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Abstract— It is shown that in the K -user interference channel,
if for each user the desired signal strength is no less than the
sum of the strengths of the strongest interference from this user
and the strongest interference to this user (all values in decibel
scale), then the simple scheme of using point-to-point Gaussian
codebooks with appropriate power levels at each transmitter and
treating interference as noise (TIN) at every receiver (in short,
TIN scheme) achieves all points in the capacity region to within a
constant gap. The generalized degrees of freedom (GDoF) region
under this condition is a polyhedron, which is shown to be fully
achieved by the same scheme, without the need for time-sharing.
The results are proved by first deriving a polyhedral relaxation
of the GDoF region achieved by TIN, and then providing a dual
characterization of this polyhedral region via the use of potential
functions, and finally proving the optimality of this region in the
desired regime.

Index Terms— Capacity region, Gaussian interference channel,
generalized degrees of freedom (GDoF), treating interference as
noise (TIN).

I. INTRODUCTION

TREATING interference as noise (TIN) when it is suffi-
ciently weak is one of the key principles of interference

management. As a robust principle that is also known to be
optimal under certain conditions, TIN is interesting both from
practical and theoretical perspectives.

From a practical perspective, TIN is attractive for its
low complexity and robustness to channel uncertainty.
TIN involves the use of only point-to-point channel codes,
that are well understood, quite practical, and near-optimal in
their ability to deal with unstructured noise. Further, since it
requires only a coarse knowledge of the signal to interference
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Fig. 1. The GDoF “W” curve for the two-user symmetric Gaussian
interference channel.

and noise power ratio (SINR) at the transmitters, the overhead
associated with acquiring channel state information at the
transmitters (CSIT) is minimal for the TIN scheme. The prac-
tical appeal of the TIN scheme has motivated several studies
of the achievable rate region of TIN in the literature. However,
as noted by e.g., [2], [3], in spite of the simplicity of TIN, the
structure of the TIN rate region is non-trivial — it involves
the optimization of the power levels at the transmitters, and
is generally non-convex by itself, i.e., if time-sharing is not
involved.

From a theoretical perspective, it is the optimality of TIN
that has attracted the most attention. It is shown in [4]–[6]
that in a so-called “noisy interference” regime, TIN achieves
the sum capacity of the interference channel. An extension
of the noisy interference regime is obtained for multiple-
input multiple-output (MIMO) Gaussian interference channels
in [7]. In terms of generalized degrees of freedom (GDoF),
the well-known “W” curve [8] in Fig. 1 demonstrates that
for the two-user symmetric Gaussian interference channel,
when the strengths of both direct channels are assumed as
SNR and the interference channels are not stronger than√

SNR, TIN achieves the symmetric GDoF for each user.
This result is generalized to K -user fully-connected symmetric
Gaussian interference channels in [9] and to cyclic asymmetric
Gaussian interference channels in [10]. However, not much
is known about the regime where TIN is GDoF-optimal for
the general fully-connected, fully-asymmetric K -user Gaussian
interference channel.

In this work we present a general condition for the
K -user fully-connected fully-asymmetric Gaussian interfer-
ence channel, under which TIN is shown to be not only optimal
for the entire GDoF region, but also within a constant gap of
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the entire capacity region. The general condition is stated in
words as follows:

If for each user, the desired signal strength is no less than
the sum of the strengths of the strongest interference from this
user and the strongest interference to this user (all values in
dB scale), then TIN is GDoF optimal.

As an example, consider a K -user interference channel,
where all the desired links have strength SNR and the inter-
ference links, each of which may have a different strength,
are not stronger than

√
SNR. In other words, the ratio of

signal strength to the desired signal strength (each in dB scale)
for each interferer is 0.5 or less and for the desired signal
is 1. Then it follows, from the result shown in this work,
that the GDoF-optimal scheme is TIN with appropriate power
allocation at each transmitter.

Our proof of the optimality of TIN in the aforemen-
tioned regime consists of three steps. First, we introduce a
relaxed version of TIN, called polyhedral TIN. Second, we
show that, quite interestingly, the achievable GDoF region
through polyhedral TIN, namely the polyhedral TIN region,
can be characterized by checking the existence of a potential
function for an induced fully-connected directed graph, with
nodes representing the source-destination pairs in the original
interference channel (with the addition of a “ground” node),
and a specific assignment of lengths to each arc. Using
this equivalence and a potential theorem, we derive a dual
characterization of the polyhedral TIN region. The significance
of our dual characterization is the elimination of power allo-
cation variables in the characterization. Finally, we prove the
outer bounds to establish the optimality of polyhedral TIN
in the regime of interest. Since TIN performs no worse than
polyhedral TIN, this proves that TIN is optimal in that regime
in the GDoF sense.

Moreover, following the proof for GDoF-optimality of TIN,
we show that in the same regime, TIN can also achieve
the whole capacity region of the K -user interference channel
to within a constant gap. Finally, we show that for general
channel gain values in a K -user interference channel, the
achievable GDoF region of TIN, namely TIN region, is
composed of the union of 2K polyhedra. However, for the
regime of interest, one polyhedron subsumes all the others,
hence the TIN region reduces to a single polyhedron, which
is the polyhedral TIN region.

II. SYSTEM MODEL AND PRELIMINARIES

As our starting point, consider the canonical model of a
fully-asymmetric K -user wireless interference channel, with
the input-output relationship

Yk(t)=
K∑

i=1

hki X̃i (t) + Zk(t), ∀k ∈ [K ] ! {1, 2, ..., K }, (1)

where at each time index t , X̃i (t) is the transmitted symbol
of transmitter i , Yk(t) is the received signal of receiver k,
hki is the complex channel gain value from transmitter i
to receiver k, and Zk(t) ∼ CN (0, 1) is the additive white
Gaussian noise (AWGN) at receiver k. All the symbols

are complex. Each transmitter i is subject to the power
constraint E[|X̃i (t)|2] ≤ Pi .

We will translate the standard channel model (1) into an
equivalent normalized form that is more conducive for GDoF
studies. We define the signal-to-noise ratio (SNR) of user i and
interference-to-noise ratio (INR) of transmitter i at receiver k
as follows.1

SNRi ! max(1, |hii |2 Pi ), INRki ! max(1, |hki |2 Pi ),

i ̸= k, ∀i, k ∈ [K ]. (2)

As in [8], for the GDoF metric, we preserve the ratios of
different signal strengths in dB scale as all SNR’s approach
infinity. To this end, taking P > 1 as a nominal power value,
we define

αii ! log SNRi

log P
, αki ! log INRki

log P
, i ̸= k, ∀i, k ∈ [K ],

(3)

implying that for each user i , SNRi = Pαii and for any
two distinct users i, k, INRki = Pαki .

Now according to (2) and (3), we can represent the original
channel model in (1) in the following form,

Yk(t) =
K∑

i=1

√
Pαki e jθki Xi (t) + Zk(t), ∀k ∈ [K ]. (4)

In this equivalent channel model, Xi (t) = X̃i (t)/
√

Pi is the
transmit symbol of transmitter i , and the power constraint for
each transmitter is normalized to unity; i.e., E[|Xi (t)|2] ≤ 1,
∀i ∈ [K ]. The transmit power in the original channel model
is absorbed in the channel coefficients, so that

√
Pαki and

θki are the magnitude and the phase, respectively, of the
channel between transmitter i and receiver k, ∀i, k ∈ [K ].
We will call the exponent αki the channel strength level of
the link between transmitter i and receiver k. In the rest of the
paper, unless otherwise stated, we will consider the equivalent
channel model in (4).

Since this is a K -user interference channel, transmitter i has
message Wi intended for receiver i , and the messages Wi are
independent, ∀i ∈ [K ]. We denote the size of the message set
of user i by |Wi |. For codewords spanning n channel uses, the
rates Ri = log |Wi |

n , i ∈ [K ], are achievable if the probability
of error at all the receivers can be made arbitrarily small as
n approaches infinity. The channel capacity region C is the
closure of the set of all achievable rate tuples. Collecting the
channel strength levels and phases in the sets

α ! {αki }, θ ! {θki }, ∀i, k ∈ [K ], (5)

the capacity region is a function of α, θ, P, and is denoted
as C(P,α, θ).

