
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 1, JANUARY 2015 341

Degrees of Freedom of Rank-Deficient
MIMO Interference Channels

Sundar R. Krishnamurthy, Student Member, IEEE, Abinesh Ramakrishnan, Student Member, IEEE,
and Syed Ali Jafar, Fellow, IEEE

Abstract— We characterize the degrees of freedom (DoF)
of multiple-input and multiple-output (MIMO) interference
channels with rank-deficient channel matrices. For the two-user
rank-deficient MIMO interference channel, we provide a tight
outer bound to show that the previously known achievable DoF
in the symmetric case is optimal and generalize the result to fully
asymmetric settings. For the K -user rank-deficient interference
channel, we improve the previously known achievable DoF and
provide a tight outer bound to establish optimality in symmetric
settings. In particular, we show that for the K -user rank-deficient
interference channel, when all nodes have M antennas, all direct
channels have rank D0, all cross channels are of rank D, and the
channels are otherwise generic, the optimal DoF value per user is
min(D0, M − (min(M, (K − 1)D)/2)). Notably for interference
channels, the rank-deficiency of direct channels does not help
and the rank deficiency of cross-channels does not hurt. The
main technical challenge is to account for the spatial dependences
introduced by rank deficiencies in the interference alignment
schemes that typically rely on the independence of channel
coefficients.

Index Terms— Channel capacity, degrees of freedom, inter-
ference channel, multiple-input multiple-output (MIMO), rank
deficient channels, interference alignment

I. INTRODUCTION

THE idea of interference alignment originated out of
the studies of the index coding problem [1] and the

degrees of freedom (DoF) of X channels [2], [3] and
K -user interference channels [4]. Over a relatively short
period, it has found applications across a broad array of
wireless and wired communication networks [5]. A variety
of interference alignment schemes have enabled new and
fundamental insights into the number of signal dimensions that
are accessible in distributed communication networks where
the output signals are linear functions of input signals (possibly
with additive noise). However, the insights are mostly limited
to the assumption of independent channel realizations. This
is because with few exceptions, the studies of interference
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alignment schemes assume some form of independence (linear,
probabilistic, algebraic, rational) of channel realizations. While
channels are naturally independent across users in single-hop
networks, dependencies often arise across antennas in MIMO
interference networks. Understanding the impact of these
dependencies on the signal dimensions of MIMO interference
networks is important both from a practical and a theoretical
perspective.

In this work we study spatial dependencies that are mani-
fested as rank-deficiencies of the channel matrices in MIMO
interference networks. Rank deficient channels are frequently
encountered in MIMO networks, due to poor scattering, pres-
ence of single or very few paths, insufficient antenna-spacing
and keyhole effects. While the implications of rank deficient
channels are well understood for the single user point to
point setting, much less is known for interference networks.
In this work we study the degrees of freedom (DoF) of
rank-deficient MIMO interference networks. To isolate the
impact of spatial dependencies, we allow channels to vary
independently across time and frequency. This also allows us
to exploit the well-developed machinery of linear interference
alignment schemes, which are appealing not only for their
simplicity and robustness, but also because they tend to be
DoF-optimal for time-varying channels.

Linear alignment schemes may be broadly classified into
non-asymptotic and asymptotic schemes, based on whether the
size of the linear precoding vector space required to approach
the optimal DoF value is finite or infinite, respectively.
Non-asymptotic schemes typically suffice for under-
constrained systems, where the number of spatial dimensions
(antennas) is sufficiently large relative to the number of
alignment constraints (users). This is the case, e.g., in the
2-user and 3-user MIMO interference channels, studied
in [6] and [7], respectively. Asymptotic schemes, based on
a construction proposed by Cadambe and Jafar in [4] for
the K -user interference channel with time-varying/frequency-
selective channel coefficients (in short, the CJ scheme), are
typically needed when the number of alignment constraints
(users) dominates the number of spatial dimensions (antennas).
In this work, we explore the implications of having rank
deficient channel matrices for both asymptotic and non-
asymptotic schemes.

A. Background
Our study of non-asymptotic schemes will focus on 2-user

and 3-user MIMO interference channels, whereas asymp-
totic schemes will be studied through the K -user MIMO
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interference channel setting. The relevant background is
summarized in this section.

1) Non-Asymptotic Schemes (2-User and 3-User MIMO
Interference Channels): Under the assumption of independent
channel realizations, i.e., full rank channels, the DoF of the
2-user MIMO interference channel with arbitrary number of
antennas at each node are characterized in [6]. The DoF of
the 3-user MIMO interference channel where all nodes have
the same number of antennas are characterized by Cadambe
and Jafar in [4]. The DoF of 3-user MIMO interference
channel with M antennas at each transmitter and N anten-
nas at each receiver are characterized in parallel works by
Wang et al. in [7] and by Bresler et al. in [8]. While the
achievability results are the same in the two works, the
outer bounds presented by Wang et al. are strictly stronger.
The outer bounds of Bresler et al. are restricted to the
linear feasibility of [9] and [10] where only linear precod-
ing schemes are considered, and precoding across multiple
channel uses is not allowed. However, Wang et al. present
information theoretic outer bounds that are also applicable to
non-linear schemes, arbitrary channel extensions, and time-
varying channels. Remarkably, inspite of the more general
setting, the information theoretic bounds of [7] match the
linear outer bounds of [8]. Since information theoretic bounds
directly imply linear outer bounds, the linear outer bounds
of Bresler et al. are immediately recovered as special cases
of the information theoretic outer bounds of Wang et al.
Comparing achievability and outer bounds, the two coincide
in the sense of a spatially normalized DoF metric. Whether
the achievability matches the outer bound without the spatial
normalization is subject to the validity of the spatial invariance
conjecture of Wang et al. [7], which essentially states that
time, frequency and space dimensions are equivalent from
a DoF perspective (so that there is no loss of generality in
a spatial normalization). Remarkably, with the exception of
the single-antenna setting, only non-asymptotic interference
alignment schemes are used in [7], [8] to achieve the DoF
outer bounds.

2) Asymptotic Schemes: For generic channels, the
CJ scheme was introduced by Cadambe and Jafar in [4]
to show that the K user interference channel with a single
antenna at each node (SISO setting) has a total of K

2 DoF
almost surely. The key to this result was aligning interference
almost perfectly in half of the received signal space by
precoding over an asymptotically large number of channel
uses, over independently time-varying or frequency-selective
channels. The CJ scheme forms the basis of many, if not
most, asymptotic schemes encountered in a variety of settings
ranging from X networks [11], cooperative and cognitive
communications [12]–[14], to distributed storage exact
repair [15] and multiple unicast network coding [16], and
translates, quite remarkably, into the rational dimensions
framework for constant channels as well [17], [18].

Originally proposed for the SISO setting, the CJ scheme
was directly extended to the K user MIMO interference
channel in [4] by a decomposition approach, viewing a K user
interference channel where each node has M antennas, as
a K M user interference channel where each node has a

single antenna. The decomposition approach achieves the
optimal DoF value of K M

2 for this network. Applying the CJ
scheme to the SISO setting obtained by the decomposition of a
MIMO interference channel, is also shown to be a DoF optimal
strategy in [19] and [20] for K user MIMO interference
networks where each transmitter has M antennas and each
receiver has N antennas, provided that the number of users
exceeds a threshold that depends on M, N . The need for a
SISO decomposition for the CJ scheme can be understood
as follows: The CJ scheme requires commutativity of matrix
multiplication, which is not satisfied by the generic channel
matrices in MIMO networks (which produce non-commuting
block diagonal channels). However, decomposing the MIMO
network into a SISO network and allowing channel extensions
over time/frequency creates diagonal channel matrices, which
satisfy the commutative property. While at first, the limitation
of having to decompose MIMO channels, may appear to
be a limitation of the CJ scheme, it is remarkable that the
CJ scheme remains DoF optimal in spite of the decom-
position. The decomposability property is further discussed
in [20]–[22].

3) Rank-Deficient MIMO Interference Networks: For rank
deficient MIMO interference networks, much less is known.
A study of achievable DoF is initiated by Chae et al. in [23]
under the assumption that there are M antennas at each
transmitter, N antennas at each receiver, and that the N × M
channel matrix from each transmitter to each receiver is of
rank D. However, in the absence of outer bounds for rank-
deficient channels, the optimality of the achieved DoF is not
settled. Following the preliminary version of this work [24],
Zeng et al. have found the DoF for the 3-user rank deficient
interference channel independently and in parallel work [25],
with MT antennas at all transmitters and MR antennas at all
receivers and with channel matrices of rank Di , i ∈ {1, 2, 3}.
At each receiver, the desired signal is assumed to arrive
through a channel of rank D0, interference from the ‘previous’
transmitter arrives through a channel of rank D1 and the inter-
ference from the ‘next’ transmitter arrives through a channel
of rank D2. Other studies of rank-deficient wireless networks
include the DoF characterization of 2-user rank deficient
MIMO X channel under arbitrary antenna configurations by
Agustin and Vidal in [26].

II. SUMMARY OF CONTRIBUTIONS

First, let us consider settings that correspond to
non-asymptotic schemes. Interference alignment and
zero-forcing through spatial beamforming are the core
principles of non-asymptotic linear interference management
schemes. Interestingly, rank-deficiencies impact the two in
opposite ways, favoring one and limiting the other. Rank-
deficiencies create more opportunity for zero-forcing because
the channel null-space size is increased. However, there is less
opportunity for interference alignment because reduced range
spaces imply reduced overlaps between range spaces. Given
the contrasting effects on alignment and zero-forcing, it is not
clear a-priori whether the overall impact of rank-deficiencies
should be positive or negative. Our results for rank-deficient
2-user and 3-user MIMO interference channels shed light on
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this tradeoff. For both 2-user and 3-user rank deficient MIMO
interference channels, our focus is mainly on achievable
schemes for constant channels, which can also be used for
time-varying channels. For the 2-user rank deficient MIMO
interference channel, we (i) provide a tight outer bound to
show that the previously known achievable DoF found by
Chae et al. in [23] in the symmetric case are optimal, and
(ii) we generalize the result to fully asymmetric settings. For
the 3-user rank deficient MIMO channel, we characterize
the DoF of a cyclically symmetric setting where all nodes
have the same number of antennas (M). Our DoF results for
the 3-user case are consistent with those derived in parallel
work by Zeng et al. if we set MT = MR in [25], however
while the achievable scheme of [25] requires asymptotic
number of symbol extensions when MT = MR , we present a
non-asymptotic achievable scheme that requires at most two
symbol extensions.

Next, let us consider asymptotic schemes, and in particular,
the idea of decomposing the MIMO network into a SISO
network where the CJ scheme is applicable. If the MIMO
channels were comprised of independent channel coefficients,
then the decomposition of the MIMO network into a SISO
network preserves the channel independence requirements of
the CJ scheme. With rank-deficiencies, however, this is no
longer the case. The direct and cross channels are dependent
in the decomposed SISO network and it is easy to see that
the basic requirements of the CJ scheme are violated. If the
CJ scheme is directly applied there must be a loss of DoF due
to the channel dependencies. This observation is particularly
ominous given that viable alternatives to the CJ scheme are not
known for over-constrained interference networks. Our results
for rank-deficient K -user MIMO interference channels shed
light on this conundrum. For K -user rank deficient MIMO
interference channel, we study achievable schemes for time-
varying channels, which often serve as stepping stones to
translate DoF results to constant channels. In particular, we
show that for the K -user rank deficient interference channel,
when all nodes have M antennas, all direct channels have
rank D0, all cross channels are of rank D, and the channels
are otherwise generic, the optimal DoF value per user is
min(D0, M − min(M,(K−1)D)

2 ). Our result improves upon the
best known achievable DoF from prior work, and we present
a tight outer bound to prove its optimality.

Remarkably, our results indicate that for interference
channels, the rank-deficiency of direct channels does not
help and the rank-deficiency of cross-channels does not hurt.
The main technical challenge in the paper is to account
for the spatial dependencies introduced by rank deficiencies
in the interference alignment schemes that typically rely on
the independence of channel coefficients.

We start with a general system model which will be
specialized in later sections for different settings.

III. SYSTEM MODEL

The K -user MIMO interference channel is comprised
of K transmitters, K receivers, and K independent
messages as shown in Fig. 1. Transmitter k, denoted

Fig. 1. K -user MIMO Interference Network with Rank Deficient Channels.

as Tk , is equipped with Mk antennas and has message
Wk intended for its corresponding receiver, Receiver
k, denoted as Rk , is equipped with Nk antennas.
At time index t ∈ Z+, Receiver j observes the vector
Y j (t) ∈ CN j ×1 given by

Y j (t) =
K∑

i=1

H j i (t)Xi (t) + Z j (t) (1)

wherein Xi (t) ∈ CMi×1 is the vector sent from Transmitter i ,
H j i(t) ∈ CN j ×Mi is the channel matrix between Transmitter i
and Receiver j and Z j (t) ∈ CN j ×1 is the i.i.d. zero mean
unit variance circularly symmetric complex additive white
gaussian noise (AWGN) vector. Each transmitter must satisfy
an average power constraint E(||Xi (t)||2) ≤ ρ, where ρ is
referred to as the Signal-to-Noise Power Ratio, or the SNR.
Global channel knowledge is assumed to be perfectly available
at all nodes, and the transmitters are assumed to know the
channels instantaneously.

The most important aspect of the system model for this work
is the assumption that channels are rank-constrained, so that
the channel matrix H j i(t) has rank D ji almost surely. Aside
from the rank-constraint, the channel matrices are generic,
i.e., they possess no special structure. Mathematically, an
N j × Mi generic matrix subject to a rank-constraint D ji may
be defined as the product of a pair of independently generated
matrices of dimensions N j × D ji and D ji ×Mi , each of which
has its elements drawn from a continuous distribution with
support bounded away from zero and infinity.

