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On the Two-User MISO Broadcast Channel With
Alternating CSIT: A Topological Perspective

Jinyuan Chen, Petros Elia, and Syed Ali Jafar

Abstract— In many wireless networks, link strengths are
affected by many topological factors, such as different distances,
shadowing, and intercell interference, thus resulting in some links
being generally stronger than other links. From an information
theoretic point of view, accounting for such topological aspects
is still a novel approach, that has been recently fueled by strong
indications that such aspects can crucially affect transceiver
and feedback design, as well as the overall performance. This
paper here takes a step in exploring this interplay between
topology, feedback, and performance. This is done for the two
user broadcast channel with random fading, in the presence of a
simple two-state topological setting of statistically strong versus
weaker links, and in the presence of a practical ternary feedback
setting of alternating channel state information at the transmitter
[alternating channel state information at the transmitter (CSIT)]
where for each channel realization, this CSIT can be perfect,
delayed, or not available. In this setting, the work derives
generalized degrees-of-freedom bounds and exact expressions,
that capture performance as a function of feedback statistics
and topology statistics. The results are based on novel topological
signal management schemes that account for topology in order
to fully utilize feedback. This is achieved for different classes of
feedback mechanisms of practical importance, from which we
identify specific feedback mechanisms that are best suited for
different topologies. This approach offers further insight on how
to split the effort—of channel learning and feeding back
CSIT—for the strong versus for the weaker link. Further intuition
is provided on the possible gains from topological spatio-temporal
diversity, where topology changes in time and across users.

Index Terms— Broadcast channel, channel with state, feedback,
network topology, channel state information at the transmitter
(CSIT), degrees-of-freedom (DoF).

I. INTRODUCTION

THE Gaussian multiple-input single-output broadcast
channel (MISO BC) is comprised of a transmitter with

multiple antennas that wishes to send independent messages
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Fig. 1. Topology where link 2 is weaker due to distance and interference.

to different receivers, each equipped with a single antenna.
In addition to its direct relevance to cellular downlink
communications, the MISO BC has attracted much atten-
tion for the critical role played in this setting by the feed-
back mechanism through which channel state information
at the transmitter (CSIT) is typically acquired. Interesting
insights into the dependence of the capacity limits of the
MISO BC on the timeliness and quality of feedback, have
been found through degrees of freedom (DoF) characteriza-
tions under perfect CSIT [1], no CSIT [2]–[5], compound
CSIT [6]–[8], delayed CSIT [9], CSIT comprised of channel
coherence patterns [10], mixed CSIT [11]–[14], and alter-
nating CSIT [15]. Other related work can be found
in [16]–[30].

As highlighted recently in [31], while the insights obtained
from DoF studies are quite profound, they are implicitly
limited to settings where all users experience comparable
signal strengths. This is due to the fundamental limitation
of the DoF metric which treats each user with a non-zero
channel coefficient, as capable of carrying exactly 1 DoF
by itself, regardless of the statistical strength of the channel
coefficients. Thus, the DoF metric ignores the diversity of
link strengths, which is perhaps the most essential aspect of
wireless communications from the perspective of interference
management. Indeed, in wireless communication settings, the
link strengths are affected by many topological factors, such
as propagation path loss, shadow fading and inter-cell inter-
ference [32], which lead to statistically unequal channel gains,
with some links being much weaker or stronger than others
(See Figures 1, 2). Accounting for these topological aspects,
by going beyond the DoF framework into the generalized
degrees of freedom (GDoF) framework (see [33]–[39]), is the
focus of the topological perspective that we seek here.

The work here combines considerations of topology
with considerations of feedback timeliness and quality, and
addresses questions on performance bounds, on encoding
designs that account for topology and feedback, on feedback
and channel learning mechanisms that adapt to topology, and
on handling and even exploiting fluctuations in topology.

0018-9448 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Cell edge users experience fluctuating interference due to changing
frequency allocation in the multi-cell system.

II. SYSTEM MODEL FOR THE TOPOLOGICAL BC

A. Channel, Topology, and Feedback Models

We consider the broadcast channel, with a two-antenna
transmitter sending information to two single-antenna
receivers. The corresponding received signals at the first and
second receiver at time t , can be modeled as

yt = √
ρh

′T
t xt + u′

t (1)

zt = √
ρ g

′T
t xt + v ′

t (2)

where ρ is defined by a power constraint, xt is the normalized
transmitted vector at time t — normalized here to satisfy
||xt ||2 ≤ 1 — h′

t , g′
t represent the vector fading channels to

the first and second receiver respectively, and u′
t , v

′
t represent

equivalent receiver noise.
1) Topological Diversity: In the general topological broad-

cast channel setting, the variance of the above fading and
equivalent noise, may be uneven across users, and may indeed
fluctuate in time and frequency. These fluctuations may be a
result of movement, but perhaps more importantly, topological
changes in the time scales of interest, can be attributed to
fluctuating inter-cell interference. Such fluctuations are in turn
due to different allocations of carriers in different cells
or — similarly — due to the fact that one carrier can
experience more interference from adjacent cells than another.

The above considerations can be concisely captured by the
following simple model

yt = ρA1,t /2hT
t xt + ut (3)

zt = ρA2,t /2 gT
t xt + vt (4)

where now ht , gt and ut , vt are assumed to be spatially and
temporally i.i.d1 Gaussian with zero mean and unit variance.
With ||xt ||2 ≤ 1, the parameter ρ and the link power exponents
A1,t , A2,t reflect — for each link, at time t — an average

1This suggests the simplifying formulation of unit coherence time.

received signal-to-noise ratio (SNR)

Eht ,xt |ρA1,t /2hT
t xt |2 = ρA1,t (5)

Egt ,xt |ρA2,t /2 gT
t xt |2 = ρA2,t . (6)

In this simplified model, the difference in link strengths (in a
statistical sense) reflects the differences due to the propagation
setting or due to inter-cell interference. While more motivation
for this simplified multiplicative model will be given later on
in the context of generalized degrees-of-freedom, we hasten to
note that the multiplicative dependency of received power to
input power, is meant to capture the possibility of a substantial
difference in the high-SNR capacities of any two links.

In this setting we adopt a simple two-state topological model
where the link exponents can each take, at a given time t , one
of two values

Ak,t ∈ {1,α} for 0 ≤ α ≤ 1, k = 1, 2

reflecting the possibility of either a strong link (Ak,t = 1),
or a weaker link (Ak,t = α). The adopted small number
of topological states, as opposed to a continuous range of
Ak,t values, is motivated by static multi-carrier settings with
adjacent cell interference, where the number of topological
states can be proportional to the number of carriers.

Remark 1: We clarify that the rate of change of the topol-
ogy — despite the use of a common time index for Ak,t and
ht , gt — need not match in any way, the rate of change of
fading. We also clarify that our use of the term ‘link’ carries
a statistical connotation, so for example when we say that at
time t the first link is stronger than the second link, we refer
to a statistical comparison where A1,t > A2,t .

2) Alternating CSIT Formulation: In terms of feed-
back, we draw from the alternating CSIT formulation by
Tandon et al. [15], which can nicely capture simple feedback
policies. In this setting, the CSIT for each channel realization
can be immediately available and perfect (P), or it can be
delayed (D), or not available (N). In our notation,
Ik,t ∈ {P, D, N} will characterize the CSIT about the fading
channel of user k at time t .

B. Problem Statement: Generalized Degrees-of-Freedom,
Feedback and Topology Statistics

1) Generalized Degrees-of-Freedom: In this work we focus
on the generalized degrees-of-freedom (GDoF) performance
of the system. This approach goes back to Etkin et al. in [33]
which studied the Gaussian interference channel (IC), and
which was followed by many GDoF related works such as
that by Mohapatra and Murthy in [40] which analyzed the
GDoF of the K -user symmetric IC, as well as the work by
Karmakar and Varanasi in [37] which analyzed the GDoF
of the multiple-input multiple-output (MIMO) IC. Combining
topology and feedback considerations, Vaze et al. in [34]
employed the GDoF measure in the MIMO IC setting without
CSIT under statistically weak interference links, while
Karmakar and Varanasi in [36] analyzed the GDoF of the
MIMO IC with limited feedback. Further interesting works
include the work by Gherekhloo et al. in [38] which con-
sidered interference management issues in the presence of an
alternating connectivity (α = 0).
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In this setting, for an achievable rate pair (R1, R2) for the
first and second user respectively, the corresponding
GDoF pair (d1, d2) is given by

dk = lim
ρ→∞

Rk

logρ
, k = 1, 2. (7)

The corresponding GDoF region D is then the set of all
achievable DoF pairs (d1, d2), and the sum GDoF is

d# = sup
{
d1 + d2 : (d1, d2) ∈ D

}
. (8)

It is easy to see that in the current two-state topological
setting, a strong link by itself has capacity that scales as
logρ + o(logρ), while2 a weak link has a capacity that
scales as α logρ + o(logρ). Setting α = 1 removes topology
considerations, while setting α = 0 almost entirely removes
the weak link, as its capacity does not scale with SNR.
Needless to say that setting the stronger link to correspond
to a unit link-power exponent, is a result of normalization,
and thus imposes no loss in generality.

Example 2: One can see that, in the current setting of the
two-user MISO BC, having always perfect feedback (P) for
both users’ channels, and having a static topology where
the first link is stronger than the second throughout the
communication process (A1,t = 1, A2,t = α, ∀t), the sum
GDoF is d# = 1 + α, and it is achieved by zero forcing.

Example 3: Furthermore a quick back-of-the-envelope cal-
culation (see Section IV-G), can show that in the same static
topology A1,t = 1, A2,t = α,∀t , the original Maddah-
Ali and Tse (MAT) scheme — originally designed in [9]
without topology considerations for the α = 1 case — after
a small modification that regulates the rate of the private
information to the weaker user, achieves a sum GDoF of
d# = 2

3 (1 + α). This performance will be surpassed by a
more involved topological signal management (TSM) scheme,
to be described later on.

2) Motivation of the GDoF Setting: Often, taking a strict
interpretation of the limiting nature of GDoF, leads to confu-
sion because, strictly speaking, any reasonable channel model
would force a limiting α to be 1, since all powers would go to
infinity the same way. Towards convincing the skeptical reader
of the usefulness of our approach, we offer the following
thoughts which can help clarify any misconceptions.

Our GDoF approach here is based on two crucial premises.
i) Network links generally have different capacities, and in

the perfectly conceivable case where a link has a capac-
ity that is a fraction α of another link’s capacity, a good
approximation is that the weaker link has average power
that is close to the αth power of the aforementioned
power of the strong link.

ii) Even though, strictly speaking, GDoF results are by
definition associated to the infinite SNR limit (cf. (8))
where the limiting behavior of random variables allows
for more analytical tractability, it is crucial to note that
this tractable interpretation applies and offers insight in
operational moderate-to-large SNR regimes. The crucial

2o(•) comes from the standard Landau notation, where f (x) = o(g(x))
implies limx→∞ f (x)/g(x) = 0. Logarithms are of base 2.

element that binds infinite-SNR mathematical analysis
to engineering insight over operational SNR values, can
be found in the above observation regarding the ratios
of link capacities. This says that our analysis would
apply in a broadcast channel setting, where the two links
independently have sufficiently high capacity — which
would in turn imply a moderate-to-large SNR regime
— and where the ratio of these capacities is close to
a certain value α. Once this α is picked and fixed, the
derived high-SNR approximations will yield (capacity)
expressions which, as SNR increases, are expected to
offer an increasingly faithful representation of the actual
behavior of the system, i.e., are expected to offer an
increasingly better qualitative estimate of the overall sys-
tem behavior. Avoiding a strict and literal interpretation
of asymptotics, while still mathematically rigorous, the
GDoF approach allows for consideration of topological
settings that are motivated by reasonable scenarios that
include distance variations and interference fluctuations.
In other words, while the mathematics use scaling laws
and limits as tools for tractability of randomness, the
GDoF approach does not require the actual real-life
nature of the problem to scale with SNR, as this would
related to awkward scenarios where variable geometries
have distances that scale in different specific ways.