1It is not difficult to verify that assigning a value of 1 to SNR’s and INR’s
that are less than 1, or equivalently, assigning a 0 value to αi j that might
otherwise be negative, is only a matter of convenience, and has no impact on
the GDoF or the constant gap result. The details are deferred to Appendix A.
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D(α, θ) !
{
(d1, d2, ..., dK ) : ∃(R1(P), R2(P), ..., RK (P)) ∈ C(P,α, θ) as a function of P , such that

di = lim
P→∞

Ri (P)

log P
, ∀i ∈ [K ]

}
. (6)

A. Generalized Degrees of Freedom

The GDoF region of the K -user interference channel as
represented in (4) is defined in (6) at the top of the page.
In general, the channel capacity (GDoF) region of complex
Gaussian interference channel may depend on both the channel
strength levels α, and the channel phases θ . However, the
capacity (GDoF) inner and outer bounds that we present in this
paper depend only on the channel strength levels α. As such,
our results hold regardless of whether or not the channel phase
information is available to the transmitters.

B. Capacity Region Within a Constant Gap

Following the same definition as in [8] and [10], an achiev-
able rate region is said to be within x (x ≥ 0) bits of
the capacity region if for any rate tuple (R1, R2, ..., RK ) on
the boundary of the achievable rate region, the rate tuple
(R1 + x, R2 + x, ..., RK + x) is outside the channel capacity
region. Equivalently, ((R1 − x)+, (R2 − x)+, ..., (RK − x)+) is
in the achievable region for any rate tuple (R1, R2, ..., RK ) in
the capacity region, where for a real number β, (β)+ denotes
max{0,β}.

C. Achievable Rate Region of TIN Scheme

In the TIN scheme, transmitter i uses a transmit power
of Pri , ri ≤ 0,2 and each receiver treats all the incoming
interference as noise, so that the SINR at receiver i is given by

SINRi = Pαii × Pri

1 + ∑
j ̸=i Pαi j × Pr j

.

This implies that the rate achieved by user i through TIN
is equal to

Ri = log(1 + SINRi ) = log

(

1 + Pαii +ri

1 + ∑
j ̸=i Pαi j +r j

)

, (7)

and therefore, the GDoF achieved by user i equals

di = max{0,αii + ri − max{0, max
j : j ̸=i

(αi j + r j )}}. (8)

The achievable GDoF region through TIN, which we denote
by P∗, is the set of all K -tuples (d1, d2, ..., dK ) for which there
exist ri ’s, ri ≤ 0, i ∈ [K ], such that (8) holds for all i ∈ [K ].

2Recall that to obtain the equivalent channel model (4), in fact the transmit
power of each user is absorbed into the channel coefficients. As P goes to
infinity, although it appears that the transmit power of user i vanishes as an
artifact of the GDoF framework, its actual SNR approaches infinity when the
user achieves a positive GDoF value.

III. CONDITION FOR OPTIMALITY OF TIN

The main result of this section is the following the-
orem, which introduces a condition under which TIN is
GDoF-optimal.

Theorem 1: In a K -user interference channel, where the
channel strength level from transmitter i to receiver j is equal
to α j i , ∀i, j ∈ [K ], if the following condition is satisfied

αii ≥ max
j : j ̸=i

{α j i } + max
k:k ̸=i

{αik }, ∀i, j, k ∈ [K ], (9)

then power control and treating interference as noise can
achieve the whole GDoF region. Moreover, the GDoF region
is the set of all K -tuples (d1, d2, ..., dK ) satisfying

0 ≤ di ≤ αii , ∀i ∈ [K ] (10)
m∑

j=1

di j ≤
m∑

j=1

(αi j i j − αi j−1 i j ), ∀(i1, i2, ..., im) ∈ $K ,

∀m ∈ {2, 3, ..., K }, (11)

where $K is the set of all possible cyclic sequences3 of
all subsets of [K ] with cardinality no less than 2, and the
modulo-m arithmetic is implicitly used on the user indices,
e.g., im = i0.

Remark: Condition (9) can be stated in words as — for
each user the desired signal strength is no less than the
sum of the strengths of the strongest interference from this
user and the strongest interference to this user (all values
in dB scale). Theorem 1 claims that under this condition, TIN
is GDoF-optimal.

Remark: Both condition (9) and the GDoF region specified
by (10)-(11) display a natural duality in the sense that they are
both unchanged if the roles of the transmitters and receivers
are switched, i.e., if all αi j values are switched with α j i values.
In other words, for the same channel strengths, if we consider
the reciprocal network (in the same sense as a multiple access
channel being the reciprocal of a broadcast channel), then
again under condition (9), TIN is GDoF-optimal, and the
GDoF region is the same as in the original network. Such
a duality holds also for the entire TIN region P∗ (defined as
the set of all K -tuples (d1, d2, ..., dK ) for which there exist
ri ’s, ri ≤ 0, i ∈ [K ], such that (8) holds for all i ∈ [K ]), and
a similar duality relationship for the symmetric rate has been
observed in [11].

Example 1: To interpret the results in Theorem 1, we derive
and plot the GDoF region for a 3-user network in which con-
dition (9) is satisfied. Consider the 3-user network in Fig. 2(a).
In this network, the channel strength level between trans-
mitter i and receiver j , α j i , is shown on the correspond-
ing link, ∀i, j ∈ {1, 2, 3}. For the case of K = 3,

3Each cyclic sequence in $K is essentially a cyclically ordered subset of
user indices, without repetitions. In $K , there exist

∑K
m=2

(K
m

)
(m−1)! cyclic

sequences.
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Fig. 2. (a) A 3-user interference channel, where the value on each link is
equal to its channel strength level, and (b) The GDoF region of this network,
which is a convex polyhedron and can be achieved by TIN.

$K = {(1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}. According to
Theorem 1, the GDoF region is the set of all (d1, d2, d3)
satisfying

0 ≤ d1 ≤ 2

0 ≤ d2 ≤ 1

0 ≤ d3 ≤ 1.5

d1 + d2 ≤ 2.3

d1 + d3 ≤ 2.4

d2 + d3 ≤ 1.5

d1 + d2 + d3 ≤ 3.7

d1 + d2 + d3 ≤ 2.5,

which is depicted in Fig. 2(b). Recall that condition (9) is
satisfied in the network of Fig. 2(a) for all users i ∈ {1, 2, 3}.
Therefore, Theorem 1 implies that TIN achieves the entire
GDoF region of this network. "

We prove Theorem 1 through the following steps.
We first introduce a relaxation of the TIN scheme called
polyhedral TIN, and show that the achievable GDoF region
by polyhedral TIN is in fact a polyhedral region. We study
the polyhedral TIN region in some detail to understand
its structure. In particular, we show that the polyhedral
TIN region can be characterized by checking the existence of
a potential function for an induced fully-connected directed
graph, with nodes representing the source-destination pairs
in the original interference channel (with the addition of a
“ground” node) and a specific assignment of lengths to the arcs

of the graph. Afterwards, we derive a dual characterization
of the polyhedral TIN region and prove the outer bounds
to establish the optimality of polyhedral TIN, hence TIN,
whenever condition (9) is satisfied.