Achievable rates, capacity region, and DoF are defined in
the standard sense (see [4]). In this work we are primar-
ily interested in the sum-DoF value for almost all chan-
nel realizations, defined as d" = limρ→∞ R"(ρ)/ log(ρ),
wherein R"(ρ) is the maximum sum rate of the channel
at Signal-to-noise ratio, ρ. We also denote the sum DoF as
DoF"(Mi , N j , D ji ), and the sum DoF normalized by the
spatial dimension as

DoF"(Mi , N j , D ji ) = max
q∈Z+

DoF"(q Mi , q N j , q D ji )

q
(2)

Notation: Z+ denotes the set of positive integers, and
C denotes the set of complex numbers. For the matrix H,
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Fig. 2. 2-user Rank Deficient Interference Channel.

H(i, :) and H(:, j ) denote its i th row and j th column vector,
respectively. When dealing with Hk(k+1) and Hk(k−1), indexing
is interpreted in a circular wrap-around manner, modulo the
number of users, e.g., the K -th user is same as the 0-th
user. We use the notation o(x) to represent any function
f (x) such that limx→∞

f (x)
x = 0. We denote the number of

columns of matrix V as |V|, and V† is used to denote the
conjugate transpose of matrix V. The term nullspace refers
to the right nullspace, unless otherwise explicitly mentioned.
(x)+ indicates max(0, x). IM denotes the M × M identity
matrix and ⊗ denotes the Kronecker product. Matrices are
notated using bold font while vectors are denoted with normal
font.

IV. 2-USER CHANNEL

The DoF of the 2-user rank deficient interference channel
is presented in the following theorem.

Theorem 1: For the 2-user rank deficient MIMO interfer-
ence channel, the sum-DoF value is given by

DoF" =min{D11+D22, M1+N2 − D21, M2+N1−D12} (3)
Placing the result in perspective with prior work, recall

that in [23] Chae et al. have considered a symmetric version
of the 2-user MIMO interference channel, for which they
have established an achievable DoF value. Theorem 1 shows
that the achievable DoF value of Chae et al. is optimal in
the symmetric setting, and generalizes the result to arbitrary
antenna configurations and arbitrary rank-constraints, shown
in Figure 2. This DoF result holds for both time-varying and
constant channel coefficients.

Note that the rank-deficiency of direct channels does not
help the DoF and the rank-deficiency of cross-channels does
not hurt. Since interference-alignment is not a possibility, the
achievability is based on simple zero-forcing, which benefits
from the increased null-space of cross channel matrices.

A. Theorem 1: Proof of Achievability

Since the proof is similar to that of the 2-user full rank
interference channel [6], we do not repeat all the details.
Transmitter i has Mi antennas, Receiver j has N j antennas
and the channel between Transmitter i and Receiver j is of
rank D ji . Figure 3 illustrates the proof setting with an example

where M1 = 5, M2 = 4, N1 = 4, N2 = 4, D11 = 3, D22 = 3,
D12 = 2 and D21 = 4, where a total of 5 DoF are achieved.

Step 1: We consider a singular value decomposition
(SVD) of the interference channels H12 = U1#12V†

1 and
H21 = U2#21V†

2 wherein U1, U2, V1, V2 are N1 × N1,
N2 × N2, M2 × M2, M1 × M1 unitary matrices, respectively.
#12 and #21 are N1 × M2, N2 × M1 diagonal matrices
with singular values of H12, H21 respectively on the main
diagonal and zeros elsewhere. Using the standard MIMO SVD
diagonalization approach as in [6], we absorb the unitary
matrices into the corresponding input and output vectors as:

Ȳ1 = H̄11 X̄1 + #12 X̄2 + Z̄1 (4)

Ȳ2 = H̄22 X̄2 + #21 X̄1 + Z̄2 (5)

where Ȳ1 = U†
1Y1, Ȳ2 = U†

2Y2, X̄1 = V†
2 X1, X̄2 =

V†
1 X2, Z̄1 = U†

1 Z1, Z̄2 = U†
2 Z2, H̄11 = U†

1H11V2 and
H̄22 = U†

2H22V1. Here, Ȳ j , Z̄ j ,∀ j ∈ {1, 2} are N j ×1 vectors
and X̄i ,∀i ∈ {1, 2} are Mi ×1 vectors. Element m (m-th row)
of X̄i , Ȳi are represented as X̄m

i , Ȳ m
i , respectively. Since first

D12 columns of #12 have nonzero values on the diagonal
and other columns are zeros, only X̄1

2, X̄2
2, . . . , X̄ D12

2 present
interference from T2 at R1. Similarly only X̄1

1, X̄2
1, . . . , X̄ D21

1
present interference from T1 at R2. Thick lines in Figure 3
represent interference links after diagonalization, and there
are 2 parallel paths from T2 to R1 and 4 parallel paths from
T1 to R2.

Step 2: At Transmitter T1, inputs X̄1
1, X̄2

1, . . . , X̄ (M1−D11)
1

are set to zero, i.e., we do not transmit on these inputs,
denoted as M ′

1 = M1 − D11. This leaves D11 available inputs,
X̄ (M1−D11+1)

1 , . . . ., X̄ M1
1 at T1. In Figure 3, 2 transmit antennas

have inputs set to zero (white circles) and remaining 3 dark
circles indicate the available inputs at T1.

Step 3: At Receiver R1, D11 = 3 is the dimension
of desired signal received from T1. Hence we consider
only outputs Ȳ 1

1 , Ȳ 2
1 , . . . , Ȳ D11

1 and discard remaining outputs
Ȳ (D11+1)

1 , . . . ., Ȳ N1
1 marked in white circles. Receiver R1 uses

D11 dimensions for its desired signal since its desired channel
rank is D11. Hence N ′

1 = N1 − D11 is the number of tolerable
interference dimensions at R1. Receiver R1 is exposed to
D12 dimensions from the M2 dimensional space available
to Transmitter T2 since the channel between T2 and R1 is
of rank D12. Since R1 can tolerate only N ′

1 dimensions
of interference, T2 uses only N ′

1 of these D12 dimensions,
transmitting nothing on (zero forcing) the remaining D12 − N ′

1
dimensions. In addition, T2 is free to transmit on the M2 − D12
dimensions that are not seen by R1. Thus, T2 transmits its
message using M2 − D12 + N ′

1 = M2 − (D11 + D12 − N1)
dimensions. Figure 3 illustrates such an example.

Step 4: Discarding (D12+D11−N1) inputs at T2 ensures that
at Receiver R1, interference is eliminated and R1 can decode
the message from Transmitter T1 to achieve D11 DoF.

Step 5: Receiver R2 receives interference from Transmitter
T1 over channel of rank D21. In Step 2, M ′

1 inputs have
been set to zero, hence remaining (D21 − M ′

1)
+ inputs cause

interference at R2. In order to eliminate interference from T1,
Receiver R2 discards (D21 − M ′

1)
+ outputs. Therefore, R2

receives signal from T2 only on its N2 − (D21 − M ′
1)

+
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Fig. 3. Achievability for 2-user Rank deficient channel.

remaining outputs. In Figure 3, Transmitter T1 sets M ′
1 = 2 of

its inputs to zero, and Receiver R2 discards (D21 − M ′
1)

+ = 2
outputs. R2 decodes its signal using remaining N2 − (D21 −
M ′

1)
+ = 2 outputs.

Step 6: From step 3, we have M2 −(D11 + D12 − N1) inputs
available at T2 so that no interference is caused at R1. From
step 5, we have N2 − (D11 + D21 − M1)+ outputs available at
R2 that are interference-free. Channel between T2 and R2 is
of rank D22. Hence communication between T2 and R2 takes
place with DoF of min(M2 − (D11 + D12 − N1), N2 − (D11 +
D21 − M1)+, D22).

Combining Steps 4 and 6, we have established achievability
of D11 + min(M2 − (D11 + D12 − N1), N2 − (D11 + D21 −
M1)+, D22) total DoF for 2-user channel. This expression
can be evaluated to be equal to min{D11 + D22, M1 + N2 −
D21, M2 + N1 − D12}. Setting inputs or outputs to zero is
equivalent to performing zero-forcing at the transmitter or
receiver, respectively.

B. Theorem 1: Proof of Outer Bound

The trivial outer bound on total DoF of D11+D22 is obvious
for this channel. The following converse proof is similar to that
of full rank channels (refer [6, Th. 1]), and so, once again we
only present a proof sketch for rank-deficient channels.

For the sum capacity of this channel to be bounded above
by 2 constituent MAC channels, each receiver must be able
to decode messages from both transmitters. For this, the
receiver must have access to the full interference signal space,
i.e., it does not get zero-forced at the transmitters. Similar to
[6, Th. 1], we replace the original additive noise at one
receiver, say R1, with noise having different (less power)
statistics. Note that this does not make the capacity region
smaller since the original noise statistics can be obtained
by locally generating and adding noise at R1. Hence, if R1

was originally able to decode its intended message, it is still
capable of decoding its message with modified noise statistics.
In this sense, noise is modified at Receiver R1, if needed, so
that it sees a better channel than Receiver R2, and the message
intended for Receiver R2 becomes decodable at Receiver R1.

In the 2-user rank deficient MIMO interference channel,
Receiver R1 can access only a D12 dimensional signal space
of Transmitter T2 in its M2 dimensional space. This implies,
T2 can zero-force part of its signal to R1 and R1 cannot decode
the message from T2 by reducing noise. Hence only through
additional antennas at R1 can it access the full signal space
of T2. Additional receiver antennas cannot hurt, so the con-
verse argument is not violated. To this end, we add M2 − D12
antennas at R1. The channel coefficients corresponding to the
new antennas are generic, so that the interference channel
between T2 and R1, now a matrix of size (N1+M2−D12)×M2,
will have full rank almost surely. With this, R1 can obtain
a stronger channel to input of T2, so that if R2 can decode
the message of T2, so can R1. R1 can locally generate noise
and add to its received signal which is statistically equivalent
noise signal as seen by R2. After decoding and subtracting
its desired signal from T1, R1 has a less noisy channel to T2
and can decode the message sent by T2. Similarly, additional
antennas are added at Receiver R2, so that it can access the
full signal space of Transmitter T1. The interference channel
between T1 and R2, a matrix of size (N2 + M1 − D21) × M1,
has full rank almost surely. With this, R2 can obtain a stronger
channel to input of T1, so that if R1 can decode the message
of T1, so can R2.

Now, we argue that the sum capacity is bounded above by
corresponding MAC channels (M1, M2, N1 + M2 − D12) and
(M1, M2, N2 + M1 − D21) with modified additive noise. Since
(N2 + M1 − D21) ≥ M1 and (N1 + M2 − D12) ≥ M2, it
can be seen that [6, Th. 1] holds true for above argument
with N1 modified as N1 + M2 − D12 and N2 modified as
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N2 + M1 − D21. R1 can decode its message and subtract from
its received signal vector, and we assume a genie provides X1
to R2, so that R2 can subtract out interference from T1. While
initial output vectors Y1 and Y2 are of size (N1+M2−D12)×1
and (N2+M1−D21)×1 respectively, after noise reduction and
SVD operations, output vectors Y1new and Y2new are both of
size M2 ×1. With these changes, R1 and R2 would be able to
decode both messages. Hence, the total DoF value is upper-
bounded as DoF ≤ min(D11 + D22, N2 + M1 − D21, N1 +
M2 − D12). Thus, we get the converse result of Theorem 1. !

Remark 1: Reciprocity holds true for rank deficient chan-
nels similar to full rank channels, i.e., DoF is unaffected if
M1 and M2 are switched with N1 and N2 respectively.

Remark 2: For the symmetric special case, i.e., the
(M, N, D) MIMO interference channel where each transmitter
has M antennas, each receiver has N antennas and all channel
matrices are of rank D, optimal DoF can be calculated as
min(M + N − D, 2D), which is the same as the achievable
DoF value established by Chae et al. [23], now proved to be
optimal.

V. 3-USER CHANNEL

To avoid an explosion of parameters when considering more
than 2 users, we impose certain assumptions of symmetry.
For the 3-user rank deficient interference channel, we assume
that all transmitters and receivers have M antennas, and
channels H( j+k) j are of rank Dk, k ∈ {0, 1, 2}. Thus, at
each receiver, the desired signal arrives through a channel of
rank D0, interference from the ‘previous’ transmitter arrives
through a channel of rank D1 and the interference from the
‘next’ transmitter arrives through a channel of rank D2, where
transmitter and receiver indices are circularly wrapped around
modulo 3. Under this assumption of symmetry, the DoF result
is presented in the following theorem.

Theorem 2: For the 3-user rank deficient MIMO interfer-
ence channel with M antennas at each node, and channels
H( j+k) j restricted to rank Dk , j, k ∈ {0, 1, 2}, the spatially
normalized DoF value per user is given by

DoF"

3
= min

{
D0, M − min(M, D1 + D2)

2

}
(6)

Placing the result into perspective, we note that the DoF
value in Theorem 2 represents a strict improvement over the
achievable DoF previously established by Chae et al. in [23],
and matches the achievable DoF value established in parallel
work by Zeng et al. in [25]. Although the results are con-
sistent with those of [25], our achievable scheme requires
atmost 2 symbol extensions while [25] involves large number
of symbol extensions for the symmetric MT = MR case.
We also present a tight information theoretic outer bound that
establishes the optimality of this DoF value.

