrix if j = 0. Now, note that the above implies that

Ui,0Vi,j = 0, j = 1, 2, . . . , L.

We now intend to show that the rate tuple (R1, R2, . . . , RM ) is achievable in the groupcast setting via
linear coding. Informally speaking, we set the precoding matrix Vi corresponding to message Wi in the
groupcast setting to be the intersection of all the precoding matrices Vi,j of the corresponding messages
W i,j , j = 1, 2, . . . , L. Note that in general, since the dimension of each encoding matrix Vi,j is no bigger
than nRi, the dimension of this intersection is no bigger than nRi. We show that the dimension of this
intersection is sufficiently close to nRi so as to lead to the achievability of rate tuple (R1, R2, . . . , RM ).

The achievable scheme in the groupcast setting sets precoding matrices Vi, i = 1, 2, . . . ,M as

Vi = 〈
L⋂
j=1

colspan(Vi,j)〉. (59)

We intend to show that this strategy leads to a linear coding achievable scheme over the groupcast setting

with an appropriate rate. Denoting R′i = rank(Vi)
n , we prove the following.



(C1) We need to show that there exist nR
′

i × n decoding matrices Ui, i = 1, 2, . . . ,ML that satisfy the
desired criteria, i.e., that

UlVm = 0,Wm /∈ Al,m 6= dl/Le,

det
(
UlVdl/Le

)
6= 0.

(C2) We need to show that the above has an appropriate rate, i.e., we need to show that R
′

i can be made
arbitrarily close to Ri.

Instead of (C1) above, we show equivalently that there exist matrices U
′

l for l = 1, 2, . . . , L such that

U
′

lVm = 0,∀ Wm /∈ Al ∪ {Wdl/Le}

rank(U
′

lVdl/Le) = rank(Vdl/Le),∀ l ∈ {1, 2, . . . ,ML}.

For this, we set
U
′

(i−1)L+j = Ui,j . (60)

Let Wm /∈ Al,m 6= dl/Le. Because of (31), we infer that

Wm,k /∈ Adl/Le,l−L(dl/Le−1) ∪ {W dl/Le,l−L(dl/Le−1)},∀k = 1, 2, . . . , L (61)

⇒ Udl/Le,l−L(dl/Le−1)Vm,k = 0,∀k = 1, 2, . . . , L (62)

⇒ U
′

lVm = 0 (63)

where the final equation comes from (59) and (60). In particular, the final equation comes from noting that
colspan(Vm) ⊆ colspan(Vm,l), l 6= 0. Similarly, we have

det
(
Udl/Le,l−L(dl/Le−1)Vdl/Le,l−L(dl/Le−1)

)
6= 0 (64)

⇒ det
(
U
′

lVdl/Le,l−L(dl/Le−1)

)
6= 0 (65)

⇒ rank
(
U
′

lVdl/Le

)
= rank

(
Vdl/Le

)
, (66)

where, the final equation follows because colspan(Vdl/Le) ⊆ colspan(Vdl/Le,l−L(dl/Le−1)). This completes the
proof of (C1). We now need to show (C2). To show this, we use the following Lemma.

Lemma 1 Let A,B,C be three matrices respectively of sizes n×DA, n×DB and n×DC . If colspan(A) ∩
colspan(C) = {0} and colspan(B) ∩ colspan(C) = {0}, then,

dim (colspan(A) ∩ colspan(B)) ≥ rank(A) + rank(B) + rank(C)− n.

Proof: Let the rank of A,B and C respectively be RA, RB and RC . Also, let

RA∪B
4
= dim (colspan(〈colspan(A) ∪ colspan(B)〉))

RA∩B
4
= dim (colspan(A) ∩ colspan(B)) .

We have

colspan (〈colspan(A) ∪ colspan(B)〉) ∩ colspan(C) = {0}
⇒ RA∪B + dim(colspan(C)) = dim (colspan (〈colspan(A) ∪ colspan(B) ∪ colspan(C)〉))

⇒ RA∪B +RC ≤ n

⇒ RA +RB −RA∩B +RC ≤ n

⇒ dim (colspan(A) ∩ colspan(B)) = RA∩B ≥ RA +RB +RC − n



Using the fact that colspan(Vi,j) ∩ colspan(Vi,0) = {0} and the above lemma, we lower bound the rank

of Vi = 〈
⋂L
l=1 colspan(Vi,l)〉 as follows.

nR
′

i = rank(Vi) = dim

(
L⋂
l=1

colspan(Vi,l)

)
(67)

≥ dim

(
L−1⋂
l=1

colspan(Vi,l)

)
+ rank(Vi,L)− (n− rank(Vi,0)) (68)

≥ dim

(
L−2⋂
l=1

colspan(Vi,l)

)
+

L∑
l=L−1

rank(Vi,l)− 2(n− rank(Vi,0)) (69)

... (70)

≥ dim
(
colspan(Vi,1) ∩ colspan(Vi,2)

)
+

L∑
l=3

rank(Vi,l)− (L− 2)(n− rank(Vi,0)) (71)

≥
L∑
l=1

rank(Vi,l)− (L− 1)(n− rank(Vi,0)) (72)

=

L∑
l=1

n(Ri − δi,l)− (L− 1)(n− n(1−Ri − δi,0)) (73)

≥ n

(
Ri −

L∑
i=1

δi,l − (L− 1)δi,0

)
(74)

where, the final equation above comes from the achievability of rates (35) on the multiple unicast setting.
By choosing δi,j to be arbitrarily small, the rate R′i can be made arbitrarily close to Ri. This completes the
proof of (C2), and hence the proof of the Theorem 2.

A.3 Proof of Theorem 1

We show Theorem 1 using the results of Theorem 2 and [34]. [34] implies the following. There exists a
groupcast setting where, there exists a rate vector (R1, R2, . . . , RK) in its capacity region that not achievable
via linear coding. Now, we consider the equivalent multiple unicast setting based on Construction 1. Because
of Property 2 of Theorem 2, this implies that rate-tuple

Ri,j =

{
Ri j 6= 0

1−Ri j = 0

}
is not achievable via linear coding in this multiple unicast setting. Further, because of Property 1 of Theorem
2, the achievability of (R1, R2, . . . , RK) in the groupcast setting (using a non-linear scheme) implies that the
above rate-tuple is achievable in the multiple unicast setting. Therefore, linear coding does not suffice for
achievability in the multiple unicast setting.

B Proof of Theorem 3: Feasibility of rate 1
L+1 per message

In this section, we show Theorem 3. In Section B.1, we describe an alignment based achievable scheme that
achieves a rate of 1

L+1 for all the messages as long as the conditions of Theorem 3 are not satisfied. In

Section B.2, we show a converse result which implies that a rate of 1
L+1 is not achievable if the conditions of

Theorem 3 are satisfied. In the process of showing the converse in Section B.2, we derive outer bounds for
the capacity of the index coding problem that may be of independent interest (See Theorems 8 and 9).