With the above premises in mind, one can now better appre-
ciate the utility of the simple multiplicative model in (5) which
— employing a multiplicative dependency of the received
power to the input power — manages to concisely capture
substantial differences in the high-SNR capacities of any
two links, and thus fits well with the GDoF setting. While
other, more refined models could certainly be conceived that
could potentially better map the intricacies of what causes
topological diversity in networks, we have yet to see such
models that allow for analysis that offers insight. Additionally,
we believe that such complex and involved models would be
more susceptible to losing some of their refinement in the high
SNR regime of GDoF asymptotics. No such loss of model
information is suffered — in the transition to the asymptotic
setting — by the chosen multiplicative model, exactly because
of this model’s inherent simplicity and its direct association
to the GDoF measure.

3) Feedback and Topology Statistics: Naturally perfor-
mance is a function of the feedback and topology statistics.
In terms of feedback statistics, we draw from the formulation
in [15] and consider

λI1,I2

to denote the fraction of the time during which the CSIT state
is described by a pair (I1, I2) ∈ (P, D, N) × (P, D, N).

We similarly consider

λA1,A2

to denote the fraction of the time during which the gain expo-
nents of the two links are some pair (A1, A2) ∈ (1,α)×(1,α),
where naturally λ1,α + λα,1 + λ1,1 + λα,α = 1. Finally we use

λA1,A2
I1,I2
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to denote the fraction of the time during which the CSIT state
is (I1, I2) and the topology state is (A1, A2).

Example 4: λP,P = 1 (resp. λD,D = 1, λN,N = 1) implies
perfect CSIT (resp. delayed CSIT, no CSIT) for both users’
channels, throughout the communication process. Similarly
λP,N + λN,P = 1 restricts to a family of feedback schemes
where only one user sends CSIT at a time (more precisely, per
channel realization), and does so perfectly. From this family,
λP,N = λN,P = 1/2 is the symmetric option. Similarly, in
terms of topology, λ1,α = 1, α < 1 implies a static
(or fixed) topology where the first link is stronger than the
second throughout the communication process, λ1,1 = λα,α =
1/2 implies a topology where half of the time both links are
strong and then both are weak, while λ1,α = λα,1 = 1/2
implies an alternating topology where half of the time, the
first user is statistically stronger, and vice versa.

Finally having λ1,α
P,D + λα,1D,P = 1 does not impose any

restriction on the topology statistics, but it implies a feedback
mechanism that asks — for any channel realization — the
statistically stronger user to send perfect feedback, and the
statistically weaker user to send delayed feedback.

C. Conventions and Structure

In terms of notation, (•)T, (•)H, (•)−1, and tr(•) denote
the transpose, conjugate transpose, inverse and the trace of a
matrix respectively, while (•)∗ denotes the complex conjugate,
|| • || denotes the Euclidean norm, and | • | denotes either the
magnitude of a scalar or the cardinality of a set. We also use
.= to denote exponential equality, i.e., we write f (ρ)

.= ρB

to denote lim
ρ→∞ log f (ρ)/ logρ = B . Similarly

.≥ and
.≤ denote

exponential inequalities. e⊥ denotes a unit-norm vector orthog-
onal to vector e. We define that (•)+ = max{•, 0}. Throughout
this work, we adhere to the common convention and assume
perfect and global knowledge of channel state information at
the receivers (perfect and global CSIR). We also make the
soft assumption that the transmitter is aware of the feedback
statistics and the topology statistics. Furthermore, for some
cases, we will consider the broad ‘symmetric’ alternating CSIT
setting, corresponding to the symmetry assumption that

i.e., λP,N = λN,P , λD,N = λN,D , λP,D = λD,P .

For this symmetric CSIT setting we will often use the
following notations

λP !
∑

(I1,I2):I1=P

λI1,I2 !
∑

(I1,I2):I2=P

λI1,I2 ,

λD !
∑

(I1,I2):I1=D

λI1,I2 !
∑

(I1,I2):I2=D

λI1,I2 ,

λN !
∑

(I1,I2):I1=N

λI1,I2 !
∑

(I1,I2):I2=N

λI1,I2 .

In terms of the feedback statistics, we will here adopt a
commonly used soft assumption that the long term feedback
statistics defining λI1,I2 , (I1, I2) ∈ (P, D, N)×(P, D, N), still
hold for reasonably large but finite durations. While there are
some specific cases of non-homogeneous feedback statistics
for which this assumption does not hold, the assumption in

general can be achieved, up to a certain point, by interchanging
of the time index, as well as fits well to feedback mechanisms
that are periodic in time.

In Section III we present the GDoF bounds for the topolog-
ical BC with alternating CSIT. Specifically in Section III-A
we present the general GDoF outer bounds, in Section III-B
we present a unified GDoF inner bound for the BC with
symmetrically alternating CSIT and a static topology, while
in Section III-C we present the optimal sum GDoF for differ-
ent practical CSIT schemes, for general fluctuating (non-static)
topology settings. In Section IV we present a general topo-
logical signal management scheme for the entire spectrum of
static topologies and alternating CSIT settings (this serves as
a proof for Theorem 8), as well as provide two illustrative
examples, where the general scheme is distilled down to
specific simpler instances that can help the reader better
understand the idea behind these schemes. Then in Section V
we describe sum-GDoF optimal schemes for the fluctuating
topology setting. In Section VI we offer some conclusions,
while in the appendix of Section VII we have the proof of the
general outer bound of Lemma 6.

We proceed with the main results, starting with the GDoF
region outer bounds, and then proceeding with achievable
and often optimal GDoF expressions for pertinent cases of
practical significance.

III. GDOF BOUNDS FOR THE TOPOLOGICAL BC WITH

ALTERNATING CSIT

A. GDoF Outer Bounds for the Topological BC With
Alternating CSIT

We first proceed with a simpler version of the outer bound,
which encompasses all cases of alternating CSIT, and all static
topologies (λ1,α = 1, or λα,1 = 1, α ∈ [0, 1]).

Lemma 5: For the two-user MISO BC with alternating
CSIT and a static topology (λ1,α = 1), the GDoF region is
outer bounded as

d1 ≤ 1, d2 ≤ α,

d1 + d2

2
≤ 1 +

∑

(I1,I2):I1=P

α

2
λI1,I2 ,

d2 + d1

2
≤ α +

∑

(I1,I2):I2=P

1
2
λI1,I2 +

∑

(I1,I2):I2 ̸=P

1 − α

2
λI1,I2 ,

d1 + d2 ≤ d(2)
# ,

and the sum GDoF is upper bounded as d# ≤ min{d(1)
# , d(2)

# },
where

d(1)
# ! (1 + α)λP,P + 3 + 2α

3
(λP,D + λD,P + λP,N + λN,P )

+ 3 + α

3
(λD,D + λD,N + λN,D + λN,N ),

d(2)
# ! (1 + α)(λP,P + λP,D + λD,P + λD,D)

+ 2 + α

2
(λP,N + λN,P + λD,N + λN,D ) + λN,N .

The proof of the above lemma, can be found as part of the
proof of the following more general lemma, in the appendix
of Section VII.
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We now proceed with the general outer bound, for any
alternating CSIT mechanism, and any topology, i.e., for
any λA1,A2

I1,I2
. For conciseness we use

λA1,A2
P↔N ! λA1,A2

P,N + λA1,A2
N,P

λA1,A2
D↔N ! λA1,A2

D,N + λA1,A2
N,D

λA1,A2
P↔D ! λA1,A2

P,D + λA1,A2
D,P

so for example, λ1,α
P↔D simply denotes the fraction of the

communication time during which the first link is stronger
than the second, and during which, the CSIT for the channel
of any one of the users, is being fed back in a perfect and
instantaneous manner, while the CSIT for the channel of the
other user, is fed back later in a delayed manner.

Lemma 6: For the topological two-user MISO BC with
alternating CSIT, the GDoF region is outer bounded as

d1 ≤
∑

∀(A1,A2)

A1λA1,A2 , (9)

d2 ≤
∑

∀(A1,A2)

A2λA1,A2 , (10)

d1 + d2

2
≤

∑

∀(I1,I2)

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

+
∑

(I1,I2):I1=P

∑

∀(A1,A2)

A2

2
λA1,A2

I1,I2

+
∑

(I1,I2):I1 ̸=P

1 − α

2
λα,1I1,I2

, (11)

d2 + d1

2
≤

∑

∀(I1,I2)

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

+
∑

(I1,I2):I2=P

∑

∀(A1,A2)

A1

2
λA1,A2

I1,I2

+
∑

(I1,I2):I2 ̸=P

1 − α

2
λ1,α

I1,I2
, (12)

d1 + d2 ≤ d(4)
# , (13)

and the sum GDoF is upper bounded as d# ≤ min{d(3)
# , d(4)

# },
where

d(3)
# ! (1 + α)(λα,1P,P + λ1,α

P,P ) + 3 + 2α
3

(λα,1P↔D + λ1,α
P↔D)

+ 3 + 2α
3

(λα,1P↔N + λ1,α
P↔N ) + 3 + α

3
(λα,1D,D + λ1,α

D,D)

+ 3 + α

3
(λα,1D↔N + λ1,α

D↔N ) + 3 + α

3
(λα,1N,N + λ1,α

N,N )

+ 2λ1,1
P,P + 5

3
λ1,1

P↔D + 5
3
λ1,1

P↔N + 4
3
λ1,1

D,D + 4
3
λ1,1

D↔N

+ 4
3
λ1,1

N,N + 2αλα,αP,P + 5α
3
λα,αP↔D + 5α

3
λα,αP↔N

+ 4α
3
λα,αD,D + 4α

3
λα,αD↔N + 4α

3
λα,αN,N , (14)

d(4)
# ! (1 + α)(λ1,α

P,P + λα,1P,P ) + (1 + α)(λ1,α
P↔D + λα,1P↔D)

+ (1 + α)(λ1,α
D,D + λα,1D,D) + 2 + α

2
(λ1,α

P↔N + λα,1P↔N )

+ 2 + α

2
(λ1,α

D↔N + λα,1D↔N ) + λ1,α
N,N + λα,1N,N

+ 2λ1,1
P,P + 2αλα,αP,P + 2λ1,1

P↔D + 2αλα,αP↔D

+ 2λ1,1
D,D + 2αλα,αD,D + 3

2
λ1,1

P↔N + 3α
2
λα,αP↔N

+ 3
2
λ1,1

D↔N + 3α
2
λα,αD↔N + λ1,1

N,N + αλα,αN,N . (15)

Note that bound d(3)
# results from the combination of

bound (11) and bound (12).
The above bounds will be used to establish, particularly

in the fluctuating topology setting, the optimality of different
encoding schemes and practical feedback mechanisms.

Remark 7: The derived outer bound here expands on the
classical compound BC techniques, to account for uneven link
strengths. The original idea of the compound BC technique is
that, two statistically equivalent observations may allow for
approximate reconstruction of another observation (assuming
two transmit-antennas). However, in this setting, two statis-
tically equivalent observations may not allow approximate
reconstruction of another observation, due to the uneven nature
of the links. Towards this, we introduced a different auxiliary
random variable structure such that, together with the two sta-
tistically equivalent observations — that are common in these
type of bounds — can allow for approximate reconstruction
of another observation.

B. Unified GDoF Inner Bound for the BC With Symmetrically
Alternating CSIT and a Static Topology

We first proceed to bound the GDoF region for the entire
symmetric alternating CSIT setting with a static topology
(λ1,α = 1, or λα,1 = 1, α ∈ [0, 1]).

Theorem 8: The GDoF region of the two-user MISO
BC with symmetric alternating CSIT and a static topology
(λ1,α = 1) is inner bounded by the region described as

d1 ≤ 1, d2 ≤ α,

d1 + d2

1 + α
≤ 1 + α

1 + α
λP ,

d2 + d1

2
≤ 1 + α

2
+ α

2
λP ,

d1 + d2 ≤ 1 + αλP + αλD .
Proof: The achievability of the bound is described

in Section IV.
The GDoF bound in Theorem 8 is depicted in Fig. 3. Note

that for α = 1, our result covers the previous result in [15].
From Theorem 8 we directly have the following corollaries
for the setting with delayed CSIT and a static topology
(λD,D = 1,λ1,α = 1).