The spatially normalized DoF result holds for both
time-varying and constant channel coefficients. This follows
similar to [7, Th. 1], by scaling the number of antennas
by q = 2, when DoF is non-integer. For channel with
time-varying coefficients, Theorem 2 is also the DoF value,
achievable with symbol extensions. Based on the spatial-scale
invariance property [7], which is consistent for a wide variety

Fig. 4. 3-user Rank Deficient Interference Channel.

of networks, we conjecture that the result is also the DoF for
the 3-user rank-deficient channel with constant coefficients.

The result of Theorem 2 is consistent with the observation
that the rank-deficiency of cross-channels does not hurt and
the rank-deficiency of direct channels does not help. Since
the rank-deficiency of cross-channels increases opportunities
for zero-forcing and reduces the opportunities for interfer-
ence alignment, it is evident that the gain from increased
zero-forcing more than offsets the loss from reduced inter-
ference alignment. Compared to the full-rank case where
everyone achieves half the cake, it is remarkable that half-
the-cake (i.e., M/2 DoF per user) remains achievable as long
as the direct channels support it.

We consider the setting shown in Figure 4.

A. Theorem 2: Proof of Achievability

The achievability proof for the 3-user rank deficient interfer-
ence channel is first presented for cases where direct channels
are full rank. Later, achievability with rank deficient direct
channels is discussed. We categorize beamforming vectors
used at Transmitter k to 4 types:

VZa
k - Zero-forcing vectors in the nullspace of H(k−1)k ,

maximum number of linearly independent vectors chosen can
be min(D1, M − D2) (independent from VZc

k ). Vectors used
at Transmitter k will not cause interference at Receiver k − 1.

VZb
k - Zero-forcing vectors in the nullspace of H(k+1)k ,

maximum number of linearly independent vectors chosen can
be min(D2, M − D1) (independent from VZc

k ). Vectors used
at Transmitter k will not cause interference at Receiver k + 1.

VZc
k - Zero-forcing vectors in the common nullspace

of H(k−1)k and H(k+1)k (overlapping dimensions in the
2 nullspaces). Maximum number of linearly independent vec-
tors chosen can be M − D1 − D2 since M − D1 and M − D2
dimensional generic nullspaces overlap in a M − D1 − D2
dimensional space at each transmitter (when M ≥ D1 + D2).
Vectors chosen in these overlapping dimensions do not cause
interference at either of the 2 unintended receivers.

VA
k - Alignment vectors that align signal at a receiver in

the span of interference from other unintended transmitter.
Maximum number of linearly independent vectors chosen can
be D1 + D2 − M since D1 and D2 dimensional generic
interference subspaces overlap in D1 + D2 − M dimensional
space at each receiver (when M < D1 + D2).
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TABLE I

ACHIEVABLE DOF IN 3-USER CHANNEL FOR DIFFERENT D1, D2 WITH D0 = M

Different cardinalities are chosen for these 4 types of beam-
forming vectors to form the transmit beamforming matrix. The
beamforming matrix at each transmitter is then of the form
Vk = [VZa

k VZb
k VZc

k VA
k ]. We now discuss achievability by

analyzing the beamforming vector cardinalities listed in Table I
and by using linear dimension counting arguments.

Using Table I, we first analyze the setting in which direct
channels are full rank and cross channels are rank deficient.
The first 2 cases correspond to zero-forcing based achievability
schemes, and the last case involves interference alignment.

For convenience, only the sum cardinality of the cho-
sen zero-forcing vectors VZa

k and VZb
k is specified,

i.e., |VZa
k | + |VZb

k |. This is because each of these vectors
chosen at a transmitter helps in cancelling interference at
one receiver but causes interference at another receiver. Since
we have 2 unintended transmitters causing interference, these
zero-forcing vectors can be treated in the same manner.
dim(Desired) and dim(Interference) are the number of desired
and interference signal dimensions seen at each receiver
respectively. Then we have,

dim(Desired) = |VZa
k | + |VZb

k | + |VZc
k | + |VA

k |
dim(Interference) = |VZa

k | + |VZb
k | + |VA

k |

While the first relation is trivial, the second one can
be explained as follows: VZc

k at Transmitter k do not
cause interference at both unintended receivers. Therefore
dim(Interference) does not contain that term. Further, both
zero-forcing (using non-overlapping nullspace) and interfer-
ence alignment are similar in the sense that, a vector chosen
for zero-forcing one receiver causes interference at the other
receiver, and a vector chosen for aligning interference at one
receiver causes interference at another. Hence at each receiver,
dim(Interference) is the sum of the number of zero-forcing
vectors (using non-overlapping nullspace) and the number of
Interference alignment vectors. Overlapping nullspaces and
interference are illustrated in Fig 5.

For the first case of Table I, |VA
k | = 0 since interfer-

ence alignment is not possible (D1 + D2 ≤ M). |VZc
k | is

chosen to be the maximum possible overlapping nullspace
dimensions. Remaining vectors are chosen from the non-
overlapping nullspace and chosen number of vectors |VZa

k | +
|VZb

k | < D1 + D2, maximum number of non-overlapping
nullspace dimensions. At each receiver, interference occupies
|VZa

k | + |VZb
k | dimensions.

For the second and third cases, |VZc
k | = 0 since there

are no overlapping nullspace dimensions at the transmitters
(D1 + D2 > M). For case 2, though alignment is possible,
beamforming matrix can be formed with the zero-forcing

vectors only, i.e., |VZa
k | + |VZb

k | can be chosen as M
2 . This

is because M
2 ≤ 2M − D1 − D2, dimensions in the nullspaces

of H(k−1)k and H(k+1)k .
Case 3 involves both zero forcing and interference align-

ment. At Transmitter k ∈ {1, 2, 3}, M − D1 symbols are sent
along the M − D1 dimensional null space of the channel to
Receiver k−1 and M − D2 symbols are sent along the M − D2
dimensional null space of the channel to Receiver k + 1.
This is performed by choosing columns of a full rank linear
transformation Tk to be beamforming vectors VZa

k of size
M − D1 and VZb

k of size M − D2.

H(k−1)kVZa
k = 0, H(k+1)kVZb

k = 0 k ∈ {1, 2, 3}

The remaining D1 + D2 − M dimensional space at
the transmitter will be used to send the remaining
M/2 − (M − D1) − (M − D2) = D1 + D2 − 3M/2 symbols
that participate in interference alignment. Since the cross chan-
nel matrices are rank-deficient, eigen vector solution of [4]
cannnot be used directly, since inverse of the matrices do not
exist. Hence, one of the challenging aspects is to align vectors
using rank deficient channel matrices. We will now show that
using appropriate linear transformations at the transmitters and
the receivers, interference alignment can be performed.

Within the M dimensions available to Receiver k, the
D1 dimensional signal space accessible from Transmitter k −1
overlaps with the D2 dimensional signal space accessible
from Transmitter k + 1 in a (D1 + D2 − M) dimensional
subspace. If these overlapping spaces can be accessed at all
the transmitters and the receivers, interference alignment can
be performed. Note that at the transmitters, we consider both
zero-forcing and alignment vectors to access the D1 or D2
dimensional subspaces.

At the 3 receivers, matrices R̂k, k ∈ {1, 2, 3} of size
M × (D1 + D2 − M) are constructed, that represent the signal
space overlap of D1 or D2 dimensional subspaces seen from
Transmitter k − 1 and k + 1 respectively.

R̂k = span(Hk(k−1)) ∩ span(Hk(k+1)) k ∈ {1, 2, 3} (7)

wherein A ∩ B denotes the intersection of A and B , which
can be identified as N (N (A) ∪ N (B)), and N (X) denotes
the nullspace of X .

Interference will be aligned in these receiver signal
spaces R̂k . These overlapping signal spaces R̂k , are projected
back to the transmitters, such that the following equations are
satisfied.

H(k+1)kT̃1
k = R̂k+1 (8)

H(k−1)kT̃2
k = R̂k−1 k ∈ {1, 2, 3} (9)
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Fig. 5. M-dimensional signal space in 3-user interference channel.

wherein the matrices T̃1
k , T̃2

k are of size M × (D1 + D2 − M).
The matrices T̃1

k, T̃2
k do not include vectors from the nullspaces

of channels H(k+1)k and H(k−1)k , respectively. After projecting
back the signal spaces, they are combined with zero-forcing
vectors to identify the signal space seen from Transmitter k
at the receivers k − 1 and k + 1. With this, Transmitter k has
D1 dimensional space seen at Receiver k + 1 and D2 dimen-
sional space seen at Receiver k − 1, which overlap in a
(D1+D2−M) dimensional space, denoted as T̂k, k ∈ {1, 2, 3}.

T̂k = span([T̃1
k VZb

k ]) ∩ span([T̃2
k VZa

k ]) (10)

In order to align interference, above M × (D1 + D2 − M)
submatrix, T̂k will be constructed, such that the same space
is seen at both unintended receivers k − 1 and k + 1. Linear
transformations T̂k , R̂k represent the signal space overlap at
the transmitters and the receivers, identification of which
enables us to perform one-one alignment of vectors, as follows.

Transmitter k uses the following M × M linear transfor-
mation Tk using the signal space overlap matrix, T̂k and
zero-forcing vectors.

Tk = [
VZa

k T̂k VZb
k

]
k ∈ {1, 2, 3} (11)

Receiver k sees M − D1 dimensional interference from
Transmitter k − 1 and M − D2 dimensional interference from
Transmitter k + 1. These (M − D1) + (M − D2) interference
symbols are zero-forced by projecting the M dimensional
received space into the M −(M − D1)−(M − D2) dimensional
space that is orthogonal to the interference symbols. This is
performed using a full rank linear transformation Rk of size
(D1 + D2 − M) × M at Receiver k.

Rk[Hk(k−1)VZa
k−1 Hk(k+1)VZb

k+1] = 0, k ∈ {1, 2, 3} (12)

With this, residual interference at Receiver k due to zero-
forcing beamforming vectors chosen at all transmitters are
zero-forced. For the remaining symbols, i.e., for the remaining
interference alignment problem, the zero forcing operations at
the transmitters and receivers, described thus far leave us with
a 3-user MIMO interference channel with D1 + D2 − M input
dimensions at each transmitter and D1 + D2 − M dimensions
at each receiver, with the following channel matrices. This is
illustrated in Figure 6.

H̄kj = RkHkj T j (13)

We have constructed H̄′ j i by considering D1 + D2 − M
columns of matrix H̄ j i after excluding first M − D1 and last
M−D2 columns. Since D1+D2−M is not larger than D1, D2,
these channels are full rank, generic channels over which the
eigenvectors-based interference alignment solution of [4] can
be directly applied to send the remaining D1 + D2 − 3M/2
symbols (Note that 2 channel uses are needed for the aligned
symbols if M is an odd number, each corresponding to a new
set of zero-forcing symbols). Thus, the effective receiver sees a
D1 + D2 − M dimensional generic space within which D1 +
D2 − 3M/2 aligned interference dimensions and (M − D1) +
(M−D2)+(D1+D2−3M/2) desired dimensions are resolved.

The beamforming matrices V̄k have (M − D1) + (M − D2)
columns of the identity matrix, shown on the leftmost and the
rightmost column in the example below. Remaining columns
of V̄k are based on the eigen-vector solution of dimension
D1 + D2 − M and rows of zeros above and below. Suppose
M = 6 and D1 = D2 = 5, V̄k constructed with 2 zero-forcing
vectors and 1 alignment vector, have the following structure.

V̄k =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 va

k1 0
0 va

k2 0
0 va

k3 0
0 va

k4 0
0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

wherein V̄A
k = [va

k1 va
k2 va

k3 va
k4]T is the interference alignment

vector constructed as in [4], which is then extended with
M − D1 rows of zeros above and M − D2 rows of zeros below
to form VA

k . Due to the construction of Tk using the signal
space overlap T̂ k , vectors V̄ A

k align one-one at the receivers.
The resultant beamforming matrix Vk used at Transmitter k is
then

Vk = TkV̄k = [VZa
k VA

k VZb
k ] (14)

Linear transformations at all transmitters and receivers
Tk, Rk are full rank matrices based on construction described.
It can be noted that matrices V̄k and Vk are full rank since
columns are linearly independent due to orthogonal construc-
tion of V̄k . Note that desired channels are not used in the
design of precoding vectors, which maintains their generic
character and thereby the linear independence of desired signal
vectors from the interference. We also note that a similar
layered precoding approach is presented in [25] as well.
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Fig. 6. Alignment in 3-user interference channel.

When direct channels are rank deficient, no more than
D0 vectors can be used for beamforming. For all values
of D0 such that D0 ≥ M − min(M,D1+D2)

2 , same DoF can
be obtained as in Table I by choosing specified number
of beamforming vectors. When D0 < M − min(M,D1+D2)

2 ,
we send only D0 beamforming vectors corresponding to all
3 cases, choosing first the zero-forcing vectors and then the
alignment vectors as needed. In all cases, dim(Interference) +
dim(Desired)≤ M since both desired and interference dimen-
sions reduce with these changes.

Combining the DoF results for the 3 cases of Table I,
achievability of min(D0, M − min(M,D1+D2)

2 ) DoF per user has
been proved.

B. Theorem 2: Proof of Outer Bound

Converse proofs are described separately for the two cases:
D1 + D2 > M and D1 + D2 ≤ M . For both cases, we first
present the change of basis operations similar to [7], and then
discuss the genie-aided outer bounds. We first present a lemma
which is used for proving the outer bounds.