A. Polyhedral Relaxation of TIN

In the first step toward proving Theorem 1, we introduce
a polyhedral version of the TIN scheme. Ignoring the first
max{0, ...} term in (8) changes the scheme to a relaxed
version, which we call the polyhedral TIN scheme. With this
modification, the achievable GDoF region via polyhedral TIN
denoted by P will be the set of all K -tuples (d1, d2, ..., dK )
for which there exist ri ’s, i ∈ [K ], such that

ri ≤ 0, ∀i ∈ [K ] (12)

di ≥ 0, ∀i ∈ [K ] (13)

di = αii + ri − max{0, max
j : j ̸=i

(αi j + r j )}, ∀i ∈ [K ]. (14)

In the polyhedral TIN scheme, we require that the right
hand side of (14) is non-negative for all users. Otherwise,
the obtained K -tuple is not a valid GDoF tuple and hence
its corresponding power exponents ri ’s are not acceptable
for the polyhedral TIN scheme. Recall that in the original
TIN scheme, for all ri ≤ 0, i ∈ {1, 2, .., K }, we always
obtain a valid GDoF tuple according to (8). Therefore, this
modification actually puts more constraints on the power
exponents ri ’s besides the constraints of ri ≤ 0. In general,
this can only shrink the achievable GDoF region of TIN. Thus
it is true that P ⊆ P∗.

Example 2: Consider a 2-user interference channel with
αi j = 1, ∀i, j ∈ {1, 2}. In the polyhedral TIN scheme,
since the right hand side of (14) is non-negative for all users
i ∈ {1, 2}, we have

1 + r1 − max{0, 1 + r2} ≥ 0

1 + r2 − max{0, 1 + r1} ≥ 0.

Combining with the constraints of ri ≤ 0, it is easy to verify
that the valid power exponents ri ’s for the polyhedral TIN
scheme satisfy r1 = r2 and r1, r2 ∈ [−1, 0], under which the
polyhedral TIN region P only consists of the single point (0,0).
While in the original TIN scheme, according to (8), the
achievable GDoF region P∗ is the union of two line segments,
i.e., P∗ = {(d1, d2) : 0 ≤ d1 ≤ 1, d2 = 0} ∪ {(d1, d2) :
d1 = 0, 0 ≤ d2 ≤ 1}. Obviously, in this example P ⊂ P∗. "

However, as we will show in the following, under
condition (9), the above relaxation incurs no loss.
In other words, when condition (9) is satisfied, the TIN
region P∗ is equal to the polyhedral TIN region P .
From (12)-(14), the polyhedral TIN region P can be
characterized by a number of linear inequalities, which
as we will see, significantly contributes to understanding
the TIN region P∗. In fact, it is easy to prove that P
is the set of all K -tuples (d1, d2, ..., dK ) for which there
exist ri ’s, i ∈ [K ], such that the inequalities (15)-(18)
at the bottom of next page are satisfied. The details are
relegated to Appendix B.
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As we will show, after the elimination of the variables ri ,
i ∈ [K ], the region P can be fully characterized by (10)-(11).
Moreover, as demonstrated in Example 1, this region is a
polyhedron, which is why the scheme is called polyhedral TIN.

B. Dual Characterization of Polyhedral TIN Region via
Potential Functions

Equipped with the aforementioned description of polyhe-
dral TIN, we now characterize the polyhedral TIN region P for
general channel strength levels. As mentioned in (15)-(18), for
a GDoF tuple (d1, d2, ..., dK ) ∈ RK

+ (the non-negative orthant
of the K -dimensional Euclidean space), it is in the region P if
and only if there exist ri ’s, i ∈ [K ], satisfying

ri ≤ 0, ∀i ∈ [K ] (19)

ri ≥ di − αii , ∀i ∈ [K ] (20)

ri − r j ≥ αi j + (di − αii ), ∀i, j ∈ [K ], i ̸= j. (21)

Now, we define a directed graph D = (V , A), as shown in
Fig. 3(a), where

V = {v1, ..., vK , u}
A = A1 ∪ A2 ∪ A3

A1 = {(vi , v j ) : i, j ∈ [K ], i ̸= j}
A2 = {(vi , u) : i ∈ [K ]}
A3 = {(u, vi ) : i ∈ [K ]},

and we assign a length l(a) to every arc a ∈ A as follows.

l(vi , v j ) = αii − di − αi j

l(vi , u) = αii − di

l(u, vi ) = 0.

As an example, the corresponding directed graph D for
Example 1 is drawn in Fig. 3(b). Evidently, this is a fully-
connected directed graph, in which the length of each arc
depends on the channel strength levels and the GDoFs we
intend to achieve. This careful assignment of the lengths to
the arcs of this graph allows us to use the following lemma.

Lemma 1: If P denotes the polyhedral TIN region of
a K -user interference channel, then for a GDoF tuple
(d1, d2, ..., dK ) ∈ RK

+ , it is in the region P if and only if
there exists a valid potential function for the graph D.

Proof of Lemma 1: By definition [12], a function p : V → R
is called a potential if for every two nodes a, b ∈ V such that
(a, b) ∈ A, l(a, b) ≥ p(b) − p(a). These inequalities only
depend on the difference between potential function values.
Therefore, without loss of generality, if there exists a valid
potential function for the graph, we can make one node,

Fig. 3. (a) The directed graph D in which the green, blue and red arcs
belong to A1, A2 and A3, respectively. For simplicity, only some parts of the
edges are shown in this figure. (b) The corresponding directed graph D for
Example 1.

say node u, ground; i.e., p(u) = 0. Letting ri := p(vi ),
the potential function values should satisfy the following
conditions.

αii − di − αi j ≥ r j − ri , ∀i, j ∈ [K ], i ̸= j (22)

αii − di ≥ −ri , ∀i ∈ [K ] (23)

0 ≥ ri , ∀i ∈ [K ]. (24)

The above inequalities exactly match the ones in (19)-(21).
This completes the proof. #

Next, we invoke the potential theorem of [12], re-stated
below, to complete the characterization of the polyhedral TIN
region, P .

Potential Theorem [12, Th. 8.2]: There exists a potential
function for a directed graph D if and only if each directed
circuit in D has non-negative length.

Combining Lemma 1 and the potential theorem, we
conclude that for a GDoF tuple (d1, d2, ..., dK ) ∈ RK

+ , it is

ri ≤ 0, ∀i ∈ [K ] (15)

di ≥ 0, ∀i ∈ [K ] (16)

di ≤ αii + ri ⇔ ri ≥ di − αii , ∀i ∈ [K ] (17)

di ≤ αii + ri − (αi j + r j ) ⇔ ri − r j ≥ αi j + (di − αii ), ∀i, j ∈ [K ], i ̸= j. (18)
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in the polyhedral TIN region P if and only if each directed
circuit in the graph D has a non-negative length. Therefore, it
just remains to interpret the conditions of non-negative length
for the circuits.

We can categorize the circuits of D in three classes:

• Circuits in the form of (u, vi , u), ∀i ∈ [K ]. For these
circuits, we have

αii − di ≥ 0 ⇔ di ≤ αii . (25)

• Circuits in the form of (vi0 , vi1 , ..., vim ), where i0 = im ,
∀(i1, i2, ..., im) ∈ $K ,∀m ∈ {2, 3, ..., K }; i.e., the cir-
cuits which do not include node u. For these circuits, the
non-negative length condition will be

m−1∑

j=0

(αi j i j − di j − αi j i j+1) ≥ 0

⇔
m−1∑

j=0

di j ≤
m−1∑

j=0

(αi j i j − αi j i j+1)

(a)⇔
m∑

j=1

di j ≤
m∑

j=1

(αi j i j − αi j−1i j ). (26)

where in step (a) we just reorder the terms in the right
hand side and use the fact that im = i0.

• Circuits in the form of (u, vi1 , ..., vim , u),
∀(i1, i2, ..., im) ∈ $K ,∀m ∈ {2, 3, ..., K }. For these
circuits, the following inequality should hold.

m−1∑

j=1

(αi j i j − di j − αi j i j+1) + (αim im − dim ) ≥ 0. (27)

Since αim i1 ≥ 0, we have αim im − dim ≥αim im − dim −αim i1 .
Therefore, given the conditions in (26), the conditions in
this class of circuits are redundant.

Consequently, we will end up with conditions (25)-(26).
Finally adding the non-negativity constraint on di ’s, we
obtain (10)-(11). This directly leads us to the following
theorem which characterizes the polyhedral TIN region P for
general channel strength levels.