Corollary 9: The GDoF region of the two-user MISO BC
with delayed CSIT and a static topology (λD,D = 1,λ1,α = 1)
is inner bounded by the region characterized as

d1 ≤ 1, d2 ≤ α,

d1 + d2

1 + α
≤ 1,

d2 + d1

2
≤ 1 + α

2
,

i.e., is inner bounded by the region with GDoF corner points
(0, 0), (1, 0), ( 1+α

1+2α , α(1+α)
1+2α ), (1 − α,α) and (0,α).
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Fig. 3. GDoF inner bound for the two-user MISO BC with symmetric
alternating CSIT and a static topology (λ1,α = 1), for case (1) of λD <
α

1+2α − α
1+2α λP , and for case (2) of λD ≥ α

1+2α − α
1+2α λP , respectively.

Corner points take the values: B = (1, αλP ), C = (1 − α + αλP , α),
E =

(
1 − α + 2αλD + αλP , α − αλD

)
, F =

(
1 − λD , αλP + (1 + α)λD

)

and G = ( 1+α
1+2α + α

1+2α λP , α(1+α)
1+2α + α2

1+2α λP
)
.

Corollary 10: The sum GDoF of the two-user MISO BC
with delayed CSIT and a static topology (λD,D = 1,λ1,α = 1)
is lower bounded as

d# ≥ (1 + α)2

1 + 2α
.

C. Optimal Sum GDoF for the Topological BC With Practical
CSIT Schemes: Fluctuating Topology

We here explore a class of dynamically fluctuating
topologies and reveal a certain topological diversity gain —
in specific instances — that is associated to topologies that
vary in time and across users. Emphasis is mainly given to
statistically symmetric topologies, as well as to a certain class
of practical feedback schemes.

We first proceed, and for the delayed CSIT setting
λD,D = 1, derive the optimal sum GDoF in the presence of the
symmetrically fluctuating topology where λ1,α = λα,1 = 1/2.

Proposition 11: For the two-user MISO BC with delayed
CSIT λD,D = 1 and topological spatio-temporal diversity such
that λ1,α = λα,1 = 1/2, the optimal sum GDoF is

d# = 1 + α

3
. (16)

Proof: The GDoF is optimal as it meets the general outer
bound in Lemma 6. The optimal TSM scheme is described
in Section V-A.

Remark 12: We see that the above result (see also Fig. 4)
corresponding to an alternating topology (λ1,α = λα,1 =
1/2) exhibiting a certain spatio-temporal topological diversity,

exceeds the achievable sum GDoF d = (1+α)2

1+2α of the corre-
sponding setting with a static topology (λ1,α = 1 or λα,1 = 1),
as well as exceeds the optimal sum GDoF d = 2

3 (1 + α) for
the equivalent delayed-CSIT setting over a topology (λ1,1 =
λα,α = 1/2) that lacks the alternating and spatial-diversity
elements that we find in the first topology (λ1,α = λα,1 = 1/2).

A similar observation to that of the above proposition,
is derived below, now for the feedback mechanism
λP,N = λN,P = 1/2.

Fig. 4. Sum GDoF performance for the naively modified Maddah-Ali and
Tse scheme (MAT), the single user case (SU), and the topological signal
management scheme (TSM 1), all for the setting λ1,α

D,D = 1. Additionally the
plot (TSM 2) describes the optimal sum GDoF for the fluctuating topology
setting where λ1,α

D,D = λα,1D,D = 1/2.

Proposition 13: For the two-user MISO BC with
λP,N = λN,P = 1/2 and topological diversity such that
λ1,α = λα,1 = 1/2, the optimal sum GDoF is

d# = 1 + α

2
(17)

which can be seen to exceed the optimal sum GDoF d ′
# =

3
4 (1+α) of the same feedback mechanism over the equivalent
but spatially non-diverse topology λ1,1 = λα,α = 1/2.

Proof: The sum GDoF is optimal as it achieves the general
outer bound in Lemma 6. The optimal scheme is described
in Section V-B.

Regarding this same feedback policy λP,N = λN,P = 1/2,
it is worth noting this policy’s optimality, in the following
broad context.

Proposition 14: For the two-user MISO BC with any
strictly uneven topology λ1,α + λα,1 = 1 and a feedback
constraint λP,N + λN,P = 1, the optimal sum GDoF is

d# = 1 + α

2
(18)

and it is achieved by the symmetric feedback policy
λP,N = λN,P = 1/2.

Proof: The sum GDoF is optimal as it achieves the general
outer bound in Lemma 6. The optimal scheme is described
in Section V-B.

Remark 15: This broad applicability of mechanism
λP,N = λN,P = 1/2, implies a simpler process of learning
the channel and generating CSIT, which now need not
consider the specific topology as long as this is strictly
uneven (λ1,1 = λα,α = 0). In essence, what the last
two propositions say is that the design of the CSIT feedback
protocol that indicates which user offers feedback at any
given time, does not have to depend on the knowledge of the
topology, and only needs to know that λP,N = λN,P = 1/2.
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Such CSIT feedback design can hence be agreed upon before
the communication process.

IV. TOPOLOGICAL SIGNAL MANAGEMENT SCHEMES

FOR STATIC TOPOLOGIES AND FOR SYMMETRIC

ALTERNATING CSIT (PROOF OF THEOREM 8)

We proceed to derive a broad scheme for the general
static topology, i.e., for the case of λ1,α = 1, which will
constructively support the result in Theorem 8. This will entail
achieving GDoF corner points (see Figure 3) B = (1, αλP ),
C = (1 − α + αλP , α), (0,α),(1, 0), GDoF corner points

E =
(
1 − α + 2αλD + αλP , α − αλD

)
,

F =
(
1 − λD, αλP + (1 + α)λD

)

for

λD <
α

1 + 2α
− α

1 + 2α
λP (19)

and point

G = ( 1 + α

1 + 2α
+ α

1 + 2α
λP ,

α(1 + α)

1 + 2α
+ α2

1 + 2α
λP

)

for λD ≥ α
1+2α − α

1+2αλP . Proper time sharing allows for the
entire GDoF region in Theorem 8.

Intuition Behind Schemes: In a nutshell, the schemes will
alternate between the actions of overloading and of multicas-
ting, where overloading refers to having the transmitter send
at a rate that is larger than what can be supported by the
MISO BC, while multicasting refers to having the transmit-
ter compensating for this excess by transmitting additional
information that eventually assists both users in decoding.
This interplay will naturally be a function of the topology.
Such overload-multicast strategy was explored in different
settings, including in [30] for the heterogeneous parallel
channel with delayed CSIT. It is worth noting that one of
the main differences between the new schemes, and the older
schemes by Tandon et al. [15] as well as the schemes from
the general CSIT setting in [14] — and by extension, the
difference between the new schemes here and other block-
Markov related schemes [41]–[45] (see also [46], [47]) —
relates the new schemes’ ability to properly capitalize on the
inherent weakness of a link in order to (often optimally) reduce
interference in at least one direction.

General Notation Used in Schemes: In describing any
scheme, we will generally associate the use of symbol a to
denote a private symbol for user 1, while we will associate
symbol b to denote a private symbol for user 2, and symbol
c to denote a common symbol meant for both users. We will
also use P(q) ! E|q|2 to denote the average power of some
symbol q , and will use r (q) to denote the pre-log factor of
the number of bits [r (q) logρ − o(logρ)] carried by symbol
q . In the interest of brevity, we will on occasion neglect the
additive noise terms, without an effect on the GDoF analysis.

We first describe the encoding, interference quantization
and mapping, and the backward decoding for the scheme.
Upon achieving points E and F for when λD < α

1+2α −
α

1+2αλP , we will do the same for point G for the case of
λD ≥ α

1+2α − α
1+2αλP by slightly modifying the scheme such

that it uses delayed CSIT for a lesser fraction of the time
λ′

D ! α
1+2α − α

1+2α λP ≤ λD . Similar modifications will allow
for the other corner points.3

The general scheme will consist of L communication
blocks, with T consecutive channel uses in each block,
where T is finite while L can grow as large as we need
it to be. We recall our soft assumption that, in every T
consecutive channel uses — without loss of generality, in
every time period t = T (ℓ − 1) + 1, T (ℓ − 1) + 2, · · · , T ℓ
for ℓ = 1, 2, 3, · · · , — the fraction of time associated with
CSIT state (I1, I2) converges to the long-term statistic λI1,I2 ,
for any (I1, I2) ∈ (P, D, N) × (P, D, N). This is commonly
used in the setting of alternating CSIT.

A. Encoding

We now describe the encoding in block ℓ, ℓ ∈ [1, L − 1],
which takes place over time t = T (ℓ − 1) + 1,
T (ℓ− 1) + 2, · · · , T ℓ. During block ℓ, the transmitter sends

xt =
[

ct +
√
ρ−αa′′′

t
0

]
+ φD2

t

[
a′

t
a′′

t

]
+ φD1

t

[
b′

t
b′′

t

]

+φP2
t g⊥

t at + φP1
t h⊥

t bt , (20)

where at , a′
t , a′′

t , a′′′
t are the private symbols meant for user

1, bt , b′
t , b′′

t for user 2, where ct is a common symbol,
where the average power of each of those eight symbols
is 1/8 (the effective average power of

√
ρ−αa′′′

t is ρ−α),
where e⊥ denotes a unit-norm vector orthogonal to e, and
where

φP2
t !

{
1 if I2 = P at time t
0 else

φP1
t !

{
1 if I1 = P at time t
0 else

(21)

φD2
t !

{
1 if I2 = D at time t
0 else

φD1
t !

{
1 if I1 = D at time t
0 else

(22)

where we note that

1
T

T ℓ∑

t=T (ℓ−1)+1

φP1
t = 1

T

T ℓ∑

t=T (ℓ−1)+1

φP2
t = λP ,

1
T

T ℓ∑

t=T (ℓ−1)+1

φD1
t = 1

T

T ℓ∑

t=T (ℓ−1)+1

φD2
t = λD, (23)

after recalling the symmetric alternating CSIT assumption, and
the assumption that the long term feedback statistics defining
λI1,I2 , (I1, I2) ∈ (P, D, N) × (P, D, N), still hold for finite
durations.

3Section IV-F introduces a special example of this scheme for a specific
setting.
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After transmission during each t = T (ℓ − 1) + 1, · · · ,
t = T ℓ, the received signals take the form

yt = ht,1(
√
ρct +

√
ρ1−αa′′′

t ) + φP2
t

√
ρhT

t g⊥
t at

+φD2
t

√
ρhT

t

[
a′

t
a′′

t

]
+ φD1

t
√
ρhT

t

[
b′

t
b′′

t

]

︸ ︷︷ ︸
s1,t

+ut , (24)

zt =
√
ραgt,1ct + φP1

t

√
ρα gT

t h⊥
t bt +

√
ρ0gt,1a′′′

t

+φD1
t

√
ρα gT

t

[
b′

t
b′′

t

]
+ φD2

t

√
ρα gT

t

[
a′

t
a′′

t

]

︸ ︷︷ ︸
s2,t

+vt , (25)

where ht,1 ! hT
t
[
1 0

]T, gt,1 ! gT
t
[
1 0

]T, and where

s1,t !φD1
t

√
ρhT

t

[
b′

t
b′′

t

]
, s2,t ! φD2

t

√
ρα gT

t

[
a′

t
a′′

t

]
(26)

denote the interference signals at user 1 and user 2
respectively.