Lemma 1: For the K -user rank deficient interference
channel, if a genie provides a subset of the noisy transmitted
signals, denoted as G, to Receiver k, then we can outer bound
the mutual information term I (W1, W2, · · · , WK ; Y n

k ,G) as
follows:

I (W1, · · · , WK ; Y n
k ,G)

= I (W1, · · · , WK ; Y n
k )

+ I (W1, · · · , WK ;G|Y n
k ) (15)

≤ Mn log ρ + I (W1, · · · , WK ;G|Y n
k )

+ n o(log ρ) (16)

≤ Mn log ρ + h(G|Y n
k ) − h(G|Y n

k , W1, · · · , WK )

+ n o(log ρ) (17)

≤ Mn log ρ + h(G|Y n
k ) + n o(log ρ) (18)

= Mn log ρ + h(G|Y n
k , Wk) + I (G; Wk |Y n

k )

+ n o(log ρ) (19)

≤ Mn log ρ + h(G|Y n
k , Wk)

+ n o(log ρ) + o(n) (20)
Proof: In the derivations above, (15) follows from

the mutual information chain rule. (16) is obtained because
Receiver k has only M antennas. (17) follows from the defini-
tion of mutual information. (18) follows since given all K mes-
sages, one can reconstruct the genie signals G within bounded
noise distortion. (19) follows from the definition of mutual
information, and (20) follows because of Fano’s inequality,
i.e., for a reliable coding scheme H (Wk|Y n

k ) ≤ o(n).
B.1) Outer Bound When D1 + D2 > M:

B.1.a) Change of basis:

Step 1: For each receiver, a linear transformation Rk is
designed such that the first M − D2 antennas of Receiver k do
not hear Transmitter k − 1 (left nullspace of Hk(k−1)) and the
last M − D1 antennas of Receiver k do not hear Transmitter
k + 1 (left nullspace of Hk(k+1)). Corresponding signals seen
at Receiver k are denoted as Ska and Skc , respectively. This is
possible since rank(Hk(k+1)) = D1 and rank(Hk(k−1)) = D2.
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Fig. 7. Basis change for 3-user channel: D1 + D2 > M.

Step 2: In the M-dimensional space at Transmitter k,
there is a D1-dimensional subspace orthogonal to M − D1
receiver antennas (k − 1)a and D2-dimensional subspace
orthogonal to M − D2 receiver antennas (k + 1)c. These two
subspaces overlap in I = D1 + D2 − M dimensions within the
M-dimensional space seen by the transmitter, and these
I columns are chosen for matrix Tk at the transmitter, and the
signal transmitted is denoted as Xkb . Other columns of Tk are
chosen such that the first M−D2 antennas of Transmitter k are
not heard by Receiver k + 1 (right nullspace of Hk(k−1)) and
the last M − D1 antennas of Transmitter k are not heard by
Receiver k − 1 (right nullspace of Hk(k+1)). Corresponding
signals sent by Transmitter k are denoted as Xka and Xkc,
respectively.

Step 3: Remaining D1 + D2 − M rows for linear transfor-
mation Rk are chosen so that they are linearly independent of
other rows. Corresponding received signal is denoted as Skb .
Resulting network connectivity is shown in Figure 7.

B.1.b) Outer bound proof: Desired signal is assumed to
be decodable and can be removed. Genie information to be
given to Receiver 1 should include 2M−(D1+D2) dimensions
- Xn

2c, Xn
3a which are not heard by receiver 1. Receiver 1 has

M equations with D1 + D2 unknowns. Hence only if genie
information includes another D1 + D2 − M dimensions, then
at Receiver 1, there will be M equations resolvable using
M unknowns.

Hence a genie provides (noisy versions of) G1 = {Xn
2b,

Xn
2c, Xn

3a} to Receiver 1. The number of dimensions available
to Receiver 1 is M + |G1| = 2M . With 2M dimensions,
Receiver 1 will be able to resolve both interfering signals
and can decode all three messages, subject to the noise
distortion. Since we are interested only in the DoF characteri-
zation, we will suppress the noise terms for compact notation
(e.g., instead of h(Xn + Zn) we will simply write h(Xn);
see [7] for the details of the approach). Over n channel uses,
sum rate can be bounded as follows.

n R∑ ≤ Mn log ρ + h(Xn
2b, Xn

2c, Xn
3a |Ȳ n

1 )

+ n o(log ρ) + o(n) (21)

≤ Mn log ρ + h(Xn
3a |Ȳ n

1 ) + h(Xn
2b|Ȳ n

1 )

+ h(Xn
2c|Ȳ n

1 , Xn
2b, Xn

3a) + n o(log ρ) + o(n) (22)

≤ Mn log ρ + h(Xn
3a) + h(Xn

2b|Xn
2a)

+ h(Xn
2c|Xn

2a, Xn
2b) + n o(log ρ) + o(n) (23)

= Mn log ρ + h(Xn
3a) + n R2 − h(Xn

2a)

+ n o(log ρ) + o(n) (24)

where (21) follows from Fano’s inequality and Lemma 1.
(22) follows from applying the chain rule. (23) follows
since dropping condition terms cannot decrease differential
entropy. Thus, we only keep Sn

1a as the condition term which
is Xn

2a . (24) is obtained because from the observations of
(Xn

2a, Xn
2b, Xn

2c) we can decode W2 subject to the noise
distortion. By advancing user indices, and adding the resulting
bounds, we have:

3n R" ≤ 3Mn log ρ + n R" + n o(log ρ) + o(n) (25)

which implies that the DoF per user, d ≤ M
2 . Since D0 is a

known outer bound, we get d ≤ min(D0,
M
2 ).

B.2) Outer Bound When D1 + D2 ≤ M:
B.2.a) Change of basis:

Step 1: For each receiver, a linear transformation Rk is
designed such that the first D1 antennas of Receiver k do
not hear Transmitter k − 1 (left nullspace of Hk(k−1)) and
the last D2 antennas of Receiver k do not hear Transmitter
k + 1 (left nullspace of Hk(k+1)). Corresponding signals
seen at Receiver k are denoted as Ska and Skc , respectively.
This is possible since rank (Hk(k+1)) = D1 and rank
(Hk(k−1)) = D2.

Step 2: In the M-dimensional space at Transmitter k,
there is a M − D1 dimensional subspace orthogonal to D1
receiver antennas (k − 1)a and another M − D2 dimensional
subspace orthogonal to D2 receiver antennas (k + 1)c. These
two subspaces have I = M − (D1 + D2) dimensional
intersection at the transmitter, wherein I columns are chosen
for matrix Tk , and the signal transmitted is denoted as Xkb .
Then, we choose other columns of Tk such that D1 antennas
of Transmitter k are not heard by Receiver k + 1 (right
nullspace of Hk(k−1)) and D2 antennas of Transmitter k are
not heard by Receiver k − 1 (right nullspace of Hk(k+1)).
Corresponding signals sent by Transmitter k are denoted as
Xka and Xkc, respectively.
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Fig. 8. Basis change for 3-user channel: D1 + D2 ≤ M.

Step 3: We consider only D1 + D2 antennas at each
receiver, remaining antennas are discarded since no signal
is received (denoted as Skb). Note that the desired signal
is already assumed to be decoded and subtracted from the
received signals. Resulting network connectivity is shown
in Figure 8.

B.2.b) Outer bound proof: Desired signal is assumed
to be decodable and can be removed. Genie information to
be given to Receiver 1 should include 2M − (D1 + D2)
dimensions - Xn

2b, Xn
2c, Xn

3a, Xn
3b which are not heard by

Receiver 1. Receiver 1 has M equations with D1 + D2
unknowns. Since D1 + D2 < M , choosing signal from only
D1 + D2 antennas results in D1 + D2 equations becoming
resolvable.

Hence a genie provides (noisy versions of) G1 = {Xn
2b,

Xn
2c, Xn

3a, Xn
3b} to Receiver 1, with which Receiver 1 will be

able to resolve both interfering signals and can decode all three
messages.

n R∑ ≤ Mn log ρ + h(Xn
2b, Xn

2c, Xn
3a, Xn

3b|Ȳ n
1 )

+ no(log ρ) + o(n) (26)

≤ Mn log ρ + h(Xn
3a|Ȳ n

1 ) + h(Xn
3b|Ȳ n

1 )

+ h(Xn
2b, Xn

2c|Ȳ n
1 , Xn

3a, Xn
3b) + no(log ρ) + o(n)

(27)

≤ Mn log ρ + h(Xn
3a) + h(Xn

3b)

+ h(Xn
2b, Xn

2c|Xn
2a) + n o(log ρ) + o(n) (28)

n R∑ = Mn log ρ + h(Xn
3a) + h(Xn

3b) + n R2 − h(Xn
2a)

+ n o(log ρ) + o(n) (29)

≤ Mn log ρ + h(Xn
3a) + (M − (D1 + D2))n log ρ

+ n R2 − h(Xn
2a) + n o(log ρ) + o(n) (30)

where (26) follows from Fano’s inequality and Lemma 1.
(27) follows from applying the chain rule. (28) follows
since dropping condition terms cannot decrease differential
entropy. Thus, we only keep Sn

1a as the condition term which
is Xn

2a . (29) is obtained because from the observations of
(Xn

2a, Xn
2b, Xn

2c) we can decode W2 subject to the noise
distortion, (30) follows since the entropy of Xn

3b is constrained
by M − (D1 + D2) antennas. By advancing user indices:

3n R" ≤ 3(2M − (D1 + D2))n log ρ + n R"

+ n o(log ρ) + o(n) (31)

which implies that the DoF per user d ≤ 2M−(D1+D2)
2 . Since

D0 is a known outer bound, we get d ≤ min(D0, M− D1+D2
2 ).

The converse result of Theorem 2 follows from the two cases
described above.

VI. K -USER CHANNEL

For the K -user rank deficient interference channel, we
assume all transmitters and receivers have M antennas, all
direct channels have rank D0 and all cross channels have
rank D. The DoF result is presented in the following theorem
for time-varying channels.

Theorem 3: For the K -user rank deficient MIMO interfer-
ence channel with M antennas at each node, where the direct
channels have rank D0, cross channels have rank D with
time-varying channel coefficients, the DoF value per user is
given by

DoF"

K
= min

{
D0, M − min(M, (K − 1)D)

2

}
(32)

Similar to the 3-user rank deficient interference channel, we
note that for the K -user rank deficient interference channel,
the rank-deficiency of direct channels does not help and the
rank-deficiency of cross-channels does not hurt. Half-the-cake
remains achievable as long as the direct channels support it.

In Figure 9, the optimal DoF value presented
in Theorem 3 are compared with the achievable DoF
established by Chae et al. in [23], assuming that each node
has M = 10 antennas and all direct and cross channels are
of rank D. The green line corresponds to the optimal DoF
while various dotted lines represent achievable DoF of [23]
for different K . It can be noted that for this setting, optimal
DoF per user being min(D, M

2 ) indicates that there is no DoF
loss as number of users (K ) increases, which is not true for
the result in [23].

While the nature of the DoF result remains consistent across
rank-deficient 2-user, 3-user and K -user MIMO settings,
the increasing complexity of achievable schemes requires
increasingly sophisticated arguments to counter channel
dependencies. The details of these arguments as well as the
corresponding outer bounds are provided in the remainder of
this work.
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Fig. 9. DoF of K -user Rank Deficient Interference Channel with M = 10:
Comparison with result of Chae at al. in [23].

A. Alignment With Spatial Dependencies

When all MIMO channels are full rank, the K -user MIMO
channel can simply be decomposed to a K M user SISO
interference channel as shown in Figure 10. However, in the
presence of rank deficiencies, there are spatial dependencies
between some of the channels, due to which decomposition
of the channel does not suffice and CJ scheme cannot be
used directly. Hence, we perform one-sided decomposition of
antennas at the transmitters, as in [21], while allowing joint
processing at the receivers. We first discuss the CJ scheme
tailored for channels with spatial dependencies and show that
the DoF can be made arbitrarily close to half per user. Then we
use the presented scheme for the K -user rank deficient channel
with one-sided decomposition, to establish achievable DoF.

Let us consider the CJ scheme for K -user SISO channel
Mk = Nk = 1, k ∈ {1, . . . , K }, with symbol extended channel
over n channel uses, such that all channel matrices H j i are
diagonal. We consider physical channels wherein the spatial
dependencies do not change over time. Therefore, a spatial
dependency which relates a set of channels, through an expres-
sion involving few generic channel variables, holds for all
realizations of those generic channel variables. We denote the
N = K (K − 1) linear transformations corresponding to the
cross channels H j i , i ̸= j as T1, T2, . . . , TN . Due to presence
of rank deficient channels in the original network, there could
be spatial dependencies between few of the cross channels.
This could result in precoding matrix Vn not being full rank.
In this section, we will show that spatial dependencies involv-
ing cross channels do not affect the achievable DoF adversely.

A.1) Interference Alignment: Let us denote the precoding
matrix used at each transmitter in the original scheme as Vn ,
and that used at each transmitter in presence of spatial
dependencies by V̄ or V̄n . Similar to construction in [5], we
construct a precoding matrix V̄ such that it is invariant to
the scaling factors T1, T2, . . . , TN . Note that the commutative
property of linear transformations Ti holds even in presence
of spatial dependencies, which is necessary for aligning inter-
ference. This is because all Ti are diagonal channels resulting
from symbol extensions.

We will now construct the precoding matrix V̄n by just
removing dependent columns of Vn . Similar to V̄n, Vn , we
will use Īn,In to denote interference space at the receivers,
with and without linearly dependent columns removed, respec-
tively. Similar to [5], all transmitters use the same set of
signaling vectors V̄n and all receivers approximately set aside
the same subspace Īn for interference.