B.1 Achievability

We partitionW = {W1,W2, . . . ,WM} into alignment subsets P1,P2, . . . ,PT , and define the mapping P (m) :
M→ {1, 2, · · · , T} so that Wm ∈ PP (m), ∀m ∈M.

We use a scalar linear achievable scheme. In particular, we choose n = L + 1 and S = Fq, where q is
chosen to be sufficiently large so that there exist T vectors V1,V2, . . . ,VT , in the L+ 1 dimensional vector
space over Fq, such that every L + 1 of them are linearly independent. These are the linear coding vectors
along which the aligned messages from each partition will be sent.

Destination Dr, which desires messages Wr = {Wr1 ,Wr2 , · · · ,WrL}, receives

Sn =

M∑
i=1

xiVP (i)

=

L∑
i=1

xriVP (ri) +
∑

i:Wi∈Ar

xiVi︸ ︷︷ ︸
Side information
at destination Dr

+

 ∑
i:Wi /∈Ar∪Wr

xi

VPt

where the last equation follows because all elements of {i : Wi /∈ Ar ∪ Wr} belong to the same alignment
subset by definition; this subset is denoted by Pt. After cancelling the second term above, destination Dr

obtains a linear combination of L + 1 vectors, VP (r1),VP (r2), . . . ,VP (rL) and VPt
. We need to show that

these L+ 1 vectors are linearly independent if the feasibility condition is satisfied. The feasibility condition
implies that for a feasible system, if two messages belong to the same alignment subset, then whenever one
of them is desired, the other must be available as an antidote. Since this is not true for any two of the L+ 1
vectors VP (r1),VP (r2), . . . ,VP (rL) and VPt

, they must each belong to distinct partitions. Since every L+ 1
coding vectors are linearly independent, we conclude that xr1 , xr2 , . . . , xrL are resolvable at destination Dr

as required.

B.2 Outer Bounds

The main technical contribution of this section is an information theoretic outer bound to the capacity region
of the index coding problem in Theorem 9. Since the proof of Theorem 9 is involved, we first begin with
a simpler outer bound in Theorem 8. We then present Theorem 9. Following the theorem statement, we
state and prove the converse of Theorem 3 as a corollary to Theorem 9 (Corollary 2). We present a proof of
Theorem 9 in Section B.2.1.

Theorem 8 The achievable rates (R1, R2, ..., RM ) for the index coding problem where |Wk| = L, ∀ k ∈
{1, 2, . . . ,K}, satisfy the following inequalities:∑

{i:Wi∈Wk}

Ri +
∑

{i:Wi∈Wj∩(Wk∪Ak)
c}

Ri ≤ 1, ∀k ∈ K (75)

In other words, the sum of the rates of the messages desired at a destination Dk and the rates of the
interfering messages (i.e., undesired messages that are not available as antidotes to Dk) that are intended
for any other destination Dj cannot exceed 1.
Proof: Consider an achievable coding scheme for the network. Assume all the messages except Wk and
Wj ∩ (Wk ∪ Ak)

c
are given by a genie to destination Dk and destination Dj . Further, assume that the genie

provides Wk to destination Dj as well. Now, using the achievable scheme, destination Dk can decode Wk.
Having decoded Wk, in this genie aided index coding problem, destination Dk has all the information that
destination Dj has. Therefore, destination Dk can decodeWj∩(Wk ∪ Ak)

c
as well. Since destination Di can

decode messages Wk and Wj ∩ (Wk ∪ Ak)
c
, the sum of H(Wk) and H(Wj ∩ (Wk ∪ Ak)

c
) must be bounded

above by the entropy of the bottleneck link H(Sn).



Remark: A reader familiar with Carlieal’s outer bound for the interference channel [39] may notice
similarities with the approach in the above proof. Also note that the bound, like all the other bounds in this
section, is information theoretic, so it applies to both linear and non-linear coding schemes.

As an example, suppose we have an index coding problem with M = 4,K = 2 and L = 2, where
W1 = {W1,W2},W2 = {W3,W4},A1 = Ø,A2 = {W1,W2} as shown in Fig. 12. Using the above outer
bound, we have R1 +R2 +R3 +R4 ≤ 1, which is tight because it is also achievable by sending each message
separately in 4 consecutive time slots.

Figure 12: Index coding problem with M = 4,K = 2 and L = 2 where R1 +R2 +R3 +R4 ≤ 1

Next we derive outer bounds which are valid for general index coding problems and are tight for the 1
L+1

rate feasibility problem. The main result of this section is the following.

Theorem 9 For any N + 1 distinct indices i0, i1, ..., iN ∈M and N indices j1, ..., jN ∈ K, if

Wi0
j1↔Wi1

j2↔Wi2
j3↔ ...

jN−1

↔ WiN−1

jN↔ WiN and Wi0 /∈ Ak where WiN ∈ Wk for k ∈ K, (76)

then,

Ri0 +Rj11:L +Ri1 + ...+RjN1:L +RiN ≤ N, (77)

where Wjm = {Wjm1
,Wjm2

, . . . ,WjmL
} and Rjm1:L =

∑L
l=1R

m
jl

for m = 1, 2, . . . , N .

The converse for Theorem 3 follows from the above theorem. This converse is expressed next as a corollary
to the above theorem.

Corollary 2 The rate tuple R with R1 = R2 = ... = RM = 1
L+1 is not achievable in a single bottleneck

network where |Wk| = L, ∀ k ∈ {1, 2, . . . ,K} if and only if there exist distinct indices i, j ∈ M such that
Wi, Wj belong to the same alignment subset and Wj ∈ Wk and Wi /∈ Ak for k ∈ K

Proof of Corollary 2: If Wi,Wj belong to the same alignment subset, there must exist a chain of alignment
relations connecting Wi, Wj as

Wi
j1↔Wi1

j2↔Wi2
j3↔ ...

jN−1

↔ WiN−1

jN↔ Wj (78)

where N is the length of the chain. If Wj ∈ Wk and Wi /∈ Ak for k ∈ K, from the result of Theorem 5 shown
later in this paper we have an explicit rate bound

Ri +Rj11:L +Ri1 +Rj21:L + ...+RiN−1
+RjN1:L +Rj ≤ N (79)

Clearly, Ri = Ri1 = Ri2 = . . . = RiN−1
= Rj = Rj11 = Rj12 = . . . = RjNL = 1

L+1 does not satisfy the above
bound. This completes the proof of the corollary.



B.2.1 Proof of Theorem 9

Theorem 9 affords a simple proof for N = 1. We therefore begin with this case.