B. Interference Quantization and Mapping

At the end of block ℓ, ℓ ∈ [1, L − 1], the
transmitter reconstructs s1,t and s2,t using delayed
CSIT, and then quantizes these into s̄1,t and s̄2,t
with φD1

t logρ − o(logρ) quantization bits and
φD2

t α logρ− o(logρ) quantization bits, respectively, allowing
for bounded quantization errors s̃1,t ! s1,t − s̄1,t and
s̃2,t ! s2,t − s̄2,t because E|s1,t |2 .= φD1

t ρ and
E|s2,t |2 .= φD2

t ρα (see [48]). The total of

T ℓ∑

t=T (ℓ−1)+1

(φD1
t + φD2

t α) logρ − T o(logρ)

= TλD(1 + α) logρ − T o(logρ) (27)

quantization bits for block ℓ (cf. (23)) is then mapped into
common information symbols {ct }T (ℓ+1)

t=T ℓ+1 that will be trans-
mitted in the next block, together with new information bits.
In the last block (block L), the transmitter simply sends the
common information symbols {ct }T L

t=T (L−1)+1 carrying a total
of TλD(1+α) logρ information bits to both users, which can
be done in T channel uses.

C. Backward Decoding

We proceed to describe the decoding for each block.
The decoding starts from the last block and moves back-
ward. Specifically after decoding the common information in
the last block, each user reconstructs {s̄1,t }T (L−1)

t=T (L−2)+1 and

{s̄2,t }T (L−1)
t=T (L−2)+1 (corresponding to the quantized interference

of block L − 1) and uses them to decode its private symbols
and common information symbols of block L − 1; naturally
the common information of block L − 1 can accommo-
date decoding of the previous block (block L − 2), and
so on. Specifically after decoding the common information
{ct }T (ℓ+1 )

t=T ℓ+1 in block ℓ+1, user 1 reconstructs {s̄1,t }T ℓ
t=T (ℓ−1)+1,

{s̄2,t }T ℓ
t=T (ℓ−1)+1 and forms a MIMO observation for

block ℓ, ℓ ∈ [1, L − 1], which takes the form
⎡

⎢⎢⎢⎢⎢⎣

yT ℓ − s̄1,T ℓ
s̄2,T ℓ

...
yT (ℓ−1)+1 − s̄1,T (ℓ−1)+1

s̄2,T (ℓ−1)+1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

√
ρhT ℓ,1cT ℓ

0
...√

ρhT (ℓ−1)+1,1cT (ℓ−1)+1
0

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

φD2
T ℓ

[ √
ρhT

T ℓ√
ρα gT

T ℓ

] [
a′

T ℓ
a′′

T ℓ

]

...

φD2
T (ℓ−1)+1

[ √
ρhT

T (ℓ−1)+1√
ρα gT

T (ℓ−1)+1

] [
a′

T (ℓ−1)+1
a′′

T (ℓ−1)+1

]

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

φP2
T ℓ

√
ρhT

T ℓg⊥
T ℓaT ℓ

0
...

φP2
T (ℓ−1)+1

√
ρhT

T (ℓ−1)+1 g⊥
T (ℓ−1)+1aT (ℓ−1)+1

0

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

√
ρ1−αhT ℓ,1a′′′

T ℓ
0
...√

ρ1−αhT (ℓ−1)+1,1a′′′
T (ℓ−1)+1

0

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

uT ℓ + s̃1,T ℓ
−s̃2,T ℓ

...
uT (ℓ−1)+1 + s̃1,T (ℓ−1)+1

−s̃2,T (ℓ−1)+1

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
power ρ0

.

One can easily show that, with successive decoding on this
MIMO, user 1 can jointly decode the common symbols
{ct }T ℓ

t=T (ℓ−1)+1 by treating other signals as noise, allowing for
decoding a total of

Tα(1 − λP − λD) logρ + T o(logρ) (28)

information bits. After removal of the common symbols from
the received signals, the decoder can decode the private
symbols {a′

t , a′′
t }T ℓ

t=T (ℓ−1)+1 by treating other signals as noise,
thus allowing for decoding of up to

2TαλD logρ + T o(logρ) (29)

further information bits. Again, after removal of these sym-
bols, the decoder can now decode {at}T ℓ

t=T (ℓ−1)+1 containing
a total of

TαλP logρ + T o(logρ) (30)

information bits, and finally after removing these last decoded
symbols, the decoder can decode {a′′′

t }T ℓ
t=T (ℓ−1)+1 containing

a total of

T (1 − α) logρ + T o(logρ) (31)

information bits. Once the common information symbols
{ct }T ℓ

t=T (ℓ−1)+1 (with a total of Tα(1 − λP − λD) logρ +
T o(logρ) information bits) are decoded at user 1, the
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TλD(1 + α) log ρ − T o(logρ) (cf. (27)) side-information
bits of these common symbols, can be used to recover the
quantized interference {s̄1,t }T (ℓ−1)

t=T (ℓ−2)+1 and {s̄2,t }T (ℓ−1)
t=T (ℓ−2)+1 of

block ℓ− 1, which in turn allows for completing decoding of
block ℓ− 1. Backward decoding naturally stops at block 1.

Similarly, user 2 reconstructs {s̄1,t }T ℓ
t=T (ℓ−1)+1 and

{s̄2,t }T ℓ
t=T (ℓ−1)+1 with the knowledge of common information

{ct }T (ℓ+1)
t=T ℓ+1, and forms a MIMO observation for block ℓ,

ℓ ∈ [1, L − 1], which takes the form
⎡

⎢⎢⎢⎢⎢⎣

zT ℓ − s̄2,T ℓ
s̄1,T ℓ

...
zT (ℓ−1)+1 − s̄2,T (ℓ−1)+1

s̄1,T (ℓ−1)+1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

√
ραgT ℓ,1cT ℓ

0
...√

ραgT (ℓ−1)+1,1cT (ℓ−1)+1
0

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎣

φD1
T ℓ

[√
ρα gT

T ℓ√
ρhT

T ℓ

] [
b′

T ℓ
b′′

T ℓ

]

...

φD1
T (ℓ−1)+1

[√
ρα gT

T (ℓ−1)+1√
ρhT

T (ℓ−1)+1

][
b′

T (ℓ−1)+1
b′′

T (ℓ−1)+1

]

⎤

⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

φP1
T ℓ

√
ρα gT

T ℓh
⊥
T ℓbT ℓ

0
...

φP1
T (ℓ−1)+1

√
ρα gT

T (ℓ−1)+1h⊥
T (ℓ−1)+1bT (ℓ−1)+1

0

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

vT ℓ + s̃2,T ℓ +
√
ρ0gT ℓ,1a′′′

T ℓ
−s̃1,T ℓ

...

vT (ℓ−1)+1 + s̃2,T (ℓ−1)+1 +
√
ρ0gT (ℓ−1)+1,1a′′′

T (ℓ−1)+1
−s̃1,T (ℓ−1)+1

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
power ρ0

.

Again by using successive decoding, the common symbols
{ct }T ℓ

t=T (ℓ−1)+1 with power level ρα can be jointly decoded
with a total of

Tα(1 − λP − λD) logρ + T o(logρ) (32)

information bits by treating other signals as noise. After
removal of the common symbols from the the received signals,
the private symbols {b′

t , b′′
t }T ℓ

t=T (ℓ−1)+1 can be decoded with a
total of

T (1 + α)λD logρ + T o(logρ) (33)

information bits by treating other signals as noise. Finally
after removal of the last decoded symbols, the private symbols
{bt }T ℓ

t=T (ℓ−1)+1 can be decoded with a total of

TαλP logρ + T o(logρ) (34)

information bits. As with the first user case, once the common
information symbols {ct }T ℓ

t=T (ℓ−1)+1 are decoded by user 2,
the side information bits can be used to recover the quantized
interference of block ℓ − 1, which allows for completion of
decoding for block ℓ−1. This continues until we reach block 1.

D. Achieving the GDoF Corner Points

We proceed to calculate the GDoF performance of the
designed scheme. We here consider a large L, in order to
be able to neglect the necessary inefficiency of the last
block.

1) Achieving GDoF Points E and F for the Case of
λD < (α/1+2α) − (α/1+2α)λP : In calculating the total
number of information bits, we start by recalling that the
common symbols {ct }T ℓ

t=T (ℓ−1)+1 of block ℓ, ℓ ∈ [1, L − 1],
carry a total of Tα(1−λP −λD) logρ+T o(logρ) bits (cf. (28),
(32)), out of which TλD(1+α) logρ−T o(logρ) bits (cf. (27))
are used as side information to convey the information of
quantized interference {s̄1,t }T (ℓ−1)

t=T (ℓ−2)+1 and {s̄2,t }T (ℓ−1)
t=T (ℓ−2)+1 of

block ℓ− 1. This leaves

'com ! Tα(1−λP −λD) logρ−TλD(1+α) logρ + T o(logρ)

= T
(
α(1 − λP )−λD(1 + 2α)

)
logρ+T o(logρ) (35)

remaining information bits in these common symbols (this
number is non-negative when λD < α

1+2α− α
1+2αλP (cf. (19))).

Assigning all 'com information bits to user 1, achieves the
GDoF point F , i.e., allows for

d1 = d'com︸ ︷︷ ︸
cf. (35)

+ 2αλD︸ ︷︷ ︸
cf. (29)

+ αλP︸︷︷︸
cf. (30)

+ (1 − α)︸ ︷︷ ︸
cf. (31)

=
(
α(1 − λP ) − λD(1 + 2α)

)
+ 2αλD + αλP + (1 − α)

= 1 − λD,

d2 = (1 + α)λD︸ ︷︷ ︸
cf. (33)

+ αλP︸︷︷︸
cf. (34)

,

where d'com ! limρ→∞ 'com
logρ (cf. (35)). On the other hand,

assigning all these 'com information bits to user 2, allows
for GDoF point E , i.e., allows for

d1 = 2αλD︸ ︷︷ ︸
cf. (29)

+ αλP︸︷︷︸
cf. (30)

+ (1 − α)︸ ︷︷ ︸
cf. (31)

,

d2 = d'com︸ ︷︷ ︸
cf. (35)

+ (1 + α)λD︸ ︷︷ ︸
cf. (33)

+ αλP︸︷︷︸
cf. (34)

= (
α(1 − λP ) − λD(1 + 2α)

) + (1 + α)λD + αλP

= α − αλD .

2) Achieving GDoF Point G for the Case of λD ≥ α
1+2α −

α
1+2α λP : To achieve GDoF point G associated to the case
where λD ≥ α

1+2α − α
1+2αλP , we simply apply the proposed

scheme, except that now, instead of using delayed CSIT for
the allowable λD fraction of the time (fraction of the block),
we only use delayed CSIT for λ′

D fraction of the time,
where

λ′
D ! α

1 + 2α
− α

1 + 2α
λP .

Simple calculations show that this allows for a total of 'com =
T

(
α(1 − λP ) − λ′

D(1 + 2α)
)

logρ + T o(logρ) = T o(logρ)
information bits (cf. (35)), and for the GDoF point G
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corresponding to

d1 = 2αλ′
D︸ ︷︷ ︸

cf. (29)

+ αλP︸︷︷︸
cf. (30)

+ (1 − α)︸ ︷︷ ︸
cf. (31)

= 2α(
α

1 + 2α
− α

1 + 2α
λP ) + αλP + (1 − α)

= 1 + α

1 + 2α
+ α

1 + 2α
λP ,

d2 = (1 + α)λ′
D︸ ︷︷ ︸

cf. (33)

+ αλP︸︷︷︸
cf. (34)

= (1 + α)(
α

1 + 2α
− α

1 + 2α
λP ) + αλP

= α(1 + α)

1 + 2α
+ α2

1 + 2α
λP .