Theorem 2: The GDoF region achieved through polyhedral
TIN, denoted by P , is the set of all K -tuples (d1, d2, ..., dK )
satisfying

0 ≤ di ≤ αii , ∀i ∈ [K ]
m∑

j=1

di j ≤
m∑

j=1

(αi j i j − αi j−1 i j ), ∀(i1, i2, ..., im) ∈ $K ,

∀m ∈ {2, 3, ..., K },

where $K is the set of all possible cyclic sequences of
all subsets of [K ] with cardinality no less than 2, and the
modulo-m arithmetic is implicitly used on the user indices,
e.g., im = i0.

Now, we are at a stage to complete the proof of
Theorem 1.

C. Proof of Theorem 1

Finally, to prove Theorem 1, we will show that under
condition (9), the polyhedral TIN region P coincides with the
GDoF region outer bound, therefore establishing the optimality
of TIN under (9) and proving Theorem 1. Note that from
Theorem 2, the region (10)-(11) is exactly equal to the
polyhedral TIN region P and therefore this GDoF region can
be achieved by TIN. Therefore, we only need to prove the
outer bounds on the GDoF region. To this end, we first present
the following theorem.

Theorem 3: For the K -user interference channel with chan-
nel input-output relationship in (1), the capacity region is
included in the set of rate tuples (R1, R2, ..., RK ) such that

Ri ≤ log(1 + |hii |2 Pi ), ∀i ∈ [K ] (28)
m∑

j=1

Ri j ≤
m∑

j=1

log

(

1 + |hi j i j+1 |2 Pi j+1 + |hi j i j |2 Pi j

1 + |hi j−1i j |2 Pi j

)

,

∀(i1, i2, ..., im) ∈ $K , ∀m ∈ {2, 3, ..., K }, (29)

where $K is the set of all possible cyclic sequences of
all subsets of [K ] with cardinality no less than 2, and the
modulo-m arithmetic is implicitly used on the user indices,
e.g., im = i0.

The proof of Theorem 3 follows [8], [10] and is relegated to
Appendix C. Equipped with Theorem 3, we can now complete
the converse of Theorem 1 through the following corollary.

Corollary 1: For the K -user interference channel with
channel input-output relationship in (4), when condition (9)
is satisfied, its GDoF region is included in the set of
GDoF tuples (d1, d2, ..., dK ) such that

di ≤ αii , ∀i ∈ [K ] (30)
m∑

j=1

di j ≤
m∑

j=1

(αi j i j − αi j−1 i j ), ∀(i1, i2, ..., im) ∈ $K ,

∀m ∈ {2, 3, ..., K }, (31)

where $K is the set of all possible cyclic sequences of
all subsets of [K ] with cardinality no less than 2, and the
modulo-m arithmetic is implicitly used on the user indices,
e.g., im = i0.

Proof of Corollary 1: The individual bounds in (30) follow
directly from the inequalities in (28). In fact, from (28) we
have

di = lim
P→∞

Ri

log P
≤ lim

P→∞
log(1 + Pαii )

log P
= αii ,

for any i ∈ [K ]. Also, the cyclic outer bounds in (31)
follow from the outer bounds in (29). In fact, for any cycle
(i1, i2, ..., im) ∈ $K we have

m∑

j=1

di j = lim
P→∞

∑m
j=1 Ri j

log P

≤ lim
P→∞

∑m
j=1 log

(
1 + Pαi j i j+1 + P

αi j i j

1+P
αi j−1 i j

)

log P

=
m∑

j=1

max{0,αi j i j+1 ,αi j i j − αi j−1i j }

=
m∑

j=1

(αi j i j − αi j−1i j ).
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where the last equality is due to condition (9). This completes
the proof.

Note that as we explained before, when condition (9)
is satisfied, the TIN region P∗ is equal to the polyhedral
TIN region P , which is a convex polyhedron as shown
in Theorem 2. This means that in this regime, time-sharing
cannot help enlarge the achievable GDoF region via TIN.

IV. CONSTANT GAP TO CAPACITY

In this section, we show that when condition (9) holds, so
that TIN is GDoF-optimal, we can apply the insight gained
in the GDoF study to prove that TIN can also achieve the
whole channel capacity region to within a constant gap at any
finite SNR. The main result of this section is mentioned in the
following theorem.

Theorem 4: In a K -user interference channel, where the
channel strength level between transmitter i and receiver j
is α j i , if condition (9) holds, then power control and treating
interference as noise can achieve to within log2(3K ) bits of
the capacity region.

Proof: (Converse) Recall that using Theorem 3, we obtain
the following outer bounds.

Ri ≤ log2(1 + Pαii ), ∀i ∈ [K ]
m∑

j=1

Ri j ≤
m∑

j=1

log2

(
1 + Pαi j i j+1 + Pαi j i j

1 + Pαi j−1 i j

)
,

∀(i1, i2, ..., im) ∈ $K , ∀m ∈ {2, 3, ..., K }.

Since P > 1, it follows that

Ri ≤ log2(1 + Pαii ) ≤ αii log2 P + 1, ∀i ∈ [K ], (32)

m∑

j=1

Ri j ≤
m∑

j=1

log2

(
1 + Pαi j i j+1 + Pαi j i j

1 + Pαi j−1 i j

)

<
m∑

j=1

log2

(
1 + Pαi j i j+1 + Pαi j i j

Pαi j−1 i j

)

=
m∑

j=1

log2

(
Pαi j−1 i j + Pαi j i j+1 +αi j−1 i j + Pαi j i j

Pαi j−1 i j

)

≤
m∑

j=1

log2

(
3Pαi j i j

Pαi j−1 i j

)

=
m∑

j=1

[(αi j i j − αi j−1 i j ) log2 P + log2 3], (33)

for all cycles (i1, i2, ..., im) ∈ $K , ∀m ∈ {2, 3, ..., K }.
(Achievability) Consider the power control and TIN scheme,

where the power allocated to each transmitter is equal to Pri

(ri ≤ 0, ∀i ∈ [K ]), and the achievable rate for each user is

Ri,TIN = log2

(
1 + Pri +αii

1 + ∑
j ̸=i Pr j +αi j

)
. (34)

From the proof of Theorem 1, we know that under
condition (9), if di ’s satisfy (10) and (11), then there exist

ri ’s such that

ri + αii − max
j ̸=i

{0, r j + αi j } = di , ∀i, j ∈ [K ], (35)

ri ≤ 0, ∀i ∈ [K ]. (36)

Therefore, we can write

Ri,TIN = log2

(
1 + Pri +αii

1 + ∑
j ̸=i Pr j +αi j

)

≥ log2

(
Pri +αii

P0 + ∑
j ̸=i Pr j +αi j

)

≥ log2

(
Pri +αii

K Pri +αii −di

)

= di log2 P + log2

(
1
K

)
. (37)

In other words, when di ’s satisfy (10) and (11), the rates
in (37) are always achievable by TIN, ∀i ∈ [K ]. Thus it is not
hard to obtain that the achievable rate region by TIN includes
the rate tuples (R1,TIN, R2,TIN, ..., RK ,TIN) satisfying

0 ≤ Ri,TIN ≤ max
{

0,αii log2 P + log2

(
1
K

)}
, ∀i ∈ [K ],

(38)
m∑

j=1

Ri j ,TIN ≤ max
{

0,
m∑

j=1

[
(αi j i j − αi j−1i j )

× log2 P + log2

(
1
K

)]}
(39)

for all cycles (i1, i2, ..., im) ∈ $K , ∀m ∈ {2, 3, ..., K }.
Comparing (32)-(33) with (38)-(39), we can characterize the

approximate channel capacity to within a constant gap, which
is only dependent on the number of users K . We can show that
TIN achieves to within log2(3K ) bits of the capacity region.
To this end, we need to show that each of the rate constraints
in (38) and (39) is within log2(3K ) bits of its corresponding
outer bound in (32) and (33); i.e., the following inequalities
always hold,4

σRi < log2(3K ), ∀i ∈ [K ] (40)

σ∑m
j=1 Ri j

≤ m log2(3K ),∀(i1, i2, ..., im) ∈ $K ,

∀m ∈ {2, 3, ..., K }, (41)

where σ(.) denotes the difference between the achievable
rate in (38) and (39) and its corresponding outer bound
in (32) and (33). For σRi , ∀i ∈ [K ], we consider the following
two cases,

• αii log2 P + log2
( 1

K

)
≤ 0: In this case, we obtain

σRi = αii log2 P + 1

≤ 1 + log2 K < log2(3K ).