Vn =
{
(T1)

α1(T2)
α2 . . . (TN )αN 1

s.t.
N∑

i=1

αi ≤ n,α1,α2, . . . ,αN ∈ Z+ ∪ {0}
}

(33)

V̄n = Linearly independent columns of Vn (Reordered)

(34)

wherein 1 refers to all-one column vector, and we choose
In = Vn+1, and Īn = V̄n+1.

In order to choose linearly independent columns, we first
impose a lexicographic order on the columns of Vn and Īn ,
similar to that in [21]. All columns are arranged from left to
right in increasing order of α1. Then columns corresponding
to same order of α1 are arranged in increasing order of α2,
and so on till αN . This ordering has the property that a tuple
(α1,α2, . . . ,αN ) appears before the tuple (β1,β2, . . . ,βN ),
if and only if the first αi , which is different from βi , is
smaller than βi . After reordering the columns in Vn and In ,
each column is added sequentially starting from left to right,
to V̄n and Īn , only if they are linearly independent with
the columns that have been added already, in V̄n and Īn .
Note that above reordering is only an exemplary choice for
choosing linearly independent columns, and other choices
exist.

Since we have removed only the dependent columns from
Vn,In to form V̄n, Īn , the column spans of the precoding
matrices remain the same.

span(V̄n) = span(Vn) (35)

span(Īn) = span(In) (36)

Construction of precoding matrices Vn,In similar to that
in [4] and [5] ensures that

span(Ti Vn) ⊆ span(In) (37)

span(Ti V̄n) = span(Ti Vn) (38)

Thus, we have aligned interference from all unintended
transmitters at the receivers in space Īn ,

span(Ti V̄n) = span(Ti Vn) ⊆ span(In) = span(Īn) (39)

In the original construction, number of precoding vectors
was given by |Vn | =

(n+N
N

)
and |In | =

(n+N+1
N

)
. While we

do not specify the number of precoding vectors in V̄n, Īn , we
know that |V̄n| < |Īn| = |V̄n+1|.

We have so far shown that all interference signals align
in the span of Īn at the receivers, in the presence of spatial
dependencies. Note that this is possible because we assume
all spatial dependencies to involve only the cross channels.
Now we will show that desired and interference signal spaces
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Fig. 10. K -user interference channel: Decomposition.

can occupy half the dimensions each at all receivers, almost
surely.

A.2) Half the Cake: In following proofs, we use limit infi-
mum as defined below, since for sequences whose convergence
is not guaranteed, limits may not exist.

Definition (Limit Infimum): The limit infimum (lim inf) of a
sequence xn is the largest real number b that, for any positive
real number ϵ, there exists a natural number N such that xn >
b − ϵ for all n > N .

Property: For sequence xn , if a > lim inf xn , then there is
an infinite subsequence xnk of xn such that a > xnk ∀k.

Lemma 2: For the K -user interference channel with spatial
dependencies, and precoding matrices with linearly indepen-
dent columns, denoted as V̄n and Īn = V̄n+1,

i. lim inf
n→∞

|V̄n+1| − |V̄n |
|V̄n|

= 0 (40)

ii. There exist a subsequence of n such that
|V̄n|

|V̄n| + |Īn |
can be made arbitrarily close to

1
2

(41)

Proof: i. We will prove this by contradiction. Suppose
the contrary is true, i.e., there exists a positive number ϵ > 0
such that

lim inf
n→∞

|V̄n+1| − |V̄n|
|V̄n|

> ϵ (42)

which can be written as

lim inf
n→∞

|V̄n+1|
|V̄n|

> (1 + ϵ) (43)

Considering the definition of limit infimum, above relation
implies that there exists a positive integer n0 such that for all
n > n0, following holds.

|V̄n+1|
|V̄n0 |

> (1 + ϵ)n+1−n0 (44)

Above is a recursive relation that holds for all positive
integers n. Therefore we deduce that

|V̄n| > (1 + ϵ)n−n0 |V̄n0 | (45)

Based on construction of precoding vectors in the
CJ scheme, we know that

|V̄n+1| ≤
(

n + N + 1
N

)
(46)

Hence, we have the following

|V̄n+1|
|V̄n|

≤
(n+N+1

N

)

(1 + ϵ)n−n0 V̄n0

(47)

It can be seen that for large n, term on right goes to zero
since it is a ratio of a polynomial over an exponential in n.
However, this cannot be true since |V̄n | ≤ |V̄n+1|, leading to
a contradiction.

Hence the assumption in (42) cannot hold, and we have
proved (40), i.e., growth rate of size of precoding matrix after
removing the dependent columns, reaches zero asymptotically
for large n. In other words, V̄n+1 and V̄n are “almost” of the
same size. ii. From i., note that

lim inf
n→∞

|V̄n+1|
|V̄n|

= 1 (48)

Also, for sequence xn , if a > lim inf xn , then there is an
infinite subsequence xnk of xn such that a > xnk ∀k. Using
this, we can choose n, δ such that following holds

|V̄n+1|
|V̄n|

< 1 + δ (49)

From above relation, we can deduce the best value of

|V̄n|
|V̄n| + |Īn |

= |V̄n |
|V̄n+1| + |V̄n|

≈ 1
1 + (1 + δ)

= 1
2 + δ

(50)

Hence with appropriate choice for δ, ratio of desired signal
dimensions and total signal dimensions can be made arbitrarily
close to 1

2 for large n.
We will now use above lemma to establish the achievable

DoF value for the K -user rank deficient interference channel.

B. Theorem 3: Proof of Achievability

Achievability proofs for K -user rank deficient channel with
time-varying channel coefficients, are presented separately for
two regions -

• Sum of cross channel ranks, (K − 1)D ≤ Number of
antennas, M

• Sum of cross channel ranks, (K − 1)D > Number of
antennas, M

Achievable scheme involves only zero-forcing when
(K − 1)D ≤ M (Region 1). The CJ scheme with one-sided
decomposition is involved when (K − 1)D > M (Region 2).



354 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 1, JANUARY 2015

Fig. 11. Achievability: Example setting for (K − 1)D ≤ M.

B.1) Region 1 (Interference Spans Part of the Receiver
Signal Space, (K − 1)D ≤ M): We will first consider all
direct channels to be full rank, and show that zero-forcing
is sufficient to achieve DoF of M − (K−1)D

2 per user.
Since all cross channels are of rank D, the common

nullspace of all cross channels at each transmitter has
M − (K − 1)D dimensions. Hence, each transmitter can
choose M −(K −1)D zero-forcing beamforming vectors from
the common nullspace such that these vectors do not cause
interference at any of the K − 1 unintended receivers. For
example, Transmitter 1 chooses M − (K − 1)D vectors from
the following nullspace, so that no interference is caused at
the receivers 2, 3, . . . , K .

null([H21 H31 · · · HK 1])
Additionally, (K−1)D

2 vectors can be chosen from the com-
mon nullspaces of K − 2 cross channels. This is possible
because apart from M −(K −1)D dimensions already chosen,
there are (K−1)D dimensions in the set of common nullspaces
of K − 2 cross channels at each transmitter. For example,
Transmitter 1 chooses (K−1)D

2 vectors, with D
2 vectors from

each of the following nullspaces.

null([H31 H41 · · · HK 1])
null([H21 H41 · · · HK 1])
...

null([H21 H31 · · · H(K−1)1])
Hence at each transmitter, we choose M − (K − 1)D

beamforming vectors such that any receiver does not see inter-
ference and another (K−1)D

2 vectors are chosen such that each
receiver sees only (K−1)D

2 dimensions of interference from all
unintended transmitters. Note that all cross channels in this

section (H j i ) are M × M matrices of rank D, corresponding
to current channel realization n.

Since each unintended receiver sees only D signal dimen-
sions from a transmitter which do not overlap, D

2 vectors are
chosen from signal space seen by each of the K −1 unintended
receivers. As a result, each receiver sees interference of only
(K−1)D

2 dimensions, and so desired symbols are resolvable
since the number of signal dimensions are given as

dim(Desired) = M − (K − 1)D
2

dim(Interference) = (K − 1)D
2

As an illustrative example, let us consider 4-user rank
deficient interference channel to describe the beamforming
vector choices, as shown in Figure 11. In this example, each
node has M = 10 antennas with all direct channels of rank
D0 = M , and all cross channels of rank D = 2, so that
(K − 1)D = 6 < M . 4 beamforming vectors can be chosen
from the common nullspace of all 3 cross channels at each
transmitter, denoted as N Sk . Another 3 dimensions are chosen
at Transmitter 1 as follows: The common nullspace of channels
H21, H31 has 2 dimensions, and we choose one generic
vector from this space. The common nullspace of channels
H31, H41 has 2 dimensions, and we choose one vector from
this space. The common nullspace of channels H21, H41 has
2 dimensions, and we choose one vector from this space.
Similarly 3 vectors can be chosen at transmitters 2, 3, 4 from
corresponding common nullspaces. Hence at each transmitter,
we choose 4 beamforming vectors such that they will not
cause interference at any receiver, and 3 beamforming vectors
are chosen so that each receiver sees only 3-dimensional
interference. Hence desired signal occupying 7 dimensions
is resolvable from 3-dimensional interference at all receivers.
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When D is odd, 2 symbol extensions of the channel are used
to achieve DoF of M − (K−1)D

2 .
Note that the above result holds for other direct chan-

nel ranks when D0 ≥ M − (K−1)D
2 . When direct chan-

nels are of rank D0 < M − (K−1)D
2 , the direct channel

becomes the bottleneck and only D0 DoF per user are
achievable.

B.2) Region 2 (Interference Spans the Full Receiver Signal
Space, (K − 1)D > M):

B.2.a) Ergodic interference alignment: For the region
(K − 1)D > M , we first discuss the achievable scheme
through ergodic interference alignment with time-varying
channel coefficients, similar to the scheme in [27]. All symbols
are repeated by the K transmitters over 2 channel uses t1
and t2, where all cross-channels remain the same H j i(t1) =
H j i(t2), i ̸= j , but all direct channels are different Hii (t1) ̸=
Hii (t2). All receivers subtract the symbols received at channel
use t1 from the symbols received at channel use t2. Interference
is eliminated since it was the same during both channel uses
t1 and t2. Desired signals remain because direct channels
changed into new generic channels between the 2 channel
uses. Note that the ranks of the cross channels do not impact
this achievable scheme. Thus, M independent equations in M
desired variables are obtained over 2 channel uses, achieving
M
2 DoF per user, when direct channel rank D0 ≥ M

2 . This
scheme is similar to coding over a channel matrix and its
complement, like in ergodic interference alignment of [28],
but is more general since there are no assumptions on the
channel phase. It is straightforward to extend the scheme to
other direct channel ranks, i.e., when D0 < M

2 , and show that
achievable DoF per user is min

(
D0,

M
2

)
.

While the ergodic interference alignment scheme helps in
establishing the DoF of the rank deficient channel, it does
so only for channel coefficients exhibiting the ergodic nature,
which stem from the requirement for all cross channel coef-
ficients to repeat. Hence, we avoid making such restrictive
assumptions and consider channels without the ergodic nature,
since in practice, channel fading distribution could change
over time. With this premise, henceforth, we prove the same
DoF result using asymptotic interference alignment (CJ)
scheme. Further, asymptotic schemes often serve as stepping
stones to translate DoF results obtained for time-varying
channels to constant channels, using real alignment schemes,
as described in [17] and [29].

B.2.b) Asymptotic interference alignment: We now dis-
cuss CJ scheme over symbol extended channel with time-
varying channel coefficients, by performing decomposition of
antennas only at the transmitters (i.e., no joint processing)
for the region (K − 1)D > M . The idea of one-sided
decomposability was earlier used by Sun et al. in [21] for X
channel to prove linear independence of desired and interfering
signals at the receivers. From Section VI-A, we infer that the
precoding matrix V̄n could be made full rank, by discarding
the linearly dependent columns of Vn . Also, Lemma 2 implies
that the ratio of desired signal dimensions over total signaling
dimensions can be made arbitrarily close to 1

2 , after discarding
the linearly dependent columns.

To establish achievable DoF, we also need to show that
the desired and interfering signals are linearly independent
at all receivers, i.e., we need to show [HkkV̄n Hkj V̄n] is
full rank for all k, j ∈ {1, . . . , K M}, j ̸= k wherein Hkj
represents the channel between Transmitter j and Receiver k.
Decomposition of antennas at all nodes would not help if
direct channels are rank deficient, since there are dependencies
between the direct and the cross channels. Hence, we perform
one-sided decomposition of the channel, wherein we treat
antennas of each transmitter node separately while allowing
joint processing at the receivers. We first consider all direct
channels to be of rank D0 ≥ M

2 , and show that DoF of M
2

per user can be achieved. When D0 < M
2 , it can be shown

that DoF of D0 per user can be achieved, establishing that
the achievable DoF per user is min(D0,

M
2 ) for the region

(K − 1)D > M . We describe the proofs for even M , and
symbol extensions are used if necessary, for odd M or other
cases.

Let us consider the K -user rank deficient interference
channel wherein all direct channels are of rank D0 ≥ M

2 .
With one-sided decomposition of the channel, there are
M K transmitters each with single antenna, sending messages
to K receivers each with M antennas. Consider n symbol
extension of the original channel so that each transmitter sees
an n-dimensional signal space while each receiver has nM
dimensional signal space. The value of n will be specified
later. The input-output relationship of the symbol-extended
channel is

Y [ j ](κ) =
M K∑

i=1

H[ j i](κ)X [i](κ) + Z [ j ](κ) (51)

=
M K∑

i=1

⎡

⎢⎢⎣

H̃
[ j i]
1 (κ)

...