3) Achieving GDoF Points B, C, (0,α) and (1,0): It is easy
to show that the two GDoF points (0,α) and (1, 0) are easily
achievable with simple time division between the two users.
For achieving GDoF point C = (1 − α + αλP , α), we repeat
the same relegation of λD as before, except that now this λD
is relegated all the way down to λ′′

D = 0, which simply means
that we disregard entirely delayed CSIT. Proceeding as above,
allocating 'com information bits to user 2 gives GDoF point
C , corresponding to

d1 = 2αλ′′
D︸ ︷︷ ︸

cf. (29)

+ αλP︸︷︷︸
cf. (30)

+ (1 − α)︸ ︷︷ ︸
cf. (31)

= αλP + (1 − α),

d2 = d'com︸ ︷︷ ︸
cf. (35)

+ (1 + α)λ′′
D︸ ︷︷ ︸

cf. (33)

+ αλP︸︷︷︸
cf. (34)

=
(
α(1 − λP ) − λ′′

D(1 + 2α)
)
+ (1 + α)λ′′

D + αλP

= α,

while allocating the 'com information bits to user 1, gives
GDoF point B , corresponding to

d1 = d'com︸ ︷︷ ︸
cf. (35)

+ 2αλ′′
D︸ ︷︷ ︸

cf. (29)

+ αλP︸︷︷︸
cf. (30)

+ (1 − α)︸ ︷︷ ︸
cf. (31)

=
(
α(1 − λP ) − λ′′

D(1 + 2α)
)
+ αλP + (1 − α)

= 1,

d2 = (1 + α)λ′′
D︸ ︷︷ ︸

cf. (33)

+ αλP︸︷︷︸
cf. (34)

= (1 + α)λ′′
D + αλP

= αλP .

Having completed the description of the general TSM
design, we proceed to provide two illustrative examples, where
the general scheme described above, is distilled down to
specific instances. In the first example, the overloading and
multicasting phases are operated in a consecutive manner,
and the entire scheme has a finite and small duration. In the
second example — where CSIT has a periodic structure — the
two phases are jointly performed in the same communication
block, and this block is repeated many times, in a block
Markov manner where the multicasting phase in one block
is designed to aid for the overloading phase from the previous
block. This sequence follows closely from the scheme in [14]

Fig. 5. Illustration of received power level for the proposed scheme, on the
setting with delayed CSIT and one topology (λ1,α = 1 and λD,D = 1,
α = 1/2), where L y(•) and Lz(•) denote the linear function of the argument
at user 1 and user 2, respectively.

that considered a similar setting without though any topology
considerations (α = 1).

E. Illustrative Example: Fixed Topology, Delayed CSIT
(λ1,α = 1, α = 1/2 and λD,D = 1)

For the setting with constantly available delayed CSIT
(λD,D = 1), and a specific static topology λ1,α = 1
with α = 1/2, the scheme overloads for one channel use,
and multicasts in three other channel uses, to achieve GDoF
(d1 = 1+α

1+2α = 3/4, d2 = α(1+α)
1+2α = 3/8).

1) Overloading Phase: During the overloading phase,
taking place at t = 1, the transmitter sends (as illustrated
in Fig. 5)

x1 =
[

a1
a2

]
+

[
b1
b2

]
,

where a1 and a2 are the private symbols for user 1, where
b1, b2 are the private symbols for user 2, and where the power
of each symbol is 1/4. The received signals then take the form

y1 = √
ρhT

1

[
a1
a2

]
+ √

ρhT
1

[
b1
b2

]

︸ ︷︷ ︸
s1

+u1,

z1 =
√
ρα gT

1

[
b1
b2

]
+

√
ρα gT

1

[
a1
a2

]

︸ ︷︷ ︸
s2

+v1, (36)

where s1 !√
ρhT

1
[
b1 b2

]T and s2 !√
ρα gT

1

[
a1 a2

]T corre-
spond to the interference signals at user 1 and user 2 respec-
tively. Note that for user 1, knowing s1 allows for removal
of interference from y1, while knowing s2 allows for an
extra observation that can assist in decoding a1 and a2.
Similarly user 2 can use possible knowledge of s1 and s2
towards decoding b1 and b2. This knowledge will be provided
in the next phase, where the transmitter will multicast the
information about s1 and s2 to both users.
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2) Multicasting Phase: After time t = 1, and after having
access to delayed CSIT of channels g1 and h2, the transmitter
reconstructs s1 and s2, and then quantizes them into s̄1 and s̄2
with approximately log ρ quantization bits4 and α logρ quan-
tization bits respectively, allowing for bounded quantization
errors s̃1 ! s1 − s̄1 and s̃2 ! s2 − s̄2 since E|s1|2 .= ρ and
E|s2|2 .= ρα (see [48]). All (1 + α) log ρ quantization bits are
then mapped into the common information symbols c2, c3, c4
that will be transmitted to both users in this multicasting phase,
during t = 2, 3, 4. Specifically, at each time t = 2, 3, 4, the
transmitter sends

xt =
[

ct +
√
ρ−αat+2
0

]
,

where at+2 is the private symbol for user 1, and where the
average power of each ct and at+2 is 1/2, i.e., the effective
average power of

√
ρ−αat+2 is ρ−α . Then the processed

received signals during t = 2, 3, 4, are of the form

yt/ht,1 = √
ρct +

√
ρ1−αat+2 + ut/ht,1,

zt/gt,1 =
√
ραct +

√
ρ0at+2 + vt/gt,1, (37)

where ht,1 ! hT
t [1 0]T, gt,1 ! gT

t [1 0]T. One can see that
both users can decode the common symbol ct with α logρ
information bits, and additionally that user 1 can decode
the private symbol at+2 with approximately (1 − α) log ρ
information bits, for each t = 2, 3, 4.

After decoding the common information symbols c2, c3, c4,
corresponding to a total of 3α logρ = 3

2 logρ bits, both
users can reconstruct s̄1 and s̄2 — represented by a total of
(1 +α) logρ = 3

2 logρ information bits — in order to decode
the private symbols a1, a2 at user 1 and b1, b2 at user 2.
Specifically user 1 and user 2 each form their 2 × 2 MIMO
observations, respectively taking the form

[
y1 − s̄1

s̄2

]
=

[ √
ρhT

1√
ρα gT

1

] [
a1
a2

]
+

[
u1 + s̃1

−s̃2

]

︸ ︷︷ ︸
power ρ0

,

[
y2 − s̄2

s̄1

]
=

[√
ρα gT

1√
ρhT

1

] [
b1
b2

]
+

[
z2 + s̃2
−s̃1

]

︸ ︷︷ ︸
power ρ0

.

One can easily show that the private symbols a1, a2 can be
decoded by user 1 with a total of approximately (1 +α) log ρ
bits, while the private symbols b1, b2 can be decoded by user 2
with a total of approximately (1+α) log ρ bits. Finally a simple
calculation can show that the GDoF (d1 = 1+α+3(1−α)

4 = 3
4 ,

d2 = 1+α
4 = 3

8 ) is achievable.
Remark 16: Note that in this scheme, during the four chan-

nel uses, we only use delayed CSIT on h1 and g1, i.e., only
for the first channels, which implies that the scheme and result
still hold when (I1, I2) = (D, D)︸ ︷︷ ︸

t=1

, (N, N)︸ ︷︷ ︸
t=2

, (N, N)︸ ︷︷ ︸
t=3

, (N, N)︸ ︷︷ ︸
t=4

.

4The use of the term ‘approximately’, refers to the fact that we are using
log ρ − o(log ρ) (rather than log ρ) quantization bits.

F. Illustrative Example: Fixed Topology, Partially Available
and Periodic Delayed CSIT

We now consider a specific static topology (λ1,α = 1,
α = 1/2) and delayed CSIT that is periodic, but only
partially available. Specifically we consider a setting where

(I1, I2) =
∣∣∣ (D, N)︸ ︷︷ ︸

t=1

, (N, D)︸ ︷︷ ︸
t=2

, (N, N)︸ ︷︷ ︸
t=3

, (N, N)︸ ︷︷ ︸
t=4

∣∣∣,

∣∣∣ (D, N)︸ ︷︷ ︸
t=5

, (N, D)︸ ︷︷ ︸
t=6

, (N, N)︸ ︷︷ ︸
t=7

, (N, N)︸ ︷︷ ︸
t=8

∣∣∣,

∣∣∣ (D, N)︸ ︷︷ ︸
t=9

, (N, D)︸ ︷︷ ︸
t=10

, (N, N)︸ ︷︷ ︸
t=11

, (N, N)︸ ︷︷ ︸
t=12

∣∣∣, · · ·

corresponding to having λD,N = λN,D = 1
2λN,N = 1/4.

This scheme consists of L communication blocks, where each
block ℓ (ℓ = 1, 2, · · · , L) has duration of 4 channel uses
t = 4ℓ − 3, 4ℓ − 2, 4ℓ − 1, 4ℓ. In the end, the scheme will
achieve GDoF (d1 = 1+α

1+2α = 3/4, d2 = α(1+α)
1+2α = 3/8).

1) Encoding: We proceed to describe the encoding during
each block ℓ, ℓ ∈ [1, L − 1]. The last block will be omitted
without a GDoF effect, given that L will be chosen to be large.

In the first channel use of block ℓ (t = 4ℓ − 3) we have
(I1, I2) = (D, N), and the transmitter sends

x4ℓ−3 =
[

c4ℓ−3 +
√
ρ−αa4ℓ−3

0

]
+

[
b4ℓ−3
b′

4ℓ−3

]
(38)

where a4ℓ−3 is the private symbol for user 1, c4ℓ−3 is a
common symbol for both users, b4ℓ−3 and b′

4ℓ−3 are the private
symbols meant for the second user,5 and where the power of
each of these four symbols is 1/4. The corresponding received
signals take the form

y4ℓ−3 = h4ℓ−3,1(
√
ρc4ℓ−3 +

√
ρ1−αa4ℓ−3)

+ √
ρhT

4ℓ−3

[
b4ℓ−3
b′

4ℓ−3

]

︸ ︷︷ ︸
s1,ℓ

+u4ℓ−3, (39)

z4ℓ−3 =
√
ραg4ℓ−3,1c4ℓ−3 +

√
ρα gT

4ℓ−3

[
b4ℓ−3
b′

4ℓ−3

]

+
√
ρ0g4ℓ−3,1a4ℓ−3 + v4ℓ−3, (40)

where s1,ℓ! √
ρhT

4ℓ−3
[
b4ℓ−3 b′

4ℓ−3
]T corresponds to the

interference signal at user 1.
In the second channel use of block ℓ (t = 4ℓ− 2), we have

(I1, I2) = (N, D), and the transmitter sends

x4ℓ−2 =
[

c4ℓ−2 +
√
ρ−αa4ℓ−2

0

]
+

[
a′

4ℓ−2
a′′

4ℓ−2

]
(41)

where a4ℓ−2, a′
4ℓ−2, a′′

4ℓ−2 are the private symbols meant for
user 1 (now a4ℓ−2, a′

4ℓ−2, a′′
4ℓ−2 are the overloaded symbols),

where c4ℓ−2 is a common symbol, and where the power of

5These symbols can be considered as ‘overloaded’, in the sense that user 2
would not have been able to decode them, even if there was no interference.
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each symbol is 1/4. The received signals then take the form

y4ℓ−2 = h4ℓ−2,1(
√
ρc4ℓ−2 +

√
ρ1−αa4ℓ−2)

+ √
ρhT

4ℓ−2

[
a′

4ℓ−2
a′′

4ℓ−2

]
+ u4ℓ−2, (42)

z4ℓ−2 =
√
ραg4ℓ−2,1c4ℓ−2 +

√
ρα gT

4ℓ−2

[
a′

4ℓ−2
a′′

4ℓ−2

]

︸ ︷︷ ︸
s2,ℓ

+
√
ρ0g4ℓ−2,1a4ℓ−2 + v4ℓ−2, (43)

where s2,ℓ !√
ρα gT

4ℓ−2

[
a′

4ℓ−2 a′′
4ℓ−2

]T corresponds to the
interference signal at user 2.