If N = 1, we have Wi
k↔Wj ,Wj ∈ Wr,Wi /∈ Ar for r ∈ K, then we intend to show that Ri+Rj+Rk1:L ≤

1.
Consider any achievable index coding scheme. Now, we form a genie-enhanced index coding problem

(where the scheme continues to remain achievable) as follows. Let Wi ∈ Wm. In this enhanced problem,
assume that destinations Dk, Dr, Dm are given all the messages except messages Wi,j,k1,k2,...,kL by a genie.
We also assume that Wk1,k2,...,kL are provided via the genie to destinations Dr, Dm. Since Wj ∈ Wr, for a
reliable scheme, destination Dr can decode Wj . In this enhanced problem, either m = r or destination Dm

is a degraded version of destination Dr. In both cases, destination Dr can decode Wi as well. Now consider
destination Dk. Achievability implies that destination Dk can decode Wk1,k2,...,kL . Now, destination Dk has
all the information available at destination Dr and can therefore decode Wi,Wj as well. Since all messages
Wi,j,k1,k2,...,kL are decoded at a single destination, we can follow steps similar to the proof of Theorem 8, to
conclude that Ri +Rj +Rk1:L ≤ 1.

As an example, suppose we have an index coding problem with M = 4,K = 3 and L = 2 where
W1 = {W1,W3},W2 = {W2,W3},W3 = {W3,W4},A1 = {W2,W4},A2 = Ø,A3 = W2 as shown in Fig. 13.

We have the following alignment chain W1
2↔ W4, W4 ∈ W3,W1 /∈ A3. Using the above outer bound, we

have R1 +R2 +R3 +R4 ≤ 1, which is tight because it is also achievable by sending each message separately
in 4 consecutive time slots.

Figure 13: Index coding problem with M = 4,K = 3 and L = 2 where R1 +R2 +R3 +R4 ≤ 1

Now, we consider the case where N > 1. Without loss of generality, we assume that S = {0, 1} in the
proof. We first present the proof explicitly for N = 2 and N = 3. These cases do not afford a simple
explanation as above, and capture all the ideas required for proving the theorem for an arbitrary value of
N . We begin with N = 2. In what follows we show that for any 3 distinct indices i, j, k ∈ M and indices

l,m ∈ K if Wi
l↔Wj

m↔Wk, Wk ∈ Wp,Wi /∈ Ap for p ∈ K then Ri +Rj +Rk +Rl1:L +Rm1:L
≤ 2.

H(Wl1,l2,...,lL) = nRl1:L = I(Wl1,l2,...,lL ;Sn,WAl
) + o(n) (80)

≤ I(Wl1,l2,...,lL ;Sn,W c
i,j,l1,l2,...,lL) + o(n) (81)

= I(Wl1,l2,...,lL ;Sn |W c
i,j,l1,l2,...,lL) + o(n) (82)

= H(Sn |W c
i,j,l1,l2,...,lL)

−H(Sn |W c
i,j) + o(n) (83)

≤ n−H(Sn |W c
i,j) + o(n) (84)



Similarly,

H(Wm1,m2,...,mL
) = nRm1:L

≤ n−H(Sn |W c
j,k) + o(n) (85)

For destination Dp that is interested in Wk, we have

nRk = I(Wk;Sn,Ap) + o(n) (86)

≤ I(Wk;Sn,W c
i,k) + o(n) (87)

= I(Wk;Sn |W c
i,k) + o(n) (88)

≤ H(Sn |W c
i,k)−H(Sn |W c

i ) + o(n) (89)

≤ H(Sn |W c
i,k)− nRi + o(n) (90)

≤ H(Sn |W c
i,j) +H(Sn |W c

j,k)

−H(Sn |W c
j )− nRi + o(n) (91)

= H(Sn |W c
i,j) +H(Sn |W c

j,k)

−nRj − nRi + o(n) (92)

≤ n(1−Rl1:L) + n(1−Rm1:L
)− nRi − nRj + o(n) (93)

⇒ Rk ≤ 2−Ri −Rj −Rl1:L −Rm1:L
, (94)

where (91) follows from Lemma 2 (proved later in this section). Inequality (93) follows from substituting
from (84) and (85) into (92), and (94) is obtained by dividing by n and taking the limit as n→∞.

As an example, suppose we have an index coding problem with M = 5,K = 5 and L = 2 where
W1 = {W1,W5},W2 = {W1,W2},W3 = {W2,W5},W4 = {W2,W4},W5 = {W2,W3},A1 = {W2},A2 =
{W3},A3 = {W1,W4},A4 = {W1,W3,W5},A5 = {W1,W4,W5} as shown in Fig. 14. We have the following

alignment chain W3
1↔ W4

2↔ W5, W5 ∈ W3,W3 /∈ A3. Using the above outerbound, we have R3 + R1 +
R5 +R4 +R1 +R2 +R5 ≤ 2.

Figure 14: Index coding problem with M = 5,K = 5 and L = 2 where R3 + R1 + R5 + R4 + R1 + R2 + R5 ≤ 2

We next consider the case where the length of the alignment chain is N = 3. Suppose we have an alignment

chain of length 3, i.e., Wi
p↔ Wj

q↔ Wk
r↔ Wl and the ends of the chain interfere, i.e., Wl ∈ Wm,Wi /∈ Am,

then our goal is to show that Ri +Rp1:L +Rj +Rq1:L +Rk +Rr1:L +Rl ≤ 3.
We start with the inequalities at the destinations Dp, Dq, Dr , each of which is shown exactly through the
steps followed in (80)-(84).

H(Wp1,p2,...,pL) = nRp1:L ≤ n−H(Sn |W c
i,j) + o(n) (95)

H(Wq1,q2,...,qL) = nRq1:L ≤ n−H(Sn |W c
j,k) + o(n) (96)



H(Wr1,r2,...,rL) = nRr1:L ≤ n−H(Sn |W c
k,l) + o(n) (97)

For destination Dm that is interested in Wl, we have

nRl = I(Wl;S
n,Am) + o(n) (98)

≤ I(Wl;S
n,W c

i,l) + o(n) (99)

= I(Wl;S
n |W c

i,l) + o(n) (100)

= H(Sn |W c
i,l)−H(Sn |W c

i ) + o(n) (101)

≤ H(Sn |W c
i,l)− nRi + o(n) (102)

≤ H(Sn |W c
i,j) +H(Sn |W c

j,l)

−H(Sn |W c
j )− nRi + o(n) (103)

≤ n(1−Rp1:L) +H(Sn |W c
j,l)− nRj − nRi + o(n) (104)

≤ n(1−Rp1:L) +H(Sn |W c
j,k)

+H(Sn |W c
k,l)−H(Sn |W c

k )

−nRj − nRi + o(n) (105)

≤ n(1−Rp1:L) + n(1−Rq1:L) + n(1−Rr1:L)− nRk − nRj
−nRi + o(n) (106)

⇒ Rl ≤ 3−Rp1:L −Rq1:L −Rr1:L −Rk −Rj −Ri (107)

Note that Lemma 2 is applied twice, first in arriving at (103) and then to obtain (105).
Now we prove Theorem 9 for an arbitrary N > 2. Suppose we have an alignment chain of length N ,

Wi0
j1↔ Wi1

j2↔ Wi2
j3↔ ...

jN−1

↔ WiN−1

jN↔ WiN and Wi0 /∈ Ak where WiN ∈ Wk for k ∈ K, then our goal
is to show that Ri0 +Rj11:L +Ri1 + ...+RjN1:L +RiN ≤ N . We start with the inequalities at the destinations

j1, . . . , jN , each of which is shown exactly through the steps followed in (80)-(84).