4Notice that since in the second line of (33) there exists a “<”, “≤” is fine
for the inequality in (41).
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• αii log2 P + log2
( 1

K

)
> 0: In this case, we have

σRi =
[
αii log2 P + 1

]
−

[
αii log2 P + log2

(
1
K

)]

= 1 + log2 K < log2(3K ).

Similarly, for σ∑m
j=1 Ri j

, ∀(i1, i2, ..., im) ∈ $K , ∀m ∈
{2, 3, ..., K }, we consider the following two cases,

•
∑m

j=1

[
(αi j i j − αi j−1i j ) log2 P + log2

( 1
K

)]
≤ 0: In this

case, we obtain

σ∑m
j=1 Ri j

=
m∑

j=1

[
(αi j i j − αi j−1 i j ) log2 P + log2 3

]

≤
m∑

j=1

[log2 3 + log2 K ] = m log2(3K ).

•
∑m

j=1

[
(αi j i j − αi j−1 i j ) log2 P + log2

( 1
K

)]
> 0: In this

case, we have

σ∑m
j=1 Ri j

=
m∑

j=1

[
(αi j i j − αi j−1i j ) log2 P + log2 3

]

−
m∑

j=1

[
(αi j i j − αi j−1 i j ) log2 P + log2

(
1
K

)]

=
m∑

j=1

[log2 3 + log2 K ] = m log2(3K ).

Combining the above results, we complete the proof.

V. THE GENERAL ACHIEVABLE GDOF REGION OF TIN

In this section, we remove the constraint (9) on the channel
gains, and investigate the achievable GDoF region by TIN for
K -user interference channels with general channel strength
levels. As we show, the TIN region P∗ is equal to the
union of multiple polyhedra, each of which is in the form
of the polyhedral TIN region of a subset of the users of the
network. Remarkably, the TIN region is almost the same as
the polyhedral TIN region in the sense that the measure of the
difference of the two sets is zero in RK .

We have shown that when (9) holds, the original TIN region
P∗ is equal to the polyhedral TIN region P . Now, the natural
question to ask is what the TIN region P∗ is for K -user
interference channels with general channel strength levels. The
following theorem settles this issue.

Theorem 5: In a K -user interference channel, where the
channel strength level from transmitter i to receiver j is equal
to α j i , the achievable GDoF region through power control and
treating interference as noise, denoted by P∗, is equal to

P∗ =
⋃

S⊆[K ]
PS , (42)

where PS , S ⊆ [K ], is defined as

PS= {(d1, d2, ..., dK ) :di = 0,∀i ∈ S, 0≤d j ≤ α j j ,∀ j ∈ Sc,
m∑

j=1

di j ≤
m∑

j=1

(αi j i j − αi j−1i j ), ∀(i1, i2, ..., im) ∈ $Sc},

Fig. 4. A 3-user cyclic interference channel, where the channel strength level
for each link is shown in the figure.

and $Sc is the set of all possible cyclic sequences of all
subsets of Sc with cardinality no less than 2.

The proof is given in Appendix D. In words, the TIN region
P∗ is the union of 2K polyhedral TIN regions PS , each of
which corresponds to the case where the users in S are made
silent. Note that Pφ is actually the polyhedral TIN region P
defined in Theorem 2. Except for the polyhedral TIN region P ,
all the other PS’s have zero volume in RK since in each of
them the users in S always have zero GDoF value. Therefore,
the TIN region P∗ is almost the same as the polyhedral TIN
region P in the sense that the measure of the difference of the
two sets is zero in RK .

Furthermore, as opposed to the polyhedral TIN region P ,
the TIN region P∗ may not be convex in general, and if time-
sharing is allowed alongside with TIN, the achievable region
may become substantially larger. Therefore, the above theorem
also reveals that when the sufficient condition (9) is violated,
time-sharing may help enlarge the achievable GDoF region
of TIN.

Example 3: Consider the 3-user cyclic interference channel
shown in Fig. 4. Notice that for user 3 the condition (9) does
not hold.

First, if all the users are active, we can get the polyhedral
TIN region as follows.

P∅ =
{
(d1, d2, d3) : 0 ≤ di ≤ 1, ∀i ∈ {1, 2, 3},

d1 + d2 ≤ 1.9, d2 + d3 ≤ 1.4, d1 + d3 ≤ 1.1,

d1 + d2 + d3 ≤ 1.4
}
, (43)

which is in fact the polyhedral TIN region P we defined
earlier.

Then, consider the cases in which only one of the three
users is made silent and hence has zero GDoF, and the other
two users are active. In such cases, we only need to consider
the Z-channel between the remaining two users, implying that

P{1} =
{
(d1, d2, d3) : d1 = 0, 0 ≤ d2 ≤ 1,

0 ≤ d3 ≤ 1, d2 + d3 ≤ 1.4
}

P{2} =
{
(d1, d2, d3) : d2 = 0, 0 ≤ d1 ≤ 1,

0 ≤ d3 ≤ 1, d1 + d3 ≤ 1.1
}

P{3} = {
(d1, d2, d3) : d3 = 0, 0 ≤ d1 ≤ 1,

0 ≤ d2 ≤ 1, d1 + d2 ≤ 1.9
}
.
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Fig. 5. The TIN region of the network in Figure 4, which is the union of
the yellow region (P∅) and the blue region (P{3}).

It is easy to verify that

P{1} ⊆ P∅, P{2} ⊆ P∅,

but

P{3} ̸⊆ P∅.

For instance, the GDoF tuple (1, 0.9, 0) ∈ P{3} is not
in the GDoF region P∅ since it violates the cycle bound
d1 + d2 + d3 ≤ 1.4.

Next, consider the cases in which two users are made silent.

P{2,3} =
{
(d1, d2, d3) : 0 ≤ d1 ≤ 1, d2 = d3 = 0

}

P{1,3} =
{
(d1, d2, d3) : 0 ≤ d2 ≤ 1, d1 = d3 = 0

}

P{1,2} =
{
(d1, d2, d3) : 0 ≤ d3 ≤ 1, d1 = d2 = 0

}
,

and it can be verified that

P{2,3} ⊆ P∅, P{1,3} ⊆ P∅, P{1,2} ⊆ P∅.

Finally, we have

P{1,2,3} =
{
(d1, d2, d3) : d1 = d2 = d3 = 0

}
⊆ P∅.

Therefore, the TIN region is equal to

P∗ =
⋃

S⊆{1,2,3}
PS = P∅ ∪ P{3}. (44)

This region is illustrated in Fig. 5, where the yellow region
corresponds to P∅ and the blue region corresponds to P{3}.
Note that since for user 3, the sufficient condition (9) is
violated, the polyhedral TIN region P = P∅ is not the whole
GDoF region for this 3-user cyclic channel. Moreover, as
Fig. 5 shows, the region P∗ is not convex. Therefore, time-
sharing between P∅ and P{3} can help enlarge the achievable
GDoF region via TIN. "

VI. NUMERICAL ANALYSIS

In this section, we numerically compute the probabil-
ity that the sufficient condition (9) is satisfied in a typ-
ical wireless scenario. We consider a circular cell with
a radius of 1 km and place K base stations (transmit-
ters) randomly and uniformly over the cell area. Each base

Fig. 6. (a) A 10-user interference channel where the black circle, green
circles, red triangles, and blue crosses represent the whole cell area, the
coverage area of base stations, base stations (transmitters), and receivers,
respectively. The coverage radius of each transmitter is taken to be r = 100m.
(b) Effect of the coverage radius and the number of users on the probability
that the sufficient condition (9) is satisfied.

station is assumed to have a coverage radius of r . In order
to create a K -user interference channel with strong enough
direct links, we consider K mobile receivers such that
the i -th mobile receiver is located randomly and uniformly
inside the coverage area of the i -th base station, i ∈ [K ].
A realization of such a network scenario is depicted
in Fig. 6(a).