In the last two channel uses of block ℓ (t = 4ℓ− 1, 4ℓ), we
have (I1, I2) = (N, N), and the transmitter sends

xt =
[

ct +
√
ρ−αat

0

]
, (44)

where again at is the private symbol for user 1, ct is a common
symbol, and where both symbols have power 1/2. This results
in received signals of the following form

yt = √
ρht,1ct +

√
ρ1−αht,1at + ut , (45)

zt =
√
ραgt,1ct +

√
ρ0gt,1at + vt . (46)

2) Interference Quantization and Mapping: At the end of
each block ℓ, ℓ ∈ [1, L − 1], the transmitter reconstructs
s1,ℓ and s2,ℓ using delayed CSIT, and quantizes these into
s̄1,ℓ and s̄2,ℓ using respectively logρ and α logρ quanti-
zation bits, thus allowing for bounded quantization errors
s̃1,ℓ! s1,ℓ − s̄1,ℓ and s̃2,ℓ! s2,ℓ − s̄2,ℓ since E|s1,ℓ|2 .= ρ and
E|s2,ℓ|2 .= ρα . The total of (1+α) logρ = 3

2 logρ quantization
bits is then mapped into the common symbols {ct }4(ℓ+1)

t=4ℓ+1 that
will be transmitted to both users in the next block. Note that in
the last block — block L, again of length 4 — the transmitter
simply sends to both users the common information symbols
{ct }4L

t=4L−3 containing a total of 3
2 logρ bits.

3) Backward Decoding: As with all other schemes here,
decoding starts from the last block and moves backward.
Specifically after decoding the common symbols of the last
block, each user reconstructs s̄1,L−1 and s̄2,L−1, recovers
the quantized interference of block L − 1, and uses this to
decode its private and common symbols of block L − 1.
This last common information of block L − 1, can now
be used for decoding of block L − 2, and so on. In gen-
eral, after decoding the common information {ct }4(ℓ+1)

t=4ℓ+1 of
block ℓ+1, user 1 reconstructs s̄1,ℓ and s̄2,ℓ, to form a MIMO
observation⎡

⎢⎢⎢⎢⎣

y4ℓ−3 − s̄1,ℓ

y4ℓ−2
s̄2,ℓ

y4ℓ−1
y4ℓ

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

√
ρh4ℓ−3,1c4ℓ−3√
ρh4ℓ−2,1c4ℓ−2

0√
ρh4ℓ−1,1c4ℓ−1√
ρh4ℓ,1c4ℓ

⎤

⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎣

0[ √
ρhT

4ℓ−2√
ρα gT

4ℓ−2

] [
a′

4ℓ−2
a′′

4ℓ−2

]

0
0

⎤

⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

√
ρ1−αh4ℓ−3,1a4ℓ−3√
ρ1−αh4ℓ−2,1a4ℓ−2

0√
ρ1−αh4ℓ−1,1a4ℓ−1√
ρ1−αh4ℓ,1a4ℓ

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

u4ℓ−3 + s̃1,ℓ

u4ℓ−2
−s̃2,ℓ

u4ℓ−1
u4ℓ

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
power ρ0

.

In a similar manner to the previous schemes, one can show
that successive decoding on the above MIMO setting,
allows user 1 to jointly decode the common symbols
{ct }4ℓ

t=4ℓ−3 by treating the other signals as noise, decoding
a total of 3α logρ information bits. After removing the
common symbols, the user can decode the private symbols
a′

4ℓ−2 and a′′
4ℓ−2 by treating the other signals as noise, thus

decoding a total of 2α logρ information bits. Similarly,
after removing these last decoded symbols, user 1 can
decode the private symbols {at }4ℓ

t=4ℓ−3 carrying a total
of 4(1 − α) logρ information bits. Furthermore, having
already decoded the common information in symbols
{ct }4ℓ

t=4ℓ−3, user 1 can — as we have seen for block
ℓ — complete decoding for the previous block (block ℓ− 1).
Such backward decoding stops at block 1. A similar
procedure is followed for user 2. Consequently, for large L,
the achievable GDoF can easily be calculated
to be

d1 = 2α + 4(1 − α)

4
= 3

4

d2 = 1 + α

4
= 3

8
.

G. Example: Naive Topological Modifications to the Original
MAT Scheme (λD,D = 1) for the Setting λ1,α = 1

The following — which is meant to accentuate the need for
proper TSM design — describes a naive variant of the original
MAT scheme, which fails to properly account for topology
and thus under-performs compared to the corresponding TSM
in the same λ1,α = 1,λD,D = 1 setting.

We recall that the original MAT scheme in [9] consists of
three phases (see Fig. 6), each of duration one. At time t =
1, 2, the transmitter sends

x1 =
[

a1
a2

]
, x2 =

[
b1
b2

]

where a1, a2 are for user 1, b1, b2 for user 2, and where
the received signals, in their noiseless form, are now
(in the current, topologically sensitive setting)

y1 = √
ρhT

1

[
a1
a2

]
,

z1 =
√
ρα gT

1

[
a1
a2

]
!

√
ραLz(a1, a2), (47)

y2 = √
ρhT

2

[
b1
b2

]
!√

ρL y(b1, b2),

z2 =
√
ρα gT

2

[
b1
b2

]
. (48)

At time t = 3, the transmitter knows g1 and h2 by
using delayed CSIT, reconstructs Lz(a1, a2), L y(b1, b2)
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Fig. 6. Illustration of the received power level for the naively-modified MAT
scheme in the static topology setting λ1,α = 1.

TABLE I

SUMMARY OF SCHEMES

(cf. (47), (48)), and sends

x3 =
[

Lz(a1, a2) + L y(b1, b2)
0

]
.

The normalized/processed received signals, in their noiseless
form, are

y3/h3,1 = √
ρLz(a1, a2) + √

ρL y(b1, b2), (49)

z3/g3,1 = √
ραLz(a1, a2) + √

ραL y(b1, b2). (50)

At this point, we recall from [9] that user 1 combines the
above with y1, y2, y3, to design a MIMO system
[

y1
y3/h3,1 − y2

]
= √

ρ

[
hT

1
gT

1

] [
a1
a2

]
+

[
u1

u3/h3,1 − u2

]
, (51)

and to MIMO decode a1, a2, which carry a total of
[2 logρ + o(logρ)] bits. Similarly, user 2 is presented with
another MIMO system
[

z2
z3/g3,1 − z1

]
=

√
ρα

[
gT

2
hT

2

] [
b1
b2

]
+

[
v2

v3/g3,1 − v1

]
, (52)

over a weaker link, from which it can MIMO decode b1, b2,
which though now carry a total of 2α logρ + o(logρ) bits.
As a result, the original MAT scheme achieves a sum GDoF
d∑ = 2(1+α)

3 .

V. SUM-GDOF OPTIMAL TOPOLOGICAL SIGNAL

MANAGEMENT SCHEMES FOR THE FLUCTUATING

TOPOLOGY SETTING

We proceed to build on the topological signal management
schemes in Section IV and to design schemes for the alter-
nating topology settings in Section III-C. These schemes will
be sum-GDoF optimal. Table I summarizes key elements from
these schemes.

A. TSM Scheme for λ1,α
D,D = λα,1D,D = 1/2, Achieving the

Optimal Sum GDoF d∑ = (1 + α/3)

The scheme can be described as having three channel uses,
t = 1, 2, 3. We will first, without loss of generality, describe
the scheme for the setting where, for t = 1, 3, the feedback-
and-topology state is (I1, I2, A1, A2) = (D, D, 1,α), and for
t = 2 the state is (I1, I2, A1, A2) = (D, D,α, 1). The scheme
can be slightly modified for the case where (I1, I2, A1, A2) =
(D, D, 1,α)︸ ︷︷ ︸

t=1

, (D, D,α, 1)︸ ︷︷ ︸
t=2

, (D, D,α, 1)︸ ︷︷ ︸
t=3

. In both cases, the

scheme can achieve the optimal sum GDoF d∑ = (1 + α/3).
By averaging over the two schemes, we can get the optimal
sum GDoF d∑ = (1 + α/3) with λ1,α

D,D = λα,1D,D = 1/2.
1) Phase 1: At t = 1 ((I1, I2, A1, A2) = (D, D, 1,α),

link 1 is strong) the transmitter sends (see Figure 7)

x1 =
[

a1
a2

]
, (53)

where a1 and a2 are unit-power symbols meant for user 1,
with

r (a1) = 1, r (a2) = α, (54)

resulting in received signals of the form

y1 = √
ρhT

1

[
a1
a2

]

︸ ︷︷ ︸
ρ

+u1, (55)

z1 =
√
ρα gT

1

[
a1
a2

]

︸ ︷︷ ︸
ρα

+v1, (56)

where we note that the unintended interfering signal is
attenuated due to the weak link.

2) Phase 2: At time t = 2 ((I1, I2, A1, A2) = (D, D,α, 1),
link 1 is weak) the transmitter sends

x2 =
[

b1
b2

]
, (57)

where b1, b2 are unit-power symbols meant for user 2, with

r (b1) = 1, r (b2) = α, (58)

resulting in received signals of the form

y2 =
√
ραhT

2

[
b1
b2

]

︸ ︷︷ ︸
ρα

+u2, (59)

z2 = √
ρgT

2

[
b1
b2

]

︸ ︷︷ ︸
ρ

+v2, (60)
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Fig. 7. Received signal power level illustration for the TSM scheme, for the
setting where λ1,α

D,D = λα,1D,D = 1/2.

where again the unintended interfering signal is attenuated due
to the weak link.

3) Phase 3: At this point the transmitter - using delayed
CSIT - knows g1 and h2. It then proceeds to reconstruct
(z1 − v1) and (y2 − u2), and to quantize the sum

ι!(z1 − v1) + (y2 − u2), (61)

using α logρ + o(logρ) quantization bits, in order to get the
quantized version ῑ. Given the number of quantization bits,
and given that E|ι|2 .= ρα , the quantization error

ι̃ = ι− ῑ

is bounded and does not scale with ρ (see [48]). The
above quantized information is then mapped into a common
symbol c.

At time t = 3, with state (I1, I2, A1, A2) = (D, D, 1,α)
(link 2 is weak), the transmitter sends

x3 =
[

c + a3ρ−α/2

0

]
, (62)

where c is the aforementioned common symbol meant for both
users, where a3 is a symbol meant for user 1, where

P(c) .= 1, r (c) = α,

P(a3) .= 1, r (a3) = 1 − α, (63)

and where the (normalized) received signals (in their noiseless
form) are

y3/h3,1 = √
ρc +

√
ρ1−αa3, (64)

z3/g3,1 =
√
ραc +

√
ρ0a3. (65)

Now we see from (64), (65) that c can be decoded by both
users. Similarly we can readily see that a3 can be decoded by
user 1.

At this point, knowing c, allows both users to recover ῑ
(cf. (61)), and to then decode the private symbols. Specifically,

user 1 obtains a MIMO observation
[

y1
ῑ− y2

]
=

[ √
ρhT

1√
ρα gT

1

] [
a1
a2

]
+

[
u1

−u2 − ι̃

]
, (66)

which allows for decoding of a1, a2 at the declared rates
(cf. (54)). Similarly, user 2 obtains another MIMO observation

[
z2

ῑ− z1

]
=

[ √
ρ gT

2√
ραhT

2

] [
b1
b2

]
+

[
v2

−v1 − ι̃

]
, (67)

and can decode b1, b2 at the declared rates (cf. (58)). Summing
up the information bits concludes that the scheme achieves
the optimal sum GDoF d∑ = 1+α+1+α+(1−α)

3 = 1 + α
3

(also see Figure 7).
Remark 17: As stated above, when (I1, I2, A1, A2) =

(D, D, 1,α), (D, D,α, 1), (D, D, α, 1) for t = 1, 2, 3 respec-
tively, we can slightly modify the scheme such that at t = 3,
instead of sending the private symbol a3 for the first user
(see (62)), we instead send a private symbol b3 for the second
user (i.e., again to the stronger user). Following the same steps,
one can easily show that the sum GDoF d∑ = 1+α/3 is again
achievable.

Remark 18: It is interesting to note that the proposed
scheme needs delayed CSIT for only a fraction of the channels
(the channels with weak channel gain in phase 1 and phase 2),
and in essence only needs λ1,α

N,D = λα,1D,N = λ1,α
N,N = 1/3, or

λ1,α
N,D = λα,1D,N = λα,1N,N = 1/3, or λ1,α

N,D = λα,1D,N = 2λ1,α
N,N =

2λα,1N,N = 1/3, to achieve the same optimal sum GDoF.