H(Wj11 ,j
1
2 ,...,j

1
L

) = nRj11:L ≤ n−H(Sn |W c
i0,i1) + o(n) (108)

H(Wj21 ,j
2
2 ,...,j

2
L

) = nRj21:L ≤ n−H(Sn |W c
i1,i2) + o(n) (109)

... (110)

H(WjN1 ,j
N
2 ,...,j

N
L

) = nRjN1:L ≤ n−H(Sn |W c
iN−1,iN ) + o(n) (111)

For destination Dk that is interested in WiN , we have

nRiN = I(WiN ;Sn,Ak) + o(n) (112)

≤ I(WiN ;Sn,W c
i0,iN ) + o(n) (113)

= I(WiN ;Sn |W c
i0,iN ) + o(n) (114)

= H(Sn |W c
i0,iN )−H(Sn |W c

i0) + o(n) (115)

≤ H(Sn |W c
i0,iN )− nRi0 + o(n) (116)

≤ H(Sn |W c
i0,i1) +H(Sn |W c

i1,iN )

−H(Sn |W c
i1)− nRi0 + o(n) (117)

≤ n(1−Rj11:L) +H(Sn |W c
i1,iN )− nRi1 − nRi0 + o(n) (118)

≤ n(1−Rj11:L) +H(Sn |W c
i1,i2) +H(Sn |W c

i2,iN )−H(Sn |W c
i2)

−nRi1 − nRi0 + o(n) (119)

≤ n(1−Rj11:L) + n(1−Rj21:L) +H(Sn |W c
i2,iN )− nRi2 − nRi1

−nRi0 + o(n) (120)

...



≤ n(1−Rj11:L) + n(1−Rj21:L) + . . .+ n(1−RjN−2
1:L

) +H(Sn |W c
iN−2,iN−1

) +H(Sn |W c
iN−1,iN )

−H(Sn |W c
iN−1

)− nRiN−2
+ . . .− nRi1 − nRi0 (121)

≤ n(1−Rj11:L) + n(1−Rj21:L) + . . .+ n(1−RjN−2
1:L

) + n(1−RjN−1
1:L

) + n(1−RjN1:L)

−nRiN−1
− nRiN−2

+ . . .− nRi1 − nRi0 (122)

⇒ RiN ≤ N −Rj11:L −Rj21:L − . . .−RjN1:L −RiN−1
−RiN−2

− . . .−Ri0 (123)

Note that Lemma 2 is applied in (117), (119) and (121). This proves Theorem 9.
Finally, we prove Lemma 2 which is used repeatedly in the proof of outer bounds.

Lemma 2

H(Sn |W c
j,k) ≤ H(Sn |W c

i,j) +H(Sn |W c
i,k)−H(Sn |W c

i ) (124)

Proof: Since entropy function is a submodular function, for any two subsets of random variables C,D, we
have the following

H(C) +H(D) ≥ H(C ∪ D) +H(C ∩ D) (125)

If we choose subsets C,D as C = {Sn,W c
i,j}, D = {Sn,W c

i,k} and use the submodular property of entropy
function, we have,

H(Sn,W c
i,j) +H(Sn,W c

i,k) ≥ H(Sn,W c
i ) +H(Sn,W c

i,j,k) (126)

which is equivalent to

H(Sn |W c
i,j) +H(Sn |W c

i,k) ≥ H(Sn |W c
i ) +H(Sn |W c

i,j,k)

≥ H(Sn |W c
i ) +H(Sn |W c

j,k) (127)

where (127) is true because conditioning reduces entropy. This completes the proof

C Proof of Theorem 5

C.1 Achievability

First, note that if A = U + D = K − 1, then it is obvious that each source can send 1 symbol per time
slot and achieve a rate of 1. If A = K − 2, then, it is easy to verify that a rate of 1

2 is achievable using
Theorem 3. Here we show achievability for A ≤ K − 3. Using linear coding, we show that each user can
send L = (U + 1) symbols in a n = K − A + 2U dimensional space Fnq , when q is sufficiently large. Note
that because U ≤ D, we have A− 2U = D−U ≥ 0, and therefore, n ≤ K. To begin the construction of our
achievable scheme, we pick K vectors over Fnq such that any n of them are linearly independent. We denote
the vectors by z1, z2, . . . , zK . Note that over a sufficiently large field, the vectors zi, i = 1, 2, . . . ,K can be
chosen to satisfy this property11. Our construction for the n× (U + 1) matrix Vi — whose columns are the
beamforming vectors for the U + 1 symbols comprising message Wi — is as follows.

Vi = [zi zi+1 zi+2 . . . zi+U ] ,

where all subscripts are interpreted modulo K. Note that any two adjacent messages overlap in U dimensions.
For example, the signal spaces spanned by Vi and Vi+1 overlap in dimensions zi+1, zi+2, · · · , zi+U . This is
the basis for interference alignment. With this construction, we intend to show that (5) is satisfied.

11One approach to such a construction is to use Vandermonde matrices.



First, note that the U+1 columns of Vi are linearly independent since U+1 < n. In particular, denoting
Xi = [xi,0 xi,1 . . . , xi,U ], we have

Sn =

K∑
i=1

U∑
j=0

xi,jzi+j .

Now, because of the symmetric nature of the problem, we only need to show that W1 is linearly resolvable at
D1. This ensures resolvability at all other destination nodes. Note that destination D1 has side information
of xi,j for all i ∈ {K−U +1,K−U +2, . . . ,K, 2, 3, . . . , D+1}. The precoding vectors are known to everyone
apriori. Cancelling the effect of the known symbols, destination D1 obtains

Sn1 =

U∑
j=0

x1,jzj+1︸ ︷︷ ︸
Desired Signal

+

K−U∑
i=D+2

U∑
j=0

xi,jzi+j︸ ︷︷ ︸
Aligned

Interference

Thus, destination D1 sees (U + 1) + (K − (D + 1)) = n signal vectors z1, z2, . . . , zU+1,zD+2, zD+3, . . .,
zK . Since these n vectors are linearly independent by design, the desired scalars x1,j , j = 0, 1, . . . , U are
resolvable at destination D1. By symmetry, the same conclusion is applicable for all the K destinations.