H̃
[ j i]
M (κ)

⎤

⎥⎥⎦ X [i](κ) + Z [ j ](κ),

j ∈ {1, 2, . . . , K } (52)

where X [i](κ) ∈ Cn×1 is the signal vector sent by the
i th transmitter and Y [ j ](κ) ∈ CnM×1 is the received signal
vector at Receiver j over extended channel-use index κ .
H̃

[ j i]
m (κ) ∈ Cn×n represents the diagonal channel matrix from

Transmitter i to the mth receive antenna of Receiver j where
m ∈ {1, . . . , M}, i.e.,

H̃
[ j i]
m (κ) =

⎡

⎢⎣
H [ j i]

m (n(κ − 1) + 1) . . . 0
...

. . .
...

0 · · · H [ j i]
m (nκ)

⎤

⎥⎦ (53)

The channel-use index is suppressed for compactness.
Each transmitter selects the same beamforming matrix V to
precode its message for Receiver j ∈ {1, . . . , K }. Specifically,
X[i] = Vx[i], i ∈ {1, . . . , M K }, where V is the n ×

(n+N
N

)

precoding matrix and x[i] is the |V|×1 data stream vector from
Transmitter i . In order to consolidate the interference caused
by V at all receivers j ∈ {1, . . . , K } as much as possible, we
set the interference space brought by V at receivers 1, . . . , K
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to roughly V × · · · × V︸ ︷︷ ︸
M times

, in which interference will be aligned

span
[
H̃

[ j i]
V

]
= span

⎡

⎢⎢⎢⎢⎢⎢⎣

H̃
[ j i]
1 V

H̃
[ j i]
2 V
...

H̃
[ j i]
M V

⎤

⎥⎥⎥⎥⎥⎥⎦
(54)

⊂≈ span

⎡

⎢⎢⎢⎣

V 0 · · · 0
0 V · · · 0
...

...
. . .

...
0 0 · · · V

⎤

⎥⎥⎥⎦

nM×|V|M
i ∈ {1, . . . , M K },
j ∈ {1, . . . , K }, j ̸=

⌊i−1
M ⌋ + 1 (55)

All of the above conditions can be written as

V ≈ H̃
[ j i]
m V,

i ∈ {1, . . . , M K }, j ∈ {1, . . . , K },
j ̸=

⌊i−1
M ⌋ + 1, m ∈ {1, . . . , M} (56)

where
⊂≈,≈ are used to denote that V is approximately

invariant to the scaling factors H̃
[ j i]
m . To paraphrase, messages

for Receiver j are sent along the same signal space V and
aligned into V×· · ·×V space at all receivers l ∈ {1, . . . , j −1,
j + 1, . . . , K }.

Let us define I = span
(⋃

i,l,m span(H̃
[li]
m V)

)
, which is

the span of union of interference terms caused by V on
antenna m at all receivers other than the intended receiver,
and condition (56) becomes V ≈ I which essentially states
that V scales invariantly by the interference-carrying links.
It can be satisfied simultaneously with the CJ scheme using
beamforming vectors:

V =
{( ∏

i, j,m

(H̃
[ j i]
m )α

[ j i]
m

)
1, s. t.

∑

i, j,m

α
[ j i]
m ≤ n,

α
[ j i]
m ∈ {0} ∪ Z+, i ∈ {1, . . . , M K },

j ∈ {1, . . . , K }, j ̸=
⌊i−1

M ⌋ + 1, m ∈ {1, . . . , M}
}
,

(57)

I =
{( ∏

i, j,m

(H̃
[ j i]
m )α

[ j i]
m

)
1, s. t.

∑

i, j,m

α[ j i]
m ≤ n + 1,

α[ j i]
m ∈ {0} ∪ Z+, i ∈ {1, . . . , M K },

j ∈ {1, . . . , K }, j ̸= ⌊i−1
M ⌋ + 1, m ∈ {1, . . . , M}

}

(58)

where 1 is the n × 1 all ones column vector.
Thus V contains product terms up to degree n and inter-

ference term I contains product terms up to degree n + 1.
Note that the original network had rank deficient chan-
nels which introduces spatial dependencies, however, we
discard all linearly dependent columns of V and I after
reordering the columns in a lexicographic order, as discussed

in Section VI-A. We represent the resultant matrices after
discarding all linearly dependent columns, as V̄ and Ī . Unlike
in Section VI-A, some of the cross channels are not included
in the construction of precoding matrix above, which is
beneficial for the linear independence proofs. However, this
does not violate the result of Lemma 2.

At each receiver, desired signals occupy M|V̄| dimen-
sions and aligned interference occupies M|Ī| dimensions.
To accommodate both desired signals and interference, the size
of receive signal space, nM , should be as big as the sum of
the dimensions of desired signals and interference. Therefore,
we set nM = M|V̄| + M|Ī |, i.e., n = |V̄| + |Ī|. To ensure
decodability, we should guarantee the linear independence of
the desired signals from interference.

Due to symmetry, we only prove linear independence of
signals at Receiver 1. Let us define

D[1]
m =

[
H̃

[11]
m V̄ · · · H̃

[1M]
m V̄

]
, m ∈ {1, . . . , M} (59)

which corresponds to the desired signal at the mth antenna of
Receiver 1. Then the desired signal at Receiver 1 correspond
to the columns of D[1].

D[1] =

⎡

⎢⎢⎢⎢⎣

D[1]
1

D[1]
2
...

D[1]
M

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

H̃
[11]
1 V̄ · · · H̃

[1M]
1 V̄

H̃
[11]
2 V̄ · · · H̃

[1M]
2 V̄

...
. . .

...

H̃
[11]
M V̄ · · · H̃

[1M]
M V̄

⎤

⎥⎥⎥⎥⎦
(60)

At Receiver 1, interference from transmitters j ∈
{2, . . . , K }, are aligned in the column span of

E[1] =

⎡

⎢⎢⎢⎣

Ī 0 · · · 0
0 Ī · · · 0
...

...
. . .

...
0 0 · · · Ī

⎤

⎥⎥⎥⎦
= IM ⊗ Ī (61)

We need to show that the nM ×nM matrix F[1] = [D[1] E[1]]
has full rank almost surely. We will first show that the desired
signals are linearly independent among themselves and then
prove that the desired signal space does not overlap with the
interference space.

Step 1: We first prove that the desired signals are linearly
independent, i.e., the nM × |V̄|M matrix D[1] has full rank,
almost surely. To do this, it is sufficient to prove the following
M|V̄| × M|V̄| submatrix of D[1] is full rank.

D̄
[1] =

[
D̄

[1]
a

D̄
[1]
b

]

M |V̄|×M |V̄|
(62)

where

D̄
[1]
a has the top |V̄| rows of each D[1]

m , m ∈ {1, . . . ,
M
2

}
(63)

D̄
[1]
b has the bottom |V̄| rows of each D[1]

m ,

m ∈ { M
2

+ 1, . . . , M} (64)
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and so, D̄
[1]

can be written as

D̄
[1] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̃
[11]
1a V̄a H̃

[12]
1a V̄a · · · H̃

[1M]
1a V̄a

...
...

. . .
...

H̃
[11]
M
2 aV̄a H̃

[12]
M
2 a V̄a · · · H̃

[1M]
M
2 a V̄a

H̃
[11]
( M

2 +1)bV̄b H̃
[12]
( M

2 +1)bV̄b · · · H̃
[1M]
( M

2 +1)bV̄b

...
...

. . .
...

H̃
[11]
Mb V̄b H̃

[12]
Mb V̄b · · · H̃

[1M]
Mb V̄b

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wherein H̄
[1i]
ma is a diagonal square matrix of dimension

|V̄| × |V̄| obtained from the first |V̄| rows and columns of
matrix H[1i]

m , H̄
[1i]
mb is a diagonal square matrix of dimension

|V̄|×|V̄| obtained from the last |V̄| rows and columns of matrix
H[1i]

m . V̄a is the |V̄| × |V̄| matrix obtained from the first |V̄|
rows of matrix V̄ and V̄b is the |V̄| × |V̄| matrix obtained
from the last |V̄| rows of matrix V̄. Note that D̄

[1]
has M|V̄|

rows corresponding to M receiver antennas and M|V̄| columns
corresponding to the desired signals from M transmitters.

We will prove that det(D̄
[1]

) ̸= 0 almost surely. The
determinant of the matrix D̄

[1]
is a polynomial function

of its entries. This polynomial is either identically a zero
polynomial i.e., zero for all realizations, such as x − x ,
or it is not identically a zero polynomial, i.e., there exist
some realizations for which the polynomial takes non-zero
values. If a polynomial is not identically a zero polynomial,
then it is not equal to zero almost surely for randomly
generated channel coefficients, see e.g., the Schwartz Zippel
Lemma [12], [30], [31]. Therefore, in order to show that a
polynomial is almost surely non-zero for random realizations
it suffices to show that it is not identically a zero-polynomial,
i.e., that it is non-zero for at least one realization. So we show
that the polynomial is not a zero polynomial by finding one
specific set of channel coefficients such that the polynomial is
not equal to zero.

We will set the channel coefficients such that D̄
[1]

becomes a
block diagonal matrix with M full rank blocks, which implies
that D̄

[1]
is full rank, almost surely.

D̄
[1] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̃
[11]
1a V̄a · · · 0 · · · 0

...
. . .

...
. . .

...

0 · · · H̃
[1 M

2 ]
M
2 a

V̄a · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · H̃
[1M]
Mb V̄b

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(65)

D̄
[1]

corresponds to the desired signal from transmitters
1, · · · , M to Receiver 1. We set all rows except rows
(i−1)|V̄|+1, · · · , i |V̄| of D̄

[1]
to zero by choosing correspond-

ing channel coefficients in the matrices H̄
[1k]
ma , H̄

[1k]
mb , m ̸= k

to zero. Choosing these channel coefficients to be zero does
not violate the rank constraints in the original network since
D0 ≥ M

2 . It is for this reason that we choose top |V̄| rows
for first M

2 antennas and last |V̄| rows for last M
2 antennas,

corresponding to different timeslots. Note that this can be done
because V̄ does not contain the desired channel coefficients
associated with Receiver 1. We have converted D̄

[1]
into a

block diagonal matrix wherein each block is of size |V̄|× |V̄|.
We now show that each block is full rank almost surely. From
the construction of V̄a and V̄b, note that they are full rank
matrices since linearly dependent columns have been discarded
in V̄, as in Section VI-A, and various rows correspond to
cross channel coefficients of different timeslots. Further, since
H̄

[1i]
m , m ∈ {1, · · · , M} are all full rank diagonal matrices

with elements independent of V̄a and V̄b, and so, each block
matrix is full rank. Therefore, the desired signal matrix D̄

[1]

is full rank almost surely. Similarly, it can be shown that
desired signal matrices D̄

[k]
are full rank, almost surely, at

other receivers k ∈ {2, . . . , K }.
Step 2: We will now prove that the interference space does

not overlap with the desired signal space at the receivers.
To this end, we first reorder the rows of matrix F[1] =
[D[1] E[1]], arranging them according to the channel use
slots. Desired signal received at channel index κ is given
by

D[1](κ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

H [11]
1 (κ) · · · H [1M]

1 (κ)

H [11]
2 (κ) · · · H [1M]

2 (κ)

...
. . .

...

H [11]
M (κ) · · · H [1M]

M (κ)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ V̄(κ, :) (66)

At Receiver 1, interference caused by signals intended for
receivers j = 2, . . . , K at channel index κ , is given as

E[1](κ) = IM ⊗ Ī(κ, :) (67)

As a result, signals received at channel use index κ is

F[1](κ) =
[

D[1](κ) E[1](κ)
]

(68)

After rearranging the rows of F[1] as above, it can be
written as

F[1] =

⎡

⎢⎣
F[1](1)

...
F[1](n)

⎤

⎥⎦ (69)

We now describe the proofs for the matrix F[1] containing
desired and interference signals being full rank, first for
M = 2, followed by that for arbitrary M .

i) Linear independence proof for M = 2: Consider the
signal space at Receiver 1, represented by matrix F[1] of
size 2n × 2n, wherein n = |V̄| + |Ī|. In this matrix,
the first 2|V̄| columns correspond to the desired signal,
and the last 2|Ī| columns correspond to the interference
signal.

F[1] = [
D[1] E[1]]

2n×2n (70)
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Fig. 12. Asymptotic alignment for K -user rank deficient channel with M = 2.

wherein the columns corresponding to the desired signals are
represented using D[1]

D[1] =

⎡

⎢⎢⎢⎣

D[1](1)
D[1](2)

...
D[1](n)

⎤

⎥⎥⎥⎦

2n×2|V̄|

(71)

D[1](κ) = H11(κ) ⊗ V̄(κ, :) (72)

=
[

H̄
[11]
1 (κ)V̄(κ, :) H̄

[12]
1 (κ)V̄(κ, :)

H̄
[11]
2 (κ)V̄(κ, :) H̄

[12]
2 (κ)V̄(κ, :)

]

2×2|V̄|
and the columns corresponding to the interference signals are
represented using E[1] of size 2n × 2|Ī|

E[1] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ī(1, 1) · · · Ī(1, |Ī|) 0 · · · 0
0 · · · 0 Ī(1, 1) · · · Ī(1, |Ī|)

Ī(2, 1) · · · Ī(2, |Ī|) 0 · · · 0
0 · · · 0 Ī(2, 1) · · · Ī(2, |Ī|)
...

. . .
...

...
...