For the channel gain values, we make use of the Erceg
model [13], operating at a frequency of 2GHz and using the
terrain category of hilly/light tree density. Taking the noise
floor as −110 dBm, we choose the transmit power of all the
base stations such that the expected value of the SNR at the
boundary of their coverage area is 0 dB. Then, we randomly
locate the base stations and mobile receivers according to the
coverage radius r . Fig. 6(b) demonstrates the result of our
numerical analysis.

As illustrated in this plot, the probability that the sufficient
condition (9) for the GDoF-optimality of TIN is satisfied
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Fig. 7. A 3-user network where condition (9) is not satisfied, but TIN is
still optimal. The value on each link represents its channel strength level.
All channel phases are assumed to be zero.

decreases as the density of the network increases, either by
increasing the number of users or by increasing the coverage
radius of each base station. However, as a typical scenario, it is
noteworthy that for the case of a 10-user interference channel
with the coverage radius of 100m for each base station, the
sufficient condition (9) is satisfied half the times. This means
that with a probability of 50%, TIN is GDoF-optimal and can
also achieve the whole capacity region of the network to within
a constant gap. It therefore implies that the sufficient condition
(9) can be actually satisfied in practice with a reasonably high
probability, enabling the results in this paper on the optimality
of treating interference as noise to be put into use in practice.

VII. CONCLUSION AND FUTURE DIRECTIONS

We introduced a condition for fully-connected
fully-asymmetric K -user interference channels under which
power control at the transmitters and treating interference
as noise at the receivers, in short, the TIN scheme, was
proven to be GDoF-optimal. The GDoF region under this
condition was shown to be a polyhedron. The analysis was
also generalized to show that under the same condition,
TIN can achieve the whole capacity region of the network to
within a constant gap that only depends on the number of
users K. Furthermore, the achievable GDoF region by TIN
for general values of channel gains in a K -user interference
channel was also characterized fully.

In Section VI, we analyzed the probability that the afore-
mentioned condition for the GDoF-optimality of TIN is satis-
fied in a typical wireless scenario. One might ask whether this
condition can somehow be exploited in any general wireless
network which does not satisfy this condition in its entirety.
As a follow-up work, we have addressed this problem in [14]
in which we showed how this condition can be utilized in any
wireless network to schedule the users in a smart way and
obtain considerable throughput gains over similar state-of-the-
art schemes.

An interesting future direction is to determine whether
condition (9) is also necessary for TIN to be GDoF-optimal.
For the 2-user case, it can be shown that except for a set
of channel gain values of measure zero, the condition is also
necessary for the GDoF-optimality of TIN. However, going
beyond two users makes the problem more challenging. For
instance, consider the network in Fig. 7. In this network,

condition (9) is violated at users 1 and 3. However, TIN is still
optimal, because it is possible to show5 that the sum-GDoF is
upper bounded by 1; i.e.,

d1 + d2 + d3 ≤ 1.

Moreover, Theorem 2 implies that the above region is in fact
the polyhedral TIN region, hence showing that TIN is optimal
in the network of Fig. 7, despite the fact that condition (9)
does not hold in this network. Perturbing the channel strength
levels from the values in Fig. 7, or even changing the phase
values if they are available to the transmitters, will invalidate
the converse. We suspect that again outside a set of channel
gains of measure zero, condition (9) is necessary for TIN to
be GDoF-optimal. However, the necessity of this condition for
the networks comprising more than 2 users remains open.

Another interesting direction following this work could be
to extend the TIN scheme to include Gaussian superposition
coding at the transmitters and successive interference cancel-
lation at the receivers. In particular, it would be valuable to
determine, with this additional flexibility, how much gain one
can obtain beyond TIN for general channel strength levels
in a K -user interference channel. For the case of 2-user
interference channels, this problem is studied in [15], and
the regimes under which such schemes outperform TIN are
identified. Also, for the case of K -user linear deterministic
interference channels, the achievable rates of such schemes
are characterized as the convex hull of the feasible rates
supported by the independent sets of an extended conflict
graph [16]. However, general conditions for the optimality of
superposition coding and successive interference cancellation
are still unknown.

APPENDIX A
REPLACING αi j < 0 WITH αi j = 0

We refer to the channel with potentially negative αi j ’s
(i, j ∈ [K ]) as the original channel, and the channel with
all negative αi j ’s replaced with zeros as the modified channel.
To prove the claim that replacing αi j < 0 with αi j = 0 does
not impact the GDoF or the constant gap result, we go through
the following steps:

• First, we show that the capacity region of the original
channel is within a constant gap per user to that of the
modified channel, which also shows that the two channels
have the same GDoF region.
The proof requires two directions, namely

Coriginal ⊆ Cmodified + constant,

and

Cmodified ⊆ Coriginal + constant.

5Note that in this network, receiver 1, after decoding its own message and
subtracting it from its received signal, has the same signal as receiver 3.
Therefore, it is also able to decode the message of user 3. Besides,
transmitters 1 and 3 have the same channel vectors to receivers 1 and 2.
Therefore, the sum-GDoF of this network is upper bounded by the
sum-GDoF of a 2-user interference channel with {T1,3, T2} as the trans-
mitters and {R1, R2} as the receivers, where T1,3 is the combination of
transmitters 1 and 3. In this 2-user interference channel, the sum-GDoF is
equal to 1 [8], therefore implying that the sum-GDoF of the network in Fig. 7
is upper bounded by 1.
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The channel input-output relationship for the original
channel is given by

Ȳk(t) =
K∑

i=1

√
P ᾱki e jθki Xi (t) + Z̄k(t), ∀k ∈ [K ],

where Z̄k(t) ∼ CN (0, 1) and certain ᾱki ’s might be
negative. Define αi j ! ᾱ+

i j , ∀i, j ∈ [K ], where for any
real number β, β+ stands for max{0,β}. The received
signal of user k, k ∈ [K ], in the modified channel is

Yk(t) =
K∑

i=1

√
Pαki e jθki Xi (t) + Zk(t)

=
K∑

i=1

√
P ᾱ+

ki e jθki Xi (t) + Zk(t)

=
∑

i∈Nk

e jθki Xi (t) +
∑

i /∈Nk

√
P ᾱki e jθki Xi (t) + Zk(t),

where Zk(t) ∼ CN (0, 1) is independent of Z̄k(t), Nk is
the set of transmitter indices whose link to receiver k
is with negative channel strength level in the original
channel; i.e.,

Nk =
{
i ∈ [K ] : ᾱki < 0

}
.

First, we prove Coriginal ⊆ Cmodified + constant. Define
W ! {W1, W2, ..., WK }, and let

Ŷk(t) = Ȳk(t) − Yk(t)

=
∑

i∈Nk

(
√

P ᾱki − 1)e jθki Xi (t) + Z̄k(t) − Zk(t).