B. TSM Schemes for λP,N = λN,P = 1/2 and for Any λ1,α +
λα,1 = 1; Achieving the Optimal Sum GDoF 1 + α

2

We will now show that the optimal sum GDoF (1 + α
2 )

is achievable for any topology λ1,α + λα,1 = 1 using
λP,N = λN,P = 1/2 and a sequence of TSM schemes
proposed for the different settings of

λ1,α
P,N = λ1,α

N,P = 1/2,

λα,1P,N = λα,1N,P = 1/2,

λ1,α
P,N = λα,1N,P = 1/2,

λα,1P,N = λ1,α
N,P = 1/2,

respectively. Each scheme achieves the optimal sum GDoF
(1+ α

2 ), and each scheme is designed to have only two channel
uses, during which the two users take turn to feed back current
CSIT (only one user feeds back at a time). The general result
is proven by properly concatenating the proposed schemes for
the different cases.

1) TSM Scheme for λ1,α
P,N = λ1,α

N,P = 1/2: Without loss of
generality, we focus on the specific sub-case where
(I1, I2, A1, A2) = (P, N, 1,α) for t = 1, and
(I1, I2, A1, A2) = (N, P, 1,α) for t = 2.

At t = 1 the transmitter knows h1 (current CSIT), and sends
(see Figure 8)

x1 = h1a1 + h⊥
1 b1, (68)
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Fig. 8. Illustration of TSM coding and of received signal power levels,
for λ1,α

P,N = λ1,α
N,P = 1/2.

where a1 and b1 are intended for user 1 and user 2 respectively,
and where

P(a1) .= 1, r (a1) = 1,

P(b1) .= 1, r (b1) = α. (69)

Then the received signals (in their noiseless form) are

y1 = √
ρhT

1h1a1︸ ︷︷ ︸
ρ

, (70)

z1 =
√
ρα gT

1h1a1︸ ︷︷ ︸
ρα

+
√
ρα gT

1h⊥
1 b1︸ ︷︷ ︸

ρα

. (71)

At t = 2 ((I1, I2, A1, A2) = (N, P, 1,α)), the transmitter
knows g2 (current CSIT) and sends

x2 = g2a1 + g⊥
2 a2, (72)

where a2 is intended for user 1, and where

P(a2) .= 1, r (a2) = 1. (73)

Then the received signals (in their noiseless form) are as
follows

y2 = √
ρhT

2 g2a1︸ ︷︷ ︸
ρ

+ √
ρhT

2 g⊥
2 a2︸ ︷︷ ︸

ρ

, (74)

z2 =
√
ρα gT

2 g2a1︸ ︷︷ ︸
ρα

. (75)

At this point, we can see that user 1 can MIMO decode a1, a2
based on (70), (74), while user 2 can recover b1 by employing
interference cancelation based on (71), (75). This gives a sum
DoF of 1 + α/2.

Remark 19: We can now readily see that for the set-

ting where (I1, I2, A1, A2) =
t=1︷ ︸︸ ︷

(N, P, 1,α),

t=2︷ ︸︸ ︷
(P, N, 1,α), we

Fig. 9. Illustration of coding and received signal power levels for

λ1,α
P,N = λα,1N,P = 1/2.

can easily modify the above scheme to achieve the same
performance, just by reordering the transmissions such that
x1 = g1a1 + g⊥

1 a2 and x2 = h2a1 + h⊥
2 b1.

Similarly when λα,1P,N = λα,1N,P = 1/2, we can take the above
scheme (of Section V-B1), and simply interchange the roles
of the users, to again achieve the optimal sum GDoF 1 +α/2.

2) TSM Scheme for λ1,α
P,N = λα,1N,P = 1/2 : We focus on

the case where we first have (I1, I2, A1, A2) = (P, N, 1,α)
(at t = 1), followed by (I1, I2, A1, A2) = (N, P,α, 1) (t = 2).

At t = 1, the transmitter knows h1, and sends (see Figure 9)

x1 = h1a1 +
√
ρ−αh1a2 + h⊥

1 b1, (76)

where a1, a2 are the unit-power symbols intended for user 1,
b1 is the unit-power symbol intended for user 2, where

r (a1) = α, r (a2) = 1 − α, r (b1) = α, (77)

and where the received signals, in their noiseless form, are

y1 = √
ρhT

1h1a1︸ ︷︷ ︸
ρ

+
√
ρ1−αhT

1h1a2︸ ︷︷ ︸
ρ1−α

, (78)

z1 =
√
ρα gT

1h1a1︸ ︷︷ ︸
ρα

+
√
ρ0 gT

1h1a2︸ ︷︷ ︸
ρ0

+
√
ρα gT

1h⊥
1 b1︸ ︷︷ ︸

ρα

. (79)

At t = 2 ((I1, I2, A1, A2) = (N, P,α, 1)) the transmitter
knows g2 (user 1 is weak), and sends

x2 = g2a1 + g⊥
2 a3 +

√
ρ−α g2b2, (80)

where a3, b2 are the unit-power symbols intended for user 1
and user 2 respectively, where

r (a3) = α, r (b2) = 1 − α, (81)
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and where the received signals, in their noiseless form, are

y2 =
√
ραhT

2 g2a1︸ ︷︷ ︸
ρα

+
√
ραhT

2 g⊥
2 a3︸ ︷︷ ︸

ρα

+
√
ρ0hT

2 g⊥
2 b2︸ ︷︷ ︸

ρ0

, (82)

z2 = √
ρgT

2 g2a1︸ ︷︷ ︸
ρ

+
√
ρ1−α gT

2 g2b2︸ ︷︷ ︸
ρ1−α

. (83)

At this point, it is easy to see that user 1 can recover
a1, a2, a3 by MIMO decoding based on (78) and (82), while
user 2 can recover b1, b2 by employing interference cancela-
tion based on (79) and (83) (see also Figure 9). This provides
for d∑ = 1 + α/2.

a) Modifying the scheme for the setting where
(I1, I2, A1, A2) is (N, P,α, 1) or (P, N, 1,α): Similarly
for the setting where (I1, I2, A1, A2) is (N, P,α, 1) or
(P, N, 1,α), we can modify the previous scheme — to
achieve the same optimal sum DoF — by interchanging the
transmissions of the first and second channel uses,
i.e., of t = 1, 2.

b) Modifying the scheme for the setting where
λα,1P,N = λ1,α

N,P = 1/2: Furthermore when λα,1P,N = λ1,α
N,P = 1/2,

we can simply interchange the roles of users in the previous
scheme, to again achieve the same optimal sum GDoF.

c) Spanning the entire setting λ1,α + λα,1 = 1,
λP,N = λN,P : Finally, by using λP,N = λN,P and by
properly concatenating the above scheme variants, gives the
optimal performance d∑ = 1 + α/2, for the entire range
λ1,α + λα,1 = 1.

VI. CONCLUSIONS

The work explored the interplay between topology, feedback
and performance, for the specific setting of the two-user MISO
broadcast channel. Adopting a generalized degrees of freedom
framework, and addressing feedback and topology jointly, the
work revealed new aspects on encoding design that accounts
for topology and feedback, as well as new aspects on how to
handle and even exploit topologically diverse settings where
the topology varies across users and across time.

In addition to the bounds and encoding schemes, the work
offers insight on how to feedback — and naturally how to
learn — the channel in the presence of uneven and possibly
fluctuating topologies. This insight came in the form of simple
feedback mechanisms that achieve optimality.

VII. APPENDIX - PROOF OF GENERAL OUTER

BOUND (LEMMA 6)

We here provide the proof of the general outer bound
in Lemma 6. Let W1, W2 respectively denote the messages
of user 1 and user 2, let R1, R2 denote the two users’ rates,
and let )n denote all channel states that appear in the BC.
Let the communication duration be n channel uses, where n
is large. We use

yn
I1,I2

= {yt}t , zn
I1,I2

= {zt }t ∀t : I1,t = I1, I2,t = I2

to denote the accumulated set of received signals at user 1 and
user 2 respectively, accumulated throughout the time when the
CSIT state was some fixed I1, I2. As a result, the entirety of

the received signals, at each user, is the following union of
the above sets

yn =
⋃

I1,I2

yn
I1,I2

, zn =
⋃

I1,I2

zn
I1,I2

.

A. Proof of Bound (9) and Bound (10)

Towards proving the bound in (9), we note that

n R1 − nϵn

= H (W1) − nϵn

= H (W1|)n) − nϵn

= I (W1; yn|)n) + H (W1|yn,)n)︸ ︷︷ ︸
≤nϵn

−nϵn

≤ I (W1; yn|)n) (84)

= h(yn|)n) − h(yn |W1,)
n)

≤ n
( ∑

∀(A1,A2)

A1λA1,A2

)
logρ + no(logρ) − h(yn|W1,)

n)︸ ︷︷ ︸
≥no(logρ)

(85)

≤ n
( ∑

∀(A1,A2)

A1λA1,A2

)
logρ + no(logρ) − no(logρ) (86)

where (84) results from Fano’s inequality which
bounds H (W1|yn,)n), where (85) follows from that
h(yn|)n) = ∑n

t=1 h(yt |yt−1,)n) ≤ ∑n
t=1 max+:tr(+)≤1

log(1 + ρA1,t hH
t +ht ) = ∑n

t=1

(
A1,t logρ + o(logρ)

)
, that

Gaussian input maximizes the differential entropy, and that
+! E[xt xH

t ], where (86) is from the fact that h(yn|W1,)n) ≥
h(yn|W1,)n, {xt }n

t=1) = h
(
{ut }n

t=1

)
= no(logρ) and that

conditioning reduces differential entropy. Finally dividing
(86) by n logρ and leting ρ → ∞, provides for the bound
in (9). Similarly, exchanging the roles of user 1 and user 2,
proves (10).

B. Proof of Bound (11) and Bound (12)

Towards proving (11), we first enhance the BC by offering
user 2, complete knowledge of yn and of W1. Having now
constructed a degraded BC, we proceed to remove all delayed
feedback. This removal, which is equivalent to substituting the
CSIT state Ik = D with Ik = N , does not affect capacity, as
one can deduce from the work in [49].

We then proceed to construct a degraded compound BC by
adding an additional user, denoted as user 1̃, seeking to receive
the same desired message W1 as user 1. The received signal
of user 1̃ takes the form

ỹn =
(
yn

P,P , yn
P,D, yn

P,N , ỹn
D,P , ỹn

N,P , ỹn
D,D, ỹn

D,N , ỹn
N,D , ỹn

N,N
)

where specifically when I1 = P (i.e., whenever the first user
sends perfect CSIT) then the received signal of user 1̃ is
identical to that of user 1, else when I1 ̸= P , the received
signal of user 1̃ is only assumed to be identically distributed
to the signal yt of user 1. We also assume that throughout
the communication process, user 1̃ and user 1 experience the
same channel gain exponent A1,t for all t (cf. (3)). We further
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enhance by assuming that ỹn is known to user 2. We note
that, since user 1 and user 1̃ have the same decodability, the
capacity of this degraded compound BC cannot be worse than
that of the original degraded BC.