To understand the role of alignment, note that there are (K − A− 1) undesired messages that interfere
at destination D1, each occupying a (U + 1) dimensional signal space. However, because any two adjacent
interferers overlap in U dimensions, the (K−A−1) interferers collectively occupy only U+1+(K−A−1)−1 =
K −D− 1 dimensions. Since the desired signal occupies U + 1 dimensions, and (U + 1) + (K −D− 1) = n,
the observed signal space is big enough to resolve desired signals from the interference. See Figure 9 for an
example.

C.2 Outer bound

The trivial bound that a message can not be transmitted at more than rate 1 (the capacity of the bottleneck
link) is tight when A = K − 1, i.e., all undesired messages are available as antidotes. If A = K − 2, i.e., only
one message is missing from the antidote set, then the rate 1

2 per user is an outerbound, as shown in the
proof of Theorem 8. Therefore we focus on the setting A ≤ K − 3.

We first present an outer bound on the rates achievable via linear achievable schemes to gain intuition.
Later, we will use this intuition to get information theoretic outer bounds for any achievable scheme.

C.2.1 Dimension Counting Outerbound

Our goal is to show that the sum-capacity per message is bounded above by U+1
K−A+2U . To show this, we

first prove that if we want to achieve a rate d per message, then the total dimension of interference at each
destination satisfies

dim(interference) ≥
[
K −A+ 2U

U + 1
− 1

]
d =

K −A− 1 + U

U + 1
d (128)

K −A− 1 is the total number of interferers at each destination. Suppose Vi denotes the subspace assigned
to user i. Hence, our goal is bounding

∑K
i=1 dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+K−A−2), i.e., the total number of

interfering dimensions at all the destinations. We define αj as follows

αj
4
=

K∑
i=1

dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+j−1) (129)

So our goal is bounding the total number of interference at all destinations, i.e., αK−A−1.



Lemma 3 For the following m and j{
m = bK−A−1U+1 c, j = (K −A− 1) mod (U + 1) if K −A− 1 mod (U + 1) 6= 0

m = K−A−1
U+1 − 1, j = U + 1 if K −A− 1 mod (U + 1) = 0

(130)

we have

αK−A−1 ≥ mα1 + αj (131)

Proof:

αK−A−1 = αm(U+1)+j

=

K∑
i=1

dim(Vi ∪ Vi+1 ∪ . . . ∪ Vm(U+1)+j−1) (132)

≥
K∑
i=1

{dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+j−1 ∪ Vi+j−1+(U+1) ∪ Vi+j−1+2(U+1) ∪ . . . ∪ Vi+j−1+m(U+1))}(133)

=

K∑
i=1

{dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+j−1) + dim(Vi+j−1+(U+1)) + dim(Vi+j−1+2(U+1)) + . . .

+ dim(Vi+j−1+m(U+1))} (134)

= mα1 + αj (135)

where (134) is true because Wi,...,i+j−1,i+j−1+(U+1),...,i+j−1+l(U+1) /∈ Ai+j−1+l(U+1) for l = 0, 1, . . . ,m. This
proves Lemma 3.

Lemma 4 For j = 2, 3, . . . , U + 1, we have

αj ≥ αj−1 +
α1

U + 1
(136)

⇒ αj ≥ U + j

U + 1
α1 (137)

Proof:

K∑
i=1

dim(Vi∪Vi+1∪ . . .∪Vi+j−2∪Vi+j+U−1) (138)

≤
K∑
i=1

dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+j−2 ∪ Vi+j−1) +

K∑
i=1

dim(Vi+1 ∪ Vi+2 ∪ . . . ∪ Vi+j−1 ∪ Vi+j+U−1)

−
K∑
i=1

dim(Vi+1 ∪ Vi+2 ∪ . . . ∪ Vi+j−1) (139)

≤
K∑
i=1

dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+j−2 ∪ Vi+j−1) +

K∑
i=1

dim(Vi+1 ∪ Vi+2 ∪ . . . ∪ Vi+j−1 ∪ Vi+j)

+

K∑
i=1

dim(Vi+2 ∪ Vi+3 ∪ . . . ∪ Vi+j ∪ Vi+j+U−1)−
K∑
i=1

dim(Vi+2 ∪ Vi+3 ∪ . . . ∪ Vi+j)

−
K∑
i=1

dim(Vi+1 ∪ Vi+2 ∪ . . . ∪ Vi+j−1) (140)



...

≤
K∑
i=1

dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+j−2 ∪ Vi+j−1) +

K∑
i=1

dim(Vi+1 ∪ Vi+2 ∪ . . . ∪ Vi+j−1 ∪ Vi+j)

+

K∑
i=1

dim(Vi+2 ∪ Vi+3 ∪ . . . ∪ Vi+j ∪ Vi+j+1) + . . .+

K∑
i=1

dim(Vi+U ∪ Vi+U+1 ∪ . . . ∪ Vi+j+U−2 ∪ Vi+j+U−1)

−
K∑
i=1

dim(Vi+U ∪ Vi+U+1 ∪ . . . ∪ Vi+j+U−2)− . . .−
K∑
i=1

dim(Vi+2 ∪ Vi+3 ∪ . . . ∪ Vi+j)

−
K∑
i=1

dim(Vi+1 ∪ Vi+2 ∪ . . . ∪ Vi+j−1) (141)

where at each step, we use the submodular property of dim function. On the other hand, since {Wi,Wi+1, . . . ,Wi+j−2} /∈
Ai+j+U−1, we have

dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+j−2 ∪ Vi+j+U−1) = dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+j−2) + dim(Vi+j+U−1) (142)

By combining (141) and (142), we have

αj−1 + α1 ≤ αj + αj + . . .+ αj − αj−1 − . . .− αj−1 (143)

αj ≥
1

U + 1
{(U + 1)αj−1 + α1} (144)

This proves (136). Solving this recursive equation, we get (137). This proves Lemma 4.
Combining Lemma 3 and Lemma 4, we have the following

αK−A−1 ≥ mα1 +
U + j

U + 1
α1 =

m(U + 1) + j + U

U + 1
α1 =

K −A− 1 + U

U + 1
α1 (145)

Then the dimension of desired message plus the dimension of interference at all destinations should be less
than or equal to the total available dimensions, i.e., K

α1 +
K −A− 1 + U

U + 1
α1 ≤

K∑
i=1

{dim(Vi−D−1) + dim(Vi ∪ Vi+1 ∪ . . . ∪ Vi+K−A−2)} ≤ K (146)

Hence the optimal symmetric rate per message is d = 1
Kα1 ≤ U+1

K−A+2U

C.2.2 Information Theoretic Outerbound

We define αj as follows

αj
4
=

K∑
i=1

H(Sn|W c
i,i+1,...,i+j−1) (147)

Our first goal is to bound αK−A−1. We proceed as follows.