...
Ī(|V̄|, 1) · · · Ī(|V̄|, |Ī|) 0 · · · 0

0 · · · 0 Ī(|V̄|, 1) · · · Ī(|V̄|, |Ī|)
...

. . .
...

...
...

...
Ī(n, 1) · · · Ī(n, |Ī|) 0 · · · 0

0 · · · 0 Ī(n, 1) · · · Ī(n, |Ī|)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where V̄(κ, :) denotes κ-th row of V̄, and Ī(k, l) denotes
the element in the k-th row and l-th column of Ī . Note that
2 consecutive rows correspond to same timeslot, and signals
correspond to n timeslots.

Suppose the 2×2 direct channel between Transmitter 1 and
Receiver 1 is of rank 1 (as shown in Fig 12), then without
loss of generality, the desired signal matrix corresponding to

channel use index κ , D[1](κ) can be written as

D[1](κ) =
[

H̄
[11]
1 (κ)V̄(κ, :) H̄

[12]
1 (κ)V̄(κ, :)

ακ H̄
[11]
1 (κ)V̄(κ, :) ακH̄

[12]
1 (κ)V̄(κ, :)

]

2×2|V̄|

We will now show that the determinant of matrix F[1]

has a unique monomial which implies that det(F[1]) ̸= 0,
almost surely. Expanding the determinant of F[1] along the
interference signal columns corresponding to E[1], it can be
noted that det(F[1]) contains the polynomial I P det(X) with
I P = I AI B and

I A =
⎛

⎝
|V̄|∏

i=1

Ī i (i)

⎞

⎠ ×
⎛

⎝
|Ī|∏

i=|V̄|+1

Ī i−|V̄|(i)

⎞

⎠ (73)

I B =
n∏

i=|V̄|+1

Ī i−|V̄|(i) (74)

wherein I A is the product of interference terms from even
rows of F[1], I B is the product of interference terms from
odd rows of F[1], I P = I AI B represents the product of
interference terms from the columns of E[1] described above,
and the matrix X is of size 2|V̄| × 2|V̄|, given as

X=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1H̄
[11]
1 (1)V̄(1, :) α1H̄

[12]
1 (1)V̄(1, :)

α2H̄
[11]
1 (2)V̄(2, :) α2H̄

[12]
1 (2)V̄(2, :)

...
...

α|V̄|H̄
[11]
1 (|V̄|)V̄(|V̄|, :) α|V̄|H̄

[12]
1 (|V̄|)V̄(|V̄|, :)

H̄
[11]
1 (|Ī| + 1)V̄(|Ī| + 1, :) H̄

[12]
1 (|Ī| + 1)V̄(|Ī| + 1, :)

...
...

H̄
[11]
1 (n)V̄(n, :) H̄

[12]
1 (n)V̄(n, :)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and det(X) =
⎛

⎝
|V̄|∏

i=1

αi

⎞

⎠ det(X̄) (75)

wherein the matrix X̄ is of size 2|V̄| × 2|V̄|, given as

X̄=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̄
[11]
1 (1)V̄(1, :) H̄

[12]
1 (1)V̄(1, :)

H̄
[11]
1 (2)V̄(2, :) H̄

[12]
1 (2)V̄(2, :)

...
...

H̄
[11]
1 (|V̄|)V̄(|V̄|, :) H̄

[12]
1 (|V̄|)V̄(|V̄|, :)

H̄
[11]
1 (|Ī| + 1)V̄(|Ī| + 1, :) H̄

[12]
1 (|Ī| + 1)V̄(|Ī| + 1, :)

...
...

H̄
[11]
1 (n)V̄(n, :) H̄

[12]
1 (n)V̄(n, :)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Different choice for interference terms in I P (I P ̸=
I AI B ), result in either a different matrix X̃ (instead of X)
corresponding to rows from different timeslots, or another
distinct product of αi in the determinant expression of same X,
instead of that in (75). Choosing a different row for each
term Īk(κ) than from one above, results in either a different
matrix X or a different product of αi coefficients. Note that
det(X) is a non-zero polynomial since rows correspond to
different timeslots, and elements can be chosen such that
one instance of the determinant polynomial is non-zero. Also,
each element of matrix X has direct channels which are not
present in all elements of Ī . Elements of Ī are distinct
powers of the cross channels with non-zero entries. Thus,
we have a unique non-zero polynomial I AI B det(X) in the
determinant expression of F[1] and so the determinant of F[1]

is non-zero, almost surely. Similarly, we can show that all
matrices F[k], k ∈ {2, . . . , K } are full rank, corresponding to
signal space at different receivers. Suppose the 2 × 2 direct
channel between Transmitter 1 and Receiver 1 is full rank,
matrix F[1] can be similarly shown to be full rank, almost
surely.

Thus the desired signal is linearly independent from the
interference at each receiver and therefore, the total accessible
DoF for Receiver j equals M 2|V̄|

2n = M 2|V̄|
2|V̄|+2|Ī| → M

2 as

n → ∞, resulting in DoF of M
2 per user, as desired.

ii) Linear independence proof for arbitrary M: For arbitrary
M , signal space containing desired signal and interference can
be represented as:

F[1] =
[
D[1] E[1]]

nM×nM (76)

wherein the columns corresponding to the desired signals are
represented using D[1]

D[1] =

⎡

⎢⎢⎢⎢⎣

D[1](1)

D[1](2)
...

D[1](n)

⎤

⎥⎥⎥⎥⎦

nM×M |V̄|

(77)

D[1](κ) = H11(κ) ⊗ V̄(κ, :)

=

⎡

⎢⎢⎢⎢⎢⎣

H̄
[11]
1 (κ)V̄(κ, :) · · · H̄

[1M]
1 (κ)V̄(κ, :)

H̄
[11]
2 (κ)V̄(κ, :) · · · H̄

[1M]
2 (κ)V̄(κ, :)

...
. . .

...

H̄
[11]
M (κ)V̄(κ, :) · · · H̄

[1M]
M (κ)V̄(κ, :)

⎤

⎥⎥⎥⎥⎥⎦
(78)

and the columns corresponding to the interference signals are
represented using E[1], matrix shown in (79), as shown at
the top of the next page, wherein V̄(κ, :) denotes κ-th row
of V̄, and Ī(k, l) denotes the element in the k-th row and l-th
column of Ī . When desired channels are of rank D0 > M

2 ,
above matrix can be written as

D[1](κ) = H11(κ) ⊗ V̄(κ, :) (80)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 · · ·
...

...
...

a M
2

b M
2

· · ·
∑ M

2
i=1 αi ai

∑ M
2

i=1 αi bi · · ·
...

...
...

∑ M
2

i=1 βi ai
∑ M

2
i=1 βi bi · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M×M |V̄|

(81)

Expanding the determinant of F[1] along the columns carrying
interference, note that the determinant contains the polynomial
I P det(X) with I P = I AI B and

I A = (
|V̄|∏

i=1

Ī
M
2

i (i)) × (
|Ī|∏

i=|V̄|+1

Ī
M
2

i−|V̄|(i)) (82)

I B =
n∏

i=|V̄|+1

Ī
M
2

i−|V̄|(i) (83)

wherein I A is the product of interference terms from the
middle M

2 rows of each M-row matrix corresponding to same
channel use, in F[1], I B is the product of interference terms
from the top ⌈ M

4 ⌉ and the bottom ⌊ M
4 ⌋ rows of each M-row

matrix corresponding to same channel use, in F[1], and the
matrix X is given as:

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̃(1)
X̃(2)

...
X̃(|V̄|)

X′(|Ī| + 1)
...

X′(n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M |V̄|×M |V̄|

(84)

X̃(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̄
[11]
1 (k)V̄(k, :) · · · H̄

[1M]
1 (k)V̄(k, :)

...
. . .

...

H̄
[11]
⌈ M

4 ⌉(k)V̄(k, :) · · · H̄
[1M]
⌈ M

4 ⌉ (k)V̄(k, :)
H̄

[11]
⌈ 3M

4 ⌉(k)V̄(k, :) · · · H̄
[1M]
⌈ 3M

4 ⌉(k)V̄(k, :)
...

. . .
...

H̄
[11]
M (k)V̄(k, :) · · · H̄

[1M]
M (k)V̄(k, :)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(85)
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E[1] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ī(1, 1) · · · Ī(1, |Ī|) 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 Ī(1, 1) · · · Ī(1, |Ī|) 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0 Ī(1, 1) · · · Ī(1, |Ī|)

Ī(2, 1) · · · Ī(2, |Ī|) 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 Ī(2, 1) · · · Ī(2, |Ī|) 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0 Ī(2, 1) · · · Ī(2, |Ī|)
...

...
...

...
...

...
...

. . .
...

...
...

...
Ī(|V̄|, 1) · · · Ī(|V̄|, |Ī|) 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 Ī(|V̄|, 1) · · · Ī(|V̄|, |Ī|) 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0 Ī(|V̄|, 1) · · · Ī(|V̄|, |Ī|)
...

...
...

...
...

...
...

. . .
...

...
...

...
Ī(n, 1) · · · Ī(n, |Ī |) 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 Ī(n, 1) · · · Ī(n, |Ī |) 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0 0 · · · 0 Ī(n, 1) · · · Ī(n, |Ī |)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nM×M |Ī|

(79)

X′(k) =

⎡

⎢⎢⎢⎣

H̄
[11]
⌈ M

4 ⌉+1(k)V̄(k, :) · · · H̄
[1M]
⌈ M

4 ⌉+1(k)V̄(k, :)
...

. . .
...

H̄
[11]
⌈ 3M

4 ⌉−1(k)V̄(k, :) · · · H̄
[1M]
⌈ 3M

4 ⌉−1(k)V̄(k, :)

⎤

⎥⎥⎥⎦
(86)

When determinant of X is evaluated, we get terms of
the form ak(

∑D0
i=1 βi bi ), k ∈ {1, · · · , D0} when D0 > M

2
corresponding to channel use κ , by considering (81). For
obtaining same product of interference terms in I A and
IB by choosing different rows, different linear combinations
of ai , bi , i ∈ {1, . . . , D0} are involved. Choosing a differ-
ent row for each term Īk(κ) in IP than from one above,
results in either a different matrix X or a different linear
combination of ai , bi , i ∈ {1, . . . , D0}. Also, each element
of matrix X has direct channels which are not present in
all elements of Ī . Thus we have a unique non-zero poly-
nomial IAIB det(X) in the determinant of F[1], since any
other choices for interference terms cannot result in the same
polynomial, and so, det(F[1]) ̸= 0, almost surely. Simi-
larly, we can show that all matrices F[k], k ∈ {2, . . . , K }
are full rank, corresponding to signal space at different
receivers.

Hence the matrix F[k] is full rank and we have proved
the linear independence of desired and interfering signals, for
all M . This implies that for the region (K − 1)D > M ,
achievable DoF per user are min(D0,

M
2 ).

C. Theorem 3: Proof of Outer Bound

We first prove that the DoF outer bound per user for
region (K − 1)D ≤ M is given by M − (K−1)D

2 , and then
prove that M

2 is the DoF outer bound per user for regions
(K − 2)D ≤ M < (K − 1)D and (K − 2)D > M .

C.1) K -User Channel With (K − 1)D ≤ M:
C.1.a) Change of basis:

Step 1: For Receiver k, we design a M × M square
matrix Rk . First, we determine (K − 1)D rows at Receiver k.
The linear transformation is designed such that first D anten-
nas of Receiver k hear interference only from Transmitter
k + 1, next D antennas of Receiver k hear interference
only from Transmitter k + 2, and so on for K − 1 steps,
where D antennas of Receiver k hear interference from only
Transmitter k + K − 1. This operation is guaranteed since
rank(Hk(k+i)) = D,i ̸= 0, and vectors can be chosen from the
corresponding common nullspaces. For Receiver k, these are
denoted as Ska1 , · · · , SkaK−1 . Remaining M −(K −1)D rows,
denoted as Skc , are chosen so that they do not hear any inter-
ference, which is also possible since the common nullspace
of K − 1 cross channels has M − (K − 1)D dimensions.

Step 2: Within the M-dimensional signal
space at Transmitter k, there is M − (K − 1)D
dimensional subspace orthogonal to (K − 1)D
receiver antennas (k − i)ai ,∀i = {1, . . . , K − 1}.
These K − 1 subspaces have M − (K − 1)D dimensional
intersection as seen by Transmitter k. We will choose
M−(K −1)D columns of a M×M matrix Tk at Transmitter k,
from this intersection. These will not be seen at any of
unintended receivers, and are denoted as Xkc at Transmitter k.

Step 3: Then, we choose other columns of Tk such that
D antennas of Transmitter k are heard only by receiver
antennas (k − i)ai ,∀i = {1, . . . , K − 1}. This operation
is guaranteed since rank(Hk(k+i)) = D, i ̸= 0, and we can
choose vectors from the corresponding common nullspaces.
For Transmitter k, these are denoted as Xka1, · · · , XkaK−1 .
The resulting network connectivity after the change of basis
operations is shown in Figure 13.



KRISHNAMURTHY et al.: DoF OF RANK-DEFICIENT MIMO INTERFERENCE CHANNELS 361

Fig. 13. Outer bound: K -user rank deficient interference channel, (K − 1)D < M.

C.1.b) Outer bound: Without loss of generality let us
consider Receiver 1. As usual, for the outer bounds we
will provide Receiver 1 enough side information through a
genie so that it can decode all K messages. The receiver
can decode its desired message by assumption (because
the given coding scheme is guaranteed to be reliable).
After subtracting the signal from Transmitter 1, the receiver
proceeds to decode the remaining K − 1 messages.
For the purpose, the genie information given to
Receiver 1 is comprised of (K − 1)(M − D) dimensions -
Xn

2a2
, . . . , Xn

2aK−1
, Xn

2c, Xn
3a1

, Xn
3a3

, . . . , Xn
3aK−1

, Xn
3c, Xn

K a1
,

. . . , Xn
K aK−2

, Xn
K c which are not already heard by Receiver 1.