Then, we have

I (Wk ; Ȳ n
k )

≤ I (Wk ; Y n
k , Ŷ n

k )

= I (Wk ; Y n
k ) + I (Wk ; Ŷ n

k |Y n
k )

= I (Wk ; Y n
k ) + h(Ŷ n

k |Y n
k ) − h(Ŷ n

k |Y n
k , Wk)

(a)≤ I (Wk ; Y n
k ) + h(Ŷ n

k ) − h(Ŷ n
k |Y n

k ,W)

= I (Wk ; Y n
k ) + h(Ŷ n

k ) − h(Z̄ n
k − Zn

k |W, Zn
k )

(b)
≤ I (Wk ; Y n

k ) +
n∑

t=1

h(Ŷk(t)) − h(Z̄ n
k )

(c)≤ I (Wk ; Y n
k ) + n log[πe(K + 2)] − n log(πe)

= I (Wk ; Y n
k ) + n log(K + 2),

where step (a) follows the facts that dropping
conditioning does not reduce entropy (for the second
term) and adding conditioning does not increase entropy
(for the third term), step (b) follows the chain rule
and the fact that dropping conditioning does not reduce
entropy, and step (c) holds since |Nk| ≤ K and
Gaussian distribution maximizes differential entropy
under a given variance constraint. This implies that

Coriginal ⊆ Cmodified + constant. Similarly, we can prove
the other direction Cmodified ⊆ Coriginal + constant,

I (Wk ; Y n
k )

≤ I (Wk ; Ȳ n
k , Ŷ n

k )

= I (Wk ; Ȳ n
k ) + I (Wk ; Ŷ n

k |Ȳ n
k )

= I (Wk ; Ȳ n
k ) + h(Ŷ n

k |Ȳ n
k ) − h(Ŷ n

k |Ȳ n
k , Wk)

≤ I (Wk ; Ȳ n
k ) + h(Ŷ n

k ) − h(Ŷ n
k |Ȳ n

k ,W)

= I (Wk ; Ȳ n
k ) + h(Ŷ n

k ) − h(Z̄ n
k − Zn

k |W, Z̄ n
k )

≤ I (Wk ; Ȳ n
k ) +

n∑

t=1

h(Ŷk(t)) − h(Zn
k )

≤ I (Wk ; Ȳ n
k ) + n log(K + 2).

• Next, we prove that, regardless of whether or not TIN is
GDoF-optimal, the original and modified channels always
have the same achievable GDoF region through TIN P∗.
To this end, we only need to show that using the same
transmit power vector (Pr1 , Pr2 , ..., PrK ) in the modified
and original channels, user i ∈ [K ] in both channels
achieves the same GDoF value by treating interference
as noise.
Recall that in the modified channel, when each transmitter
i uses a transmit power of Pri , ri ≤ 0 and each receiver
treats all the incoming interference as noise, the rate
achieved by user i is

Ri = log

(

1 + Pαii +ri

1 + ∑
j ̸=i Pαi j +r j

)

,

and the achievable GDoF by user i through TIN equals

di = max{0,αii + ri − max{0, max
j : j ̸=i

(αi j + r j )}}. (45)

Now consider the original channel. Similarly, applying
the same transmit power Pri to each transmitter i and
treating interference as noise at each receiver, the achiev-
able rate of user i is

R̄i = log

(

1 + P ᾱii +ri

1 + ∑
j ̸=i P ᾱi j +r j

)

.

In the original channel, denote the set of user indices
whose direct link is with negative channel strength level
as U . For all the users i ∈ U , it is easy to verify that the
achievable GDoF through TIN is

d̄i = 0, (46)

while for the users i /∈ U , we have

d̄i = max{0, ᾱii + ri − max{0, max
j : j ̸=i

(ᾱi j + r j )}}
(d)= max{0, ᾱ+

ii + ri − max{0, max
j : j ̸=i

(ᾱi j + r j )}}
(e)= max{0, ᾱ+

ii + ri − max{0, max
j : j ̸=i

(ᾱ+
i j + r j )}}

= max{0,αii + ri − max{0, max
j : j ̸=i

(αi j + r j )}}, (47)



1764 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 4, APRIL 2015

where step (d) follows from the fact that ᾱ+
ii = ᾱii for

users i /∈ U , and step (e) holds since when ᾱi j < 0, we
have ᾱi j +r j < 0, ᾱ+

i j +r j ≤ 0, and replacing the former
with the latter does not impact the final result.
Combining (46) and (47), we obtain that for user i ∈ [K ]

d̄i = max{0,αii + ri − max{0, max
j : j ̸=i

(αi j + r j )}} (48)

Comparing (45) with (48), we establish that the original
and modified channels have the same TIN region P∗.

• Finally, we show that for the original channel, TIN
achieves the capacity region to within log2(3K ) bits,
when the following condition holds

ᾱ+
ii ≥ max

j : j ̸=i
{ᾱ+

j i } + max
k:k ̸=i

{ᾱ+
ik}, ∀i ∈ [K ]. (49)

We start with the converse. For the original channel, when
condition (49) holds, based on Theorem 3, we have

Ri ≤ log2(1 + P ᾱii ) ≤ log2(1 + P ᾱ+
ii )

≤ ᾱ+
ii log2 P + 1 = αii log2 P + 1, ∀i ∈ [K ] (50)

m∑

j=1

Ri j

≤
m∑

j=1

log2

(

1 + P ᾱi j i j+1 + P ᾱi j i j

1 + P ᾱi j−1 i j

)

≤
m∑

j=1

log2

⎛

⎝1 + P ᾱi j i j+1 + P
ᾱ+

i j i j

1 + P ᾱi j−1 i j

⎞

⎠

=
m∑

j=1

log2

⎛

⎝1 + P ᾱi j i j+1 + P
ᾱ+

i j i j

P0 + P ᾱi j−1 i j

⎞

⎠

<
m∑

j=1

log2

⎛

⎝1 + P ᾱi j i j+1 + P
ᾱ+

i j i j

P
ᾱ+

i j−1 i j

⎞

⎠

=
m∑

j=1

log2

⎛

⎝ P
ᾱ+

i j−1 i j + P
ᾱi j i j+1 +ᾱ+

i j−1 i j + P
ᾱ+

i j i j

P
ᾱ+

i j−1 i j

⎞

⎠

≤
m∑

j=1

log2

⎛

⎝ 3P
ᾱ+

i j i j

P
ᾱ+

i j−1 i j

⎞

⎠

=
m∑

j=1

[(ᾱ+
i j i j

− ᾱ+
i j−1 i j

) log2 P + log2 3]

=
m∑

j=1

[(αi j i j − αi j−1 i j ) log2 P + log2 3], (51)

for all cycles (i1, i2, ..., im) ∈ $K , ∀m ∈ {2, 3, ..., K }.
Comparing (32) and (33) (the outer bounds of the mod-
ified channel in Section IV) with (50) and (51), one can
find that the modified and original channels have exactly
the same outer bounds.
Then, consider the achievability. For the modified chan-
nel, denote the achievable rate region through TIN
under condition (9) (the TIN-optimality condition in
Theorem 1) as RTIN. In the modified channel, for any
rate tuple RTIN = (R1, R2, ..., RK ) in the achievable

TIN region RTIN, we have a corresponding transmit
power vector PTIN = (Pr1 , Pr2 , ..., PrK ). We denote the
set of the transmit power vectors for all the rate tuples
in RTIN as PTIN. In the original channel, applying the
same set of transmit power vectors PTIN for transmitters
and treating interference as noise at each receiver, one
can obtain an achievable TIN region R̄TIN such that
(i) any user k /∈ U achieves a rate no less than that
in the modified channel when the same transmit power
vector is utilized, as for that user the interfering links
in the original channel are no stronger than those in the
modified channel, which indicates that for users k /∈ U
the constant gap cannot increase in the original channel;
(ii) the constant gap for any user k ∈ U is at most
1 bit, since according to (50) the achievable rate of that
user is upper bounded by 1 bit. Therefore, combining
with the constant gap result for the modified channel
(see Theorem 4), we establish that for the original
channel, when condition (49) is satisfied, TIN achieves
to within log2(3K ) bits of the capacity region.

Combining the above steps, we prove that assigning a
0 value to negative αi j , ∀i, j ∈ [K ], has no impact on the
GDoF or the constant gap results presented in this paper
(i.e., Theorems 1, 4 and 5).

APPENDIX B
CHARACTERIZATION OF THE POLYHEDRAL TIN REGION P

To prove the equivalence of the two representations
(12)-(14) and (15)-(18), we first define that P̄ is the set of all
K -tuples (d1, d2, ..., dK ) for which there exist ri ’s, i ∈ [K ],
such that (15)-(18) hold, and then show that P = P̄.