Lemma 5 For the following m and j{
m = bK−A−1U+1 c, j = (K −A− 1) mod (U + 1) if K −A− 1 mod (U + 1) 6= 0

m = K−A−1
U+1 − 1, j = U + 1 if K −A− 1 mod (U + 1) = 0

(148)

we have

αK−A−1 ≥ mα1 + αj + o(n) (149)



Proof: Note that destination Di+j−1+(U+1) can decode Wi+j−1+(U+1) from (Sn,W c
i,i+1,...,i+j−1,i+j−1+(U+1))

with Pe → 0 as n→∞. Therefore, we can write

nRi+j−1+(U+1) = H(Wi+j−1+(U+1)) (150)

= I(Wi+j−1+(U+1);S
n|W c

i,i+1,...,i+j−1,i+j−1+(U+1))

+H(Wi+j−1+(U+1)|Sn,W c
i,i+1,...,i+j−1,i+j−1+(U+1)) (151)

= H(Sn|W c
i,i+1,...,i+j−1,i+j−1+(U+1))

−H(Sn|W c
i,i+1,...,i+j−1) + o(n) (152)

which gives us

H(Sn|W c
i,i+1,...,i+j−1,i+j−1+(U+1)) = nRi+j−1+(U+1) +H(Sn|W c

i,i+1,...,i+j−1) + o(n) (153)

Next, note that destination Di+j−1+2(U+1) does not have Wi,...,i+j−1,i+j−1+(U+1),i+j−1+2(U+1) as antidote.
So, given (Sn,W c

i,...,i+j−1,i+j−1+(U+1),i+j−1+2(U+1)) it must be able to reliably decode Wi+j−1+2(U+1).

nRi+j−1+2(U+1) = H(Wi+j−1+2(U+1)) (154)

= I(Wi+j−1+2(U+1);S
n,W c

i,...,i+j−1,i+j−1+(U+1),i+j−1+2(U+1))

+H(Wi+j−1+2(U+1)|Sn,W c
i,...,i+j−1,i+j−1+(U+1),i+j−1+2(U+1)) (155)

= I(Wi+j−1+2(U+1);S
n|W c

i,...,i+j−1,i+j−1+(U+1),i+j−1+2(U+1)) + o(n)

= H(Sn|W c
i,...,i+j−1,i+j−1+(U+1),i+j−1+2(U+1))

−H(Sn|W c
i,...,i+j−1,i+j−1+(U+1)) + o(n) (156)

which along with (153) gives us

H(Sn|W c
i,...,i+j−1,i+j−1+(U+1),i+j−1+2(U+1)) = nRi+j−1+2(U+1) + nRi+j−1+(U+1)

+H(Sn|W c
i,i+1,...,i+j−1) + o(n) (157)

Similarly, we note that destinationDi+j−1+l(U+1) for 3 ≤ l ≤ m does not haveWi,...,i+j−1,i+j−1+(U+1),...,i+j−1+l(U+1)

as antidotes, so it must be able to decode Wi+j−1+l(U+1) from (Sn,W c
i,...,i+j−1,i+j−1+(U+1),...,i+j−1+l(U+1)).

nRi+j−1+m(U+1) = H(Wi+j−1+m(U+1)) (158)

= I(Wi+j−1+m(U+1);S
n,W c

i,...,i+j−1,i+j−1+(U+1),...,i+j−1+m(U+1)) +

H(Wi+j−1+m(U+1)|Sn,W c
i,...,i+j−1,i+j−1+(U+1),...,i+j−1+m(U+1)) (159)

= I(Wi+j−1+m(U+1);S
n|W c

i,...,i+j−1,i+j−1+(U+1),...,i+j−1+m(U+1)) + o(n) (160)

= H(Sn|W c
i,...,i+j−1,i+j−1+(U+1),...,i+j−1+m(U+1))−

H(Sn|W c
i,...,i+j−1,i+j−1+(U+1),...,i+j−1+(m−1)(U+1)) + o(n) (161)

which gives us

H(Sn|W c
i,...,i+j−1,i+j−1+(U+1),...,i+j−1+m(U+1)) = nRi+j−1+m(U+1) + . . .+ nRi+j−1+2(U+1)

+nRi+j−1+(U+1) +H(Sn|W c
i,i+1,...,i+j−1) + o(n)

(162)

Our goal is to bound αK−A−1. We have

αK−A−1 = αm(U+1)+j (163)

=

K∑
i=1

H(Sn|W c
i,i+1,...,i+K−A−2) (164)



≥
K∑
i=1

H(Sn|W c
i,...,i+j−1,i+j−1+(U+1),i+j−1+2(U+1),...,i+j−1+m(U+1)) (165)

=

K∑
i=1

{nRi+j−1+(U+1) + . . .+ nRi+j−1+m(U+1) +H(Sn|W c
i,i+1,...,i+j−1) + o(n)} (166)

= mα1 + αj + o(n) (167)

where (165) is true because conditioning reduces the entropy. (166) is derived by replacing (162) into (165).
This proves Lemma 5.

Lemma 6 For j = 2, 3, . . . , U + 1, we have

αj ≥ αj−1 +
α1

U + 1
+ o(n) (168)

⇒ αj ≥ U + j

U + 1
α1 + o(n) (169)

Proof: We use Lemma 7 (proved later in this section) at each step. So we have

K∑
i=1

H(Sn,W c
i,i+1,...,i+j−2,i+j+U−1) ≤

K∑
i=1

{H(Sn,W c
i,i+1,...,i+j−1)

+H(Sn,W c
i+1,i+2,...,i+j−1,i+j+U−1)

−H(Sn,W c
i+1,i+2,...,i+j−1)} (170)

≤
K∑
i=1

{H(Sn,W c
i,i+1,...,i+j−1)

+H(Sn,W c
i+1,i+2,...,i+j−1,i+j)

+H(Sn,W c
i+2,i+3,...,i+j−1,i+j,i+j+U−1)

−H(Sn,W c
i+2,i+3,...,i+j)

−H(Sn,W c
i+1,i+2,...,i+j−1)} (171)

...