Then the total number of dimensions available to Receiver 1
(including those provided by the genie) is equal to:

(K − 1)D + |G1| = (K − 1)D + (K − 1)(M − D)

= (K − 1)M

With these (K − 1)M dimensions, Receiver 1 will be
able to resolve all K − 1 interfering signals and can
decode all K messages. For example, G1 = {Xn

2a2
, Xn

2a3
,

Xn
2c, Xn

3a1
, Xn

3a3
, Xn

3c, Xn
4a1

, Xn
4a2

, Xn
4c} for K = 4. Therefore,

we have:

n R" ≤ Mn log ρ + h(G1|Ȳ n
1 ) + n o(log ρ) + o(n) (87)

≤ Mn log ρ + h(Xn
K a1

|Ȳ n
1 ) + . . . + h(Xn

K aK−2
|Ȳ n

1 )

+ h(Xn
K c|Ȳ n

1 ) + h(Xn
2a2

, . . . , Xn
2aK−1

, Xn
2c|Ȳ n

1 )

+ h(Xn
3a1

, Xn
3a3

, . . . , Xn
3aK−1

, Xn
3c|Ȳ n

1 ) + . . .

+ h(Xn
(K−1)a1

, . . . , Xn
(K−1)aK−3

, Xn
(K−1)aK−1

,

Xn
(K−1)c|Ȳ n

1 ) + n o(log ρ) + o(n) (88)

≤ Mn log ρ + h(Xn
K a1

) + . . .

+h(Xn
K aK−2

)

+ h(Xn
K c) + h(Xn

2a2
, . . . , Xn

2aK−1
, Xn

2c|Xn
2a1

)

+ h(Xn
3a1

, Xn
3a3

, . . . , Xn
3aK−1

, Xn
3c|Xn

3a2
) + . . .

+ h(Xn
(K−1)a1

, . . . , Xn
(K−1)aK−3

, Xn
(K−1)aK−1

,

Xn
(K−1)c|Xn

(K−1)aK−2
) + n o(log ρ) + o(n) (89)

= Mn log ρ + h(Xn
K a1

) + . . .

+h(Xn
K aK−2

)

+ h(Xn
K c) + n R2 − h(Xn

2a1
) + n R3 − h(Xn

3a2
)

+ . . . + n RK−1 − h(Xn
(K−1)aK−2

)

+ n o(log ρ) + o(n) (90)

≤ Mn log ρ + h(Xn
K a1

) + . . . + h(Xn
K aK−2

)

+ (M − (K − 1)D)n log ρ + n R2 − h(Xn
2a1

) + n R3

−h(Xn
3a2

) + . . . + n RK−1 − h(Xn
(K−1)aK−2

)

+ n o(log ρ) + o(n) (91)

where (87) follows from Fano’s inequality and Lemma 1. (88)
follows from applying chain rule and dropping some condition
terms. (89) follows from the fact that dropping condition
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terms cannot decrease the differential entropy. Thus, we only
keep Sn

1a1
, Sn

1a2
, . . . Sn

1aK−1
as the condition terms which are

Xn
2a1

, Xn
3a2

, . . . , Xn
K aK−1

respectively. (90) is obtained because
from the observations of (Xn

ka1
, Xn

ka2
, . . . , Xn

kaK−1
, Xn

kc) we
can decode Wk,∀k ∈ {1, . . . , K } subject to the noise dis-
tortion, (91) follows since entropy of Xn

K c is constrained by
M − (K − 1)D antennas.

By advancing user indices considering all receivers, we
have:

K n R" ≤ (2M − (K − 1)D)n log ρ + (K − 2)n R"

+ n o(log ρ) + o(n). (92)

which implies that the DoF per user are bounded above as

d ≤ M − (K − 1)D
2

(93)

C.2) K -User Channel With (K − 2)D ≤ M < (K − 1)D:
C.2.a) Change of basis:

Step 1: For Receiver k, we design a M × M square
matrix Rk . First, we determine the top (K − 2)D rows
at Receiver k in a way that the signals from transmitters
k + 1, · · · , k + K − 2 are separated from each other (signals
from Transmitter k + K − 1 remain in the mix). The linear
transformation is designed such that the first D antennas of
Receiver k hear only transmitters k + 1 and k + K − 1, next
D antennas of Receiver k hear only transmitters k + 2 and
k+K −1, and so on such that at the (K −2)th step we have D
antennas of Receiver k that hear only transmitters k+K−2 and
k + K −1. This operation is guaranteed since M ≥ (K −2)D
and the subspaces seen by Receiver k are in general position.
The signals seen at Receiver k by the first K − 2 sets of D
antennas each are denoted as Ska1 , · · · , SkaK−2 . Finally, the
remaining M − (K − 2)D rows are chosen so that they hear
only Transmitter k + K −1, denoted as Skc, which is possible
since the common nullspace of K − 2 cross channels has
M − (K − 2)D dimensions.

Step 2: A corresponding change of basis is done at
the transmitters. Within the M-dimensional signal space
at Transmitter k, there is the M − (K − 2)D dimen-
sional subspace which is seen at Receiver k + 1 at the
antennas denoted as S(k+1)c. This space is denoted as
Xkc at Transmitter k. The remaining (K − 2)D dimen-
sions at Transmitter k correspond to the K − 2 spaces,
each of D dimensions, denoted individually as Xkai , that
are heard by Receivers k − i , at antennas (k − i)ai ,
∀i = {1, . . . , K − 2}.

The resulting network connectivity after the change of basis
operations is shown in Figure 14.

C.2.b) Outer bound: For the outer bound we will provide
enough genie information to Receiver k to allow it to decode
all K messages. Receiver k is already guaranteed to decode
its desired message. In order for Receiver k to decode the
remaining K − 1 (undesired) messages after it decodes and
subtracts the signal from its desired transmitter, it needs
sufficiently many linear equations. From Transmitter k +K −1
(same as Transmitter k − 1 since indices are interpreted
modulo K ), the genie information given to Receiver k, which
is denoted as Gk,k+K−1, is comprised of (noisy versions of)

signals Xn
(k+K−1)ai

,∀i = {1, 2, · · · , K − 2}. Thus, in addition
to Skc (equivalently Xn

(k+K−1)c) that is already available, the
genie information provides Receiver k enough equations to
decode and subtract the message from Transmitter k + K − 1.
For each of the remaining K − 2 transmitters, i.e., trans-
mitters k + 1, k + 2, · · · , k + K − 2, the genie provides
the M − D dimensional signals not seen by Receiver k,
e.g., from Transmitter k + 1, the genie provides Gk,k+1 which
is comprised of Xn

(k+1)ai
∀i = {2, 3, · · · , K − 2} as well as

Xn
(k+1)c. From Transmitter k + 2, the genie provides Gk,k+2

which is comprised of Xn
(k+2)ai

∀i = {1, 3, 4, · · · , K − 2} as
well as Xn

(k+2)c, and so on. This allows Receiver k to decode
all K messages, and produces the following outer bound.

n R" ≤ I (Ȳ n
k ,Gk,k+1, · · · ,Gk,k+K−1;

W1, W2, · · · , WK ) + o(n) (94)

≤ Mn log ρ + h(Gk,k+1, · · · ,Gk,k+K−1|Ȳ n
k , Wk)

+ n o(log ρ) + o(n) (95)

≤ Mn log ρ + h(Gk,k+K−1|Xn
(k+K−1)c)

+ h(Gk,k+1|Xn
(k+1)a1

) + h(Gk,k+2 |Xn
(k+2)a2

)

+ · · · + h(Gk,k+K−2|Xn
(k+K−2)aK−2

)

+ n o(log ρ) + o(n) (96)

≤ Mn log ρ + n(R" − Rk)

−h(Xn
(k+K−1)c) − h(Xn

(k+1)a1
)

−h(Xn
(k+2)a2

) − · · · − h(Xn
(k+K−2)aK−2

) (97)

⇒ n Rk ≤ Mn log ρ + n o(log ρ) + o(n)

−h(Xn
(k+K−1)c) − h(Xn

(k+1)a1
) − h(Xn

(k+2)a2
)

− · · · − h(Xn
(k+K−2)aK−2

) (98)

See also [20] for additional insights into this approach for DoF
outer bounds. Advancing user indices and adding the bounds
for all receivers, we have:

n R" ≤ K Mn log ρ + n o(log ρ) + o(n)

−
K∑

k=1

(
h(Xn

kc) − h(Xn
ka1

) − h(Xn
ka2

)

− · · · − h(Xn
kaK−2

)

)
(99)

≤ K Mn log ρ + n o(log ρ) + o(n)

−
K∑

k=1

h(Xn
ka1

, Xn
ka2

, · · · , Xn
kaK−2

, Xn
kc) (100)

≤ K Mn log ρ + n o(log ρ) + o(n)

−
K∑

k=1

h(Xn
k ) (101)

n R" ≤ K Mn log ρ+n o(log ρ)+o(n)−n R" (102)

⇒ n R" ≤ K M
2

n log ρ + n o(log ρ) + o(n) (103)

Thus, the sum DoF are bounded above by K M/2 and
the DoF per user are bounded above as d ≤ M

2 when
(K − 2)D ≤ M < (K − 1)D.

C.3) K -User Channel With (K − 2)D > M: Here, DoF per
user are outer bounded by M

2 since M
2 is the outer bound per

user for a similar channel with only K −1 users. Adding a user
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Fig. 14. Outer bound: K -user rank deficient interference channel, (K − 2)D ≤ M < (K − 1)D.

cannot increase the DoF per user. This is a recursive argument,
in the sense that the 4-user channel uses the known outer
bound of M

2 for the 3-user channel for the region 2D > M .
Similarly, the 5-user channel uses the known outer bound of
M
2 for the 4-user channel for the region 3D > M and so on.

For example, let us consider the 4-user rank deficient chan-
nel in which sum of 3 cross channel ranks 3D > 3M

2 . Within
this channel, the 3-user interference channel corresponding to
first 3 users has sum of cross channel ranks 2D > M , a region
for which outer bound per user is known to be M

2 . Adding the
fourth user to this 3-user network cannot increase the DoF
per user. Hence M

2 is also an outer bound for the 4-user rank
deficient channel. This argument is readily extended to K user
channels to show that M

2 is the DoF outer bound per user if
(K − 2)D > M .

DoF
K

≤ min
(

D0, M − min(M,(K−1)D)
2

)

Combining DoF outer bound results of all 3 regions along with
min-cut bound of D0 (direct channel rank), we get above outer
bound on DoF per user for K -user rank deficient interference
channel, as stated in Theorem 3.

VII. CONCLUSIONS

Spatial dependencies often arise in MIMO interference
networks, that impact their signaling dimensions. In this work,
we studied spatial dependencies that are manifested as rank
deficiencies of the MIMO channel matrices. Implications of
rank deficiencies on DoF of MIMO interference networks

were explored, involving either asymptotic or non-asymptotic
interference alignment schemes. One of the key observations
is that rank deficiencies of the cross channels cannot hurt and
could even improve the DoF, while rank deficiencies of the
direct channels cannot help and could hurt. 2-user and 3-user
interference channels were studied involving non-asymptotic
schemes for both constant and time-varying channels. While
the 2-user channel only requires zero forcing, the 3-user
channel involves both zero-forcing and interference align-
ment. For the 3-user channel with rank deficiencies, although
there is more opportunity for zero-forcing and less opportu-
nity for interference alignment, the increased opportunity for
zero-forcing apparently more than compensates for the lost
opportunity in interference alignment. Additional challenges
are involved for the K -user interference channels with rank
deficiencies.

Both asymptotic interference alignment (CJ) and ergodic
alignment schemes were studied in the context of K -user
rank deficient interference channels with time-varying chan-
nel coefficients (K > 3). For the K -user interference
channel with individual channels of size M × M being
rank deficient, optimal DoF per user was characterized as
min

(
D0, M − min(M,(K−1)D)

2

)
where D0 is the rank of direct

channels, and D is the rank of cross channels. When using
CJ scheme, one of the remarkable aspects is that rank deficien-
cies in cross channels lead to columns of the precoding matrix
being linearly dependent, however, by discarding those linearly
dependent columns, DoF per user can be made arbitrarily
close to 1

2 . We expect that the insights presented in this work
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would serve as stepping stones to translating DoF result to
K -user rank deficient interference channels with constant
channel coefficients. It could be noted that the achievable
scheme involves joint processing of signals (one-sided decom-
position) at the receivers, for both ergodic and asymptotic
interference alignment schemes. This is due to presence of
spatial dependencies among certain direct channels and cross
channels in the fully decomposed network, because of rank
deficient direct channels in the original network. While joint
processing is sufficient to achieve optimal DoF using either
ergodic or CJ scheme, whether it is also necessary is an
intriguing open problem.

The single user MIMO channel problem with full decom-
position (no joint processing) is equivalent to the problem
wherein the overall channel of a SISO interference channel
is rank deficient. In a K -user SISO interference channel, the
overall K × K channel could be rank deficient, say of rank D.
This could arise because of network topology, wherein relays
with D antennas listen to signals from K transmitters and
amplify and forward the signals to K receivers. Study of
alignment feasibility for multiple unicast sessions with similar
multihop network topologies is another relevant problem,
related to the problem studied in [16] for 3 users.
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