As a next step, we introduce the auxiliary random vari-
able st , and define sn

I1,I2
= {st }t :I1,t =I1, I2,t =I2 . At this point

we enhance the degraded compound BC, by giving user 2
complete knowledge of

sn
0 !{sn

D,P, sn
N,P , sn

D,N , sn
N,D , sn

D,D, sn
N,N }

where, as described below in (87), {sn
D,P, sn

N,P , sn
D,N ,

sn
N,D , sn

D,D, sn
N,N } is the collection of auxiliary random vari-

ables st , t : I1,t ̸= P accumulated whenever there is no CSIT
on channel ht of user 1 and no CSIT on channel h̃t of user 1̃,
where specifically

ρ
A2,t −A1,t

2

[
hT

t
gT

t

] [
hT

t

h̃
T

t

]−1 [
yt

‘̃yt

]
= ρ

A2,t
2

[
hT

t
gT

t

]
xt +

[
0
vt

]

︸ ︷︷ ︸

=
[
⋆
zt

]

+
[

0
−vt

]
+ ρ

A2,t −A1,t
2

[
hT

t
gT

t

] [
hT

t

h̃
T

t

]−1 [
ut
ũt

]

︸ ︷︷ ︸

!
[
⋆
st

]

(87)

i.e., where specifically st is the second element of the vector[
0

−vt

]
+ ρ

A2,t −A1,t
2

[
hT

t
gT

t

] [
hT

t

h̃
T

t

]−1 [
ut
ũt

]
, and where we have set

h̃t to be independently and identically distributed to ht , and
ũt to be independently and identically distributed to ut . What
the above means is that st has average power

E |st |2 .= ρ(A2,t −A1,t )
+

as well as that knowledge of {st , yt , ỹt ,)n}, implies the
knowledge of zt , again whenever I1 ̸= P .

At this point we can see that

n R1 − nϵn

≤ I (W1; yn|)n) (88)

= h(yn|)n) − h(yn |W1,)
n) (89)

where (88) results from Fano’s inequality which bounds
H (W1|yn,)n).

Similarly, for virtual user 1̃, we have

n R1 − nϵn ≤ h(ỹn|)n) − h(ỹn|W1,)
n). (90)

As a result, adding (89) and (90) gives

2n R1 − 2nϵn

≤ h(yn|)n) + h(ỹn |)n) − h(yn|W1,)
n) − h(ỹn |W1,)

n)

≤ h(yn|)n) + h(ỹn |)n) − h(yn, ỹn |W1,)
n) (91)

where (91) uses a basic entropy inequality.

Now recalling that user 2 has knowledge of {W1, zn, yn,
ỹn, sn

0 }, gives

n R2 − nϵn

= H (W2) − nϵn

= H (W2|)n) − nϵn

≤ I (W2; W1, zn, yn, ỹn, sn
0 |)n) (92)

= I (W2; zn, yn, ỹn, sn
0 |W1,)

n) + I (W2; W1|)n)︸ ︷︷ ︸
=0

(93)

= I (W2; zn
P,P , zn

P,D, zn
P,N , yn, ỹn, sn

0 |W1,)
n)

+I (W2; {zn
I1,I2

}I1 ̸=P |zn
P,P , zn

P,D, zn
P,N , yn, ỹn, sn

0 , W1,)
n)

︸ ︷︷ ︸
=0

(94)

= I (W2; zn
P,P , zn

P,D, zn
P,N , yn, ỹn, sn

0 |W1,)
n) (95)

= h(zn
P,P , zn

P,D, zn
P,N , yn, ỹn, sn

0 |W1,)
n)

− h(zn
P,P , zn

P,D, zn
P,N , yn, ỹn, sn

0 |W1, W2,)
n)

︸ ︷︷ ︸
=no(logρ)

(96)

= h(zn
P,P , zn

P,D, zn
P,N , yn, ỹn, sn

0 |W1,)
n) − no(logρ) (97)

= h(yn, ỹn |W1,)
n) + h(sn

0 |yn, ỹn, W1,)
n)

︸ ︷︷ ︸
≤h(sn

0 )

+ h(zn
P,P , zn

P,D, zn
P,N |yn, ỹn, sn

0 , W1,)
n)

︸ ︷︷ ︸
≤h(zn

P,P ,zn
P,D ,zn

P,N )

−no(logρ) (98)

≤ h(yn, ỹn |W1,)
n) + h(sn

0 )

+ h(zn
P,P , zn

P,D, zn
P,N ) − no(logρ), (99)

where (92) comes from Fano’s inequality, where (93), (96),
(98) use basic chain rule, where (94) stems from messages
independence, where (95) follows from that the knowledge of
{yn, ỹn, sn

0 ,)n} allows for the reconstruction of {zn
I1,I2

}I1 ̸=P =
{zn

D,P, zn
N,P , zn

D,N , zn
N,D , zn

D,D, zn
N,N } (for example, know-

ing {yn
D,P, ỹn

D,P, sn
D,P ,)n} allows for reconstructing {zn

D,P},
cf. (87)), i.e., {zn

D,P, zn
N,P , zn

D,N , zn
N,D , zn

D,D, zn
N,N } ↔

{yn, ỹn, sn
0 ,)n} ↔ W2 forms a Markov chain, where (97)

is from

h(zn
P,P , zn

P,D, zn
P,N , yn, ỹn, sn

0 |W1, W2,)
n)

= h(zn
P,P , zn

P,D, zn
P,N , yn, ỹn|W1, W2,)

n)
︸ ︷︷ ︸

=no(logρ)

+ h(sn
0 |zn

P,P , zn
P,D, zn

P,N , yn, ỹn, W1, W2,)
n)

︸ ︷︷ ︸
=no(logρ)

= no(logρ)

by using the fact that the knowledge of {W1, W2,)n} allows
for reconstructing {zn

P,P , zn
P,D, zn

P,N , yn, ỹn} up to noise level
and the knowledge of {W1, W2,)n, yn, ỹn} allows for recon-
structing sn

0 up to noise level, where (99) uses the fact that
conditioning reduces entropy.
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By adding (91) and (99), and dividing by n, we have

2R1 + R2 − 3ϵn

≤ 1
n

(
h(yn|)n) + h(ỹn|)n) + h(sn

0 )

+ h(zn
P,P , zn

P,D, zn
P,N ) + no(logρ)

)
(100)

≤ 2
( ∑

∀(I1,I2)

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

)
logρ

+
∑

(I1,I2):I1 ̸=P

(1 − α)λα,1I1,I2
logρ

+
∑

(I1,I2):I1=P

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

logρ − o(logρ), (101)

and consequently have

2d1 + d2 ≤ 2
( ∑

∀(I1,I2)

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

)

+
∑

(I1,I2):I1 ̸=P

(1 − α)λα,1I1,I2

+
∑

(I1,I2):I1=P

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

(102)

which gives bound (11).
Similarly, exchanging the roles of user 1 and user 2, gives

2d2 + d1 ≤ 2
( ∑

∀(I1,I2)

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

)

+
∑

(I1,I2):I2 ̸=P

(1 − α)λ1,α
I1,I2

+
∑

(I1,I2):I2=P

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

(103)

which gives bound (12).

C. Proof for Bound (13)

We continue with the proof of bound (13). We first enhance
the BC, by substituting delayed CSIT with perfect CSIT, i.e.,
by treating CSIT state Ik = D as if it corresponded to Ik = P .
We then transition to the compound BC by introducing a first
imaginary user 1̃, and a second imaginary user 2̃.

User 1̃, which shares the same desired message W1 as
user 1, is supplied with a received signal that takes the form

ỹn =
(
yn

P,P, yn
P,D, yn

D,P, yn
D,D, yn

P,N , yn
D,N , ỹn

N,P , ỹn
N,D , ỹn

N,N
)

which means that user 1 and user 1̃ share the exact same
received signal whenever I1 ̸= N , while otherwise we only
assume that user 1̃ has a received signal that is statistically
identical to that of user 1, but not necessarily the same.

Similarly user 2̃, which shares the same desired message
W2 as user 2, is supplied with a received signal that takes the
form

z̃n =
(
zn

P,P , zn
D,P , zn

P,D, zn
D,D, zn

N,P , zn
N,D , z̃n

P,N , z̃n
D,N , z̃n

N,N
)

which again means that user 2 and user 2̃ share the same
received signal whenever I2 ̸= N , while otherwise we only
assume that user 2̃ has a received signal that is statistically
identical to that of user 2, but not necessarily the same.

This latter stage does not further alter the capacity - com-
pared to the previously enhanced BC - since user 1 and user 1̃

have the same long-term decoding ability; similarly for user 2
and user 2̃.

Furthermore, whenever (I1, I2) = (N, N) we can assume
without an effect on the result, that the channel vectors
gt , g̃t , h̃t , ht are the same for all four users, i.e., gt = g̃t =
h̃t = ht , ( g̃t and h̃t for user 2̃ and user 1̃ respectively), since
the capacity depends only on the marginals for the channels
associated with (I1, I2) = (N, N).

Additionally for any t during which (I1, I2) = (N, N), we
define

ȳt =
√
ρmin{A1,t ,A2,t }hT

t xt + ūt (104)

where ūt is a unit-power AWGN random variable, where
√
ρA1,t −min{A1,t ,A2,t } ȳt

=
√
ρA1,t hT

t xt + ut
︸ ︷︷ ︸

=yt

+
√
ρA1,t −min{A1,t ,A2,t }ūt − ut

︸ ︷︷ ︸
!ωt

, (105)

and
√
ρA2,t −min{A1,t ,A2,t } ȳt

=
√
ρA2,t hT

t xt + vt
︸ ︷︷ ︸

=zt

+
√
ρA2,t −min{A1,t ,A2,t }ūt − vt

︸ ︷︷ ︸
!ψt

, (106)

and where the two new random variables ωt ,ψt have power

E|ωt |2 .= ρ(A1,t −A2,t )+

and

E|ψt |2 .= ρ(A2,t −A1,t )
+
.

The collection of all {ȳt }t for all t such that (I1, I2) = (N, N),
is denoted by ȳn

N,N , and similarly ωn
N,N and ψn

N,N respectively
denote the set of {ωt }t and {ψt }t for all t such that
(I1, I2) = (N, N).

Finally we provide each user with the observation ȳn
N N , to

reach an enhanced compound BC.
At this point we have

n R1 − nϵn

= H (W1) − nϵn

= H (W1|)n) − nϵn

≤ I (W1; yn
0 , yn

P,N , yn
N,P , yn

D,N , yn
N,D, yn

N,N , ȳn
N,N |)n)

(107)

= I (W1; yn
0 , yn

P,N , yn
N,P , yn

D,N , yn
N,D, ȳn

N,N |)n)

+ I (W1; yn
N,N |yn

0 , yn
P,N , yn

N,P , yn
D,N , yn

N,D , ȳn
N,N ,)n)

≤ I (W1; yn
0 , yn

P,N , yn
N,P , yn

D,N , yn
N,D, ȳn

N,N |)n)

+ I (W1; yn
N,N ,ωn

N,N |yn
0 , yn

P,N , yn
N,P ,

yn
D,N , yn

N,D , ȳn
N,N ,)n) (108)

= I (W1; yn
0 , yn

P,N , yn
N,P , yn

D,N , yn
N,D , ȳn

N,N |)n)

+I (W1;ωn
N,N |yn

0 ,yn
P,N ,yn

N,P ,yn
D,N ,yn

N,D ,ȳn
N,N ,)n)

+I (W1;yn
N,N|yn

0 ,yn
P,N ,yn

N,P ,yn
D,N ,yn

N,D,ȳn
N,N ,ωn

N,N ,)n)
︸ ︷︷ ︸

=0
(109)



CHEN et al.: ON THE TWO-USER MISO BROADCAST CHANNEL WITH ALTERNATING CSIT 4363

= I (W1; yn
0 , yn

P,N , yn
N,P , yn

D,N , yn
N,D , ȳn

N,N |)n)

+ I (W1;ωn
N,N |yn

0 ,yn
P,N ,yn

N,P ,yn
D,N ,yn

N,D ,ȳn
N,N ,)n)

︸ ︷︷ ︸
≤h(ωn

N,N )−no(logρ)

(110)

≤ I (W1; yn
0 , yn

P,N , yn
N,P , yn

D,N , yn
N,D , ȳn

N,N |)n)

+ h(ωn
N,N ) − no(logρ) (111)

= I (W1;yn
0 |yn

P,N ,yn
N,P ,yn

D,N ,yn
N,D ,ȳn

N,N ,)n)
︸ ︷︷ ︸

≤h(yn
0 )−no(logρ)

+ I (W1;yn
P,N ,yn

N,P ,yn
D,N ,yn

N,D,ȳn
N,N |)n)

+ h(