≤
K∑
i=1

{H(Sn,W c
i,i+1,...,i+j−1)

+H(Sn,W c
i+1,i+2,...,i+j−1,i+j)

+ . . .+H(Sn,W c
i+U,i+U+1,...,i+j+U−1)

−H(Sn,W c
i+U,i+U+1,...,i+j+U−2)

− . . .−H(Sn,W c
i+2,i+3,...,i+j)−

H(Sn,W c
i+1,i+2,...,i+j−1)} (172)

We note that destination Di+j+U−1 does not have Wi,i+1,...,i+j−2,i+j+U−1 as antidotes, so it must be able
to decode Wi+j+U−1 from (Sn,W c

i,i+1,...,i+j−2,i+j+U−1).

nRi+j+U−1 = H(Wi+j+U−1) (173)

= I(Wi+j+U−1;Sn,W c
i,i+1,...,i+j−2,i+j+U−1) +

H(Wi+j+U−1|Sn,W c
i,i+1,...,i+j−2,i+j+U−1) (174)

= I(Wi;S
n|W c

i,i+1,...,i+j−2,i+j+U−1) + o(n) (175)

= H(Sn|W c
i,i+1,...,i+j−2,i+j+U−1)−H(Sn|W c

i,i+1,...,i+j−2) + o(n) (176)



which gives us

H(Sn|W c
i,i+1,...,i+j−2,i+j+U−1) = nRi+j+U−1 +H(Sn|W c

i,i+1,...,i+j−2) + o(n) (177)

Replacing (177) into (172), we have

αj−1 + α1 + o(n) ≤ αj + αj + . . .+ αj − αj−1 − . . .− αj−1 (178)

αj ≥
1

U + 1
{(U + 1)αj−1 + α1}+ o(n) (179)

Solving this recursive equation, we get

αj ≥
U + j

U + 1
α1 + o(n) (180)

This proves Lemma 6.
Combining Lemma 5 and Lemma 6, we have the following

αK−A−1 ≥ mα1 +
U + j

U + 1
α1 + o(n) =

m(U + 1) + j + U

U + 1
α1 + o(n) =

K −A− 1 + U

U + 1
α1 + o(n) (181)

Finally, we note that destination Di−D−1 does not have any of the messages Wi,i+1,...,i+K−A−2 as antidotes.
So it must be able to decode Wi−D−1 from (Sn,Wi−D−1,i,i+1,...,i+K−A−2).

K∑
i=1

nRi−D−1 ≤
K∑
i=1

I
(
Wi−D−1;Sn|W c

i−D−1,i,i+1,...,i+K−A−2
)

+ o(n) (182)

=

K∑
i=1

{
H
(
Sn|W c

i−D−1,i,i+1,...,i+K−A−2
)
−H(Sn|W c

i,i+1,...,i+K−A−2)
}

+ o(n)

≤
K∑
i=1

{n− K −A− 1 + U

U + 1
Ri}+ o(n) (183)

Rearranging terms and applying the limit n→∞ we have

K∑
i=1

Ri ≤
U + 1

K −A+ 2U
K (184)

so that we have the information theoretic capacity outer bound of U+1
K−A+2U per message.

Lemma 7 For l = 0, 1, . . . , U − 1, we have

H(Sn|W c
i+l,i+l+1,...,i+l+j−2,i+j+U−1) ≤ H(Sn|W c

i+l,i+l+1,...,i+l+j−1)

+H(Sn|W c
i+l+1,i+l+2,...,i+l+j−1,i+j+U−1)

−H(Sn|W c
i+l+1,i+l+2,...,i+l+j−1) (185)

Proof: Setting
C = {Sn,W c

i+l,i+l+1,...,i+l+j−1},

D = {Sn,W c
i+l+1,i+l+2,...,i+l+j−1,i+j+U−1}

and using the submodular property of entropy function

H(C) +H(D) ≥ H(C ∪ D) +H(C ∩ D) (186)



we have

H(Sn,W c
i+l,...,i+l+j−1) +H(Sn,W c

i+l+1,...,i+l+j−1,i+j+U−1) ≥ H(Sn,W c
i+l+1,i+l+2,...,i+l+j−1)

+H(Sn,W c
i+l,i+l+2,...,i+l+j−1,i+j+U−1)

Equivalently,

H(Sn|W c
i+l,...,i+l+j−1) +H(Sn|W c

i+l+1,...,i+l+j−1,i+j+U−1) ≥ H(Sn|W c
i+l+1,i+l+2,...,i+l+j−1)

+H(Sn|W c
i+l,i+l+2,...,i+l+j−1,i+j+U−1)

≥ H(Sn|W c
i+l+1,i+l+2,...,i+l+j−1)

+H(Sn|W c
i+l,i+l+2,...,i+l+j−2,i+j+U−1)

(187)

where (187) is true because conditioning reduces the entropy. Equivalently,

H(Sn|W c
i+l,i+l+1,...,i+l+j−2,i+j+U−1) ≤ H(Sn|W c

i+l,i+l+1,...,i+l+j−1)

+H(Sn|W c
i+l+1,i+l+2,...,i+l+j−1,i+j+U−1)

−H(Sn|W c
i+l+1,i+l+2,...,i+l+j−1) (188)

This proves Lemma 7.

D Proof of Theorem 6: Neighboring interference

D.1 Achievability

We use a scalar linear achievable scheme. In particular, we choose S = Fq, where q is a prime power q,
n = D + 1. Suppose we define V1,V2, . . . ,VD+1 as D + 1 linearly independent vectors in a D + 1 di-
mensional space. Then, starting from any arbitrarily chosen message, we assign these vectors to D + 1
consecutive messages respectively and repeat this assignment periodically. So if we assign Vm to message
Wr, then message Wi will be encoded using V(i−r+m) mod (D+1). We now need to show resolvability of
message Wr at destination Dr. Suppose Vm is the vector assigned to message Wr. Notice that there are
U+D interfering messages at this destination: Wr−U,r−U+1,...,r−1,r+1,r+2,...,r+D. The remaining messages are
available as antidotes and can be cancelled. The U interfering messages Wr−U , . . . ,Wr−1 are encoded over
V(m−U) mod (D+1),. . . ,V(m−1) mod (D+1), respectively. Since {i+D+1 mod D+1} = {i mod D+1}, these
interfering vectors are the same as V(m+D+1−U) mod (D+1),. . . ,V(m+D) mod (D+1). Also the remaining D in-
terfering messages of destinationDr, i.e., Wr+1, . . . ,Wr+D are sent over V(m+1) mod (D+1), . . . ,V(m+D) mod (D+1),
respectively. As we can see all the interfering messages align in the D-dimensional space spanned by vectors
V(m+1) mod (D+1), . . . ,V(m+D) mod (D+1). This interference space is linearly independent of Vm because of
our construction. Since we are operating in a D + 1 dimensional space, message Wr is linearly resolvable at
destination Dr as required. This proves achievability.

Remark: V1,V2, . . . ,VD+1 can be chosen to be columns of the D + 1 dimensional identity matrix and
the field can be chosen to be F2 . In other words, a D + 1-symbol long achievable scheme is obtained by
simply sending the bit . . .⊕xr−D−1⊕xr⊕xr+D+1⊕ . . . , in the rth channel use, where ⊕ denotes the XOR.

D.2 Outerbound

For the converse, note that we can set U = 0. This is because, if U > 0, a genie can provide messages
Wr−U,r−U+1,...,r−1 to destination Dr as antidotes to make an enhanced index coding problem where each
user is only missing D + 1 antidotes after the desired message. In this enhanced index coding problem, we
show that the capacity is 1

D+1 per message. In this setting where U = 0, we intend to show that

Ri +Ri+1 + . . .+Ri+D ≤ 1.