Obviously, it is true that P ⊆ P̄. This is because
if (d1, d2, ..., dK ) ∈ P , then there exist ri ’s such
that (12)-(14) are satisfied, which in turn implies that (15)-(18)
are satisfied. This leads to the fact that (d1, d2, ..., dK ) ∈ P̄.
Also, it is easily verified that P̄ ⊆ P . This is because when
(d1, d2, ..., dK ) ∈ P̄ , there exist ri ’s such that (15)-(18) are
satisfied, implying that

di ≤ αii + ri − max{0, max
j : j ̸=i

(αi j + r j )}

⇔ ri ≥ di − αii + max{0, max
j : j ̸=i

(αi j + r j )}, ∀i ∈ [K ]. (52)

Now, to prove (d1, d2, ..., dK ) ∈ P , we need to show that
when (15)-(18) hold, there exist r̄i ’s such that

r̄i ≤ 0, ∀i ∈ [K ], (53)

r̄i = di − αii + max{0, max
j : j ̸=i

(αi j + r̄ j )}, ∀i ∈ [K ]. (54)

Denote r = (r1, r2, ..., rK ) and r̄ = (r̄1, r̄2, ..., r̄K ). Writing
(53) and (54) in the vector form, we have

r̄ ≤ 0, (55)

r̄ = f (r̄). (56)

Then it is easy to verify the following conditions are satisfied:
(i) f is a continuous increasing function; (ii) From (52),
the set Sr̄ = {r̄ : r̄ ≥ f (r̄)} is nonempty;
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Fig. 8. The m-user cyclic interference channel.

(iii) The set Sr̄ is bounded from below. Then, according
to the fixed point theorem in [17] ([17, Proposition 6]),
we know that for each r ∈ Sr̄, there exists a r̄ ≤ r
such that r̄ = f (r̄). Combining this result with (15), we
know when (15)-(18) hold, there exist such r̄i ’s satisfying
(53) and (54), which implies that (d1, d2, ..., dK ) ∈ P .
Therefore, we establish that P = P̄.

APPENDIX C
PROOF OF THEOREM 3

First, each individual bound in (28) is simply the cut-set
upper bound for user i ∈ [K ]. Next, we consider the cyclic
bound (29), where the modulo-m arithmetic is implicitly used
on the user indices, e.g., im = i0. For any cyclic sequence
(i1, i2, ..., im) ∈ $K , we start with the fully connected K -user
interference channel with input-output relationship (1), and go
through the following steps:

• Eliminate all the users i ∈ [K ]\{i1, i2, ..., im} and their
desired messages;

• Remove all the interfering links but the links from trans-
mitter i j to receiver i j−1, ∀ j ∈ {1, 2, ..., m}.

We end up with the m-user cyclic interference channel as
depicted in Fig. 8. The above two steps cannot hurt the rates
of the remaining messages. Therefore, the sum rate of users
i ∈ {i1, i2, ..., im} in the original K -user interference channel
is upper bounded by that of the m-user cyclic interference
channel. Define

Si j (t) = hi j−1 i j X̃ i j (t) + Zi j−1(t), ∀ j ∈ {1, 2, ..., m}.

Then for receiver i j , we provide Sn
i j

through a genie. From
Fano’s inequality, we have

n(Ri j − ϵ)

≤ I (Wi j ; Y n
i j
, Sn

i j
)

= h(Y n
i j

, Sn
i j
) − h(Y n

i j
, Sn

i j
|Wi j )

= h(Sn
i j

) + h(Y n
i j
|Sn

i j
) − h(Sn

i j
|Wi j ) − h(Y n

i j
|Sn

i j
, Wi j )

= h(Sn
i j

) + h(Y n
i j
|Sn

i j
) − h(Zn

i j−1
) − h(Sn

i j+1
).

Taking the sum of n(Ri j − ϵ) for all j ∈ {1, 2, ..., m}, we
obtain

n
m∑

j=1

(Ri j − ϵ) ≤
m∑

j=1

[
h(Y n

i j
|Sn

i j
) − h(Zn

i j
)
]

≤
n∑

t=1

m∑

j=1

[
h(Yi j (t)|Si j (t)) − h(Zi j (t))

]
,

where the last inequality follows chain rule and the fact
that dropping conditioning does not reduce entropy. Finally,
using the fact that the circularly symmetric Gaussian dis-
tribution maximizes conditional differential entropy under a
given covariance constraint, we end up with the desired
outer bound

m∑

j=1

Ri j ≤
m∑

j=1

log
(

1 + |hi j i j+1 |2 Pi j+1 +
|hi j i j |2 Pi j

1 + |hi j−1 i j |2 Pi j

)
.

APPENDIX D
PROOF OF THEOREM 5

We prove the theorem in two steps.
• Step 1:

⋃
S⊆[K ] PS ⊆ P∗. It suffices to show that

for all S ⊆ [K ], PS ⊆ P∗; i.e., the region PS can
be achieved through TIN. Note that if S = ∅, then
PS = P∅ = P ⊆ P∗.
Now, if S ̸= ∅, then to make the users in S silent,
we set ri = −∞, ∀i ∈ S. This forces di = 0,
∀i ∈ S. Then, for the remaining users, i.e., the users
in Sc, we use polyhedral TIN. Therefore, the polyhedral
TIN region where all the users in S are removed from the
network, can be achieved. This region is in fact PS , and
hence, PS ⊆ P∗.

• Step 2: P∗ ⊆ ⋃
S⊆[K ] PS . To prove this, we first define

the sets P̃S as PS restricted to strictly positive GDoF’s
for users in Sc; i.e.,

P̃S = {(d1, d2, ..., dK ) ∈ PS : di > 0,∀i ∈ Sc},
for any S ⊆ [K ]. It is obvious that P̃S ⊆ PS and
therefore,

⋃

S⊆[K ]
P̃S ⊆

⋃

S⊆[K ]
PS . (57)

Now, we will prove that P∗ ⊆ ⋃
S⊆[K ] P̃S . Assume there

exists a GDoF point (d1, d2, ..., dK ) lying outside all of
the sets P̃S . Such a point should satisfy at least one of
the following conditions:

– di < 0 or di > αii for some user i ∈ [K ]. In this
case, it is trivial that the GDoF point is not achievable
by TIN.

–
∑m

j=1 di j >
∑m

j=1(αi j i j − αi j−1 i j ) for some cyclic
sequence (i1, i2, ..., im) ∈ $K such that di j > 0,
∀ j ∈ {1, 2, ..., m}. Note the modulo-m arithmetic is
implicitly used on the user indices, e.g., im = i0.
In this case, we show that this GDoF point cannot
belong to P∗ by contradiction. Assume otherwise;
i.e., suppose (d1, d2, ..., dK ) is achievable by TIN.
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m∑

j=1

ri j + αi j i j − max{0, max
ik ̸=i j

(rik + αi j ik )} >
m∑

j=1

(αi j i j − αi j−1i j )

⇒
m∑

j=1

ri j + αi j−1 i j − max{0, max
ik ̸=i j

(rik + αi j ik )} > 0. (58)

For all j ∈ {1, 2, ..., m}, since it is assumed that
di j > 0, there exist ri j ’s such that

di j = ri j + αi j i j − max{0, max
ik ̸=i j

(rik + αi j ik )}.

Therefore, we will have (58) at the top of the page.
On the other hand, for all j ∈ {1, 2, ..., m} we have

max{0, max
ik ̸=i j

(rik + αi j ik )} ≥ ri j+1 + αi j i j+1 ,

which in turn implies that
m∑

j=1

ri j + αi j−1 i j − max{0, max
ik ̸=i j

(rik + αi j ik )}

≤
m∑

j=1

ri j + αi j−1 i j − (ri j+1 + αi j i j+1)

=
m∑

j=1

(ri j − ri j+1) +
m∑

j=1

(αi j−1 i j − αi j i j+1 )

= 0.

But considering (58), this is a contradiction.
Therefore in this case, the GDoF point is not achiev-
able by TIN, too.

This implies that P∗ ⊆ ⋃
S⊆[K ] P̃S , which combined

with (57) yields P∗ ⊆ ⋃
S⊆[K ] PS .

Combining steps 1 and 2 leads to (42), therefore completing
the proof.
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