To do so, we give destinations Di, Di+1, . . . , Di+D messages W c
i,i+1,...,i+D through a genie. Now, in this genie-

aided system, note that destination Di, which is missing antidotes Wi+1,i+2,...,i+D can decode Wi (because
of achievability in the original index coding problem). Having decoded Wi, this destination has all the
messages present at destination Di+1, and can therefore decode Wi+1. Having decoded Wi,i+1, destination
Di is now equipped with all messages present as antidotes at destination Di+2 and can therefore decode Wi+2.
Continuing this argument, it can be shown that destination Di can decode Wi,i+1,...,i+D, and therefore we
have, as required,

Ri +Ri+1 + . . .+Ri+D ≤ 1.

E Proof of Theorem 7: X network setting with local connectivity

E.1 Achievability

We use a scalar linear achievable scheme. In particular, we choose S = Fq, where q is a prime power, and

n = L(L+1)
2 . We choose V1,V2, . . . ,VL(L+1)

2
to be L(L+1)

2 linearly independent vectors in a n = L(L+1)
2

dimensional space. Each message is sent over one of these vectors.
Consider an arbitrary destination, say destination Dk. After removing antidotes, this destination receives

a linear combination of L2 messages shown in (189) above the line, and it is interested in L messages

Wk = {WkL,kL+L−1,(k+1)L+L−2,··· ,(k+i)L+L−i−1,··· ,(k+L−2)L+1}

shown in black in (189). The destination faces (L2−L) interfering messages shown in (189) with colors other
than black (and above the line). The “black” messages are desired by destination Dk and are encoded using

L linearly independent vectors, V1, . . . ,VL. Because the total number of dimensions is L(L+1)
2 , the L2 − L

interfering messages should align such that they span at most L(L+1)
2 −L dimensions. Among these interfering

messages, the L − 1 “red” messages W(k+1)L,(k+1)L+L−1),...,(k+L−2)+2 are desired by destination Dk+1 and
should be linearly independent. These messages in red are encoded using VL+1, . . . ,V2L−1. Also all the L−2
“green” messages that are below the red messages and above the line, i.e., W(k+2)L,(k+2)L+L−2,...,(k+L−2)+3

are not available as antidotes at either destination Dk or destination Dk+1 and therefore seen as interference
at both these destinations. This implies that the red messages and black messages can not align with these
green messages. So we assign V2L, . . . ,V3L−2 as encoding vectors respectively to green messages. Proceeding
thus, we assign VL(L+1)/2 to W(k+L−1)L. So far, we have assigned L(L+1)/2−L linearly independent vectors
to L(L+ 1)/2− L interferers at destination Dk.

W(k−1)L+1 W(k−1)L+2 . . . W(k−1)L+L−1 WkL

WkL+1 WkL+2 . . . WkL+L−1 W(k+1)L

W(k+1)L+1 W(k+1)L+2 . . . W(k+1)L+L−1 W(k+2)L

...
... . .

. ...
...

W(k+L−3)L+1 W(k+L−3)L+2 . . . W(k+L−3)L+L−1 W(k+L−2)L
W(k+L−2)L+1 W(k+L−2)L+2 . . . W(k+L−2)L+L−1 W(k+L−1)L
W(k+L−1)L+1 W(k+L−1)L+2 . . . W(k+L−1)L+L−1 W(k+L)L

(189)

So the remaining interfering messages that are shown above the black messages at (189) should be sent
over the vectors such that they stay in the same span of interfering messages below the black messages. The
way that we satisfy this constraint is by sending the messages shown in (189) respectively over the following
vectors



VL+1 VL+2 . . . V2L−1 V1

V2L V2L+1 . . . V2 VL+1

V3L−1 V3L . . . VL+2 V2L

...
... . .

. ...
...

VL(L+1)
2

VL−1 . . . VL(L+1)
2 −4 VL(L+1)

2 −2
VL V2L−1 . . . VL(L+1)

2 −1 VL(L+1)
2

V1 V2 . . . VL−1 VL

(190)

Evidently, at destination Dk, all the desired messages are seen over V1, . . . ,VL and all the interfering
messages are seen over VL+1, . . . ,VL(L+1)

2
. Therefore, the desired messages are resolvable at destination Dk.

Showing achievability for the remaining messages uses the same argument because of the inherent symmetry
in the problem. Specifically, if we assign V1,V2, . . . ,VL−1,VL toW(k+L−1)L+1,W(k+L−1)L+2, . . . ,W(k+L−1)L+L−1,W(k+L)L

respectively and repeat the pattern shown in (190), assigning vectors periodically for the remaining mes-
sages, we can show resolvability at every destination. This follows because, if we choose any L consecutive
rows (circularly) of (190), the vectors assigned to anti-diagonal messages which are the desired messages are
linearly independent from each other and from the vectors assigned to interfering messages. This proves
achievability.

Remark: V1,V2, . . . ,VL(L+1)
2

can be chosen to be columns of L(L+1)
2 dimensional identity matrix, e.g.,

over F2 and therefore can be an orthogonal scheme. For the corresponding TIM problem this means that
channel coherence is not required [5].

E.2 Outerbound

To prove the outerbound, consider a set of L(L+1)
2 messages

WO = {WkL,kL+L−1:kL+L,··· ,(k+i)L−i−1:(k+i)L+L,··· ,(k+L−2)L+1:(k+L−1)L},

i.e., the set of “colored” messages shown (above the line) in (189). Among the messages in WO, the number
of messages intended for destination Dk+i is L − i, where i ∈ {0, 1, 2, . . . , L − 1.} Our goal is to argue that

destination Dk can decode all these L(L+1)
2 messages and hence the symmetric rate per message is bounded

as C ≤ 2
L(L+1) .

Consider any achievable index coding scheme. Assume that a genie provides all the messages except WO
to all the destinations Dk, Dk+1, · · · , Dk+L−1. With the considered index coding scheme, destination Dk,
which has WOc as antidotes, can decode the “black messages” in (189), i.e.,

{WkL,kL+L−1,(k+1)L+L−2,··· ,(k+i)L+L−i−1,··· ,(k+L−2)L+1}.

DestinationDk+1 can decode its desired L−1 “red” messages - {WkL+L,(k+1)L+L−1,··· ,(k+i)L+L−i,··· ,(k+L−2)L+2}
- using antidotes WOc ∪ {WkL}. This automatically implies that destination Dk, having decoded all the
black messages including WkL can decode the red messages as well. Now, having decoded all the black
messages and red messages, the set of messages known to destination Dk includesWOc∪WkL,kL+L−1,(k+1)L

- the antidote at destination Dk+2. Therefore all the green messages can be decoded at destination Dk.
Proceeding further similarly we can argue that destination Dk can decode all the messages in WO. This
completes the proof.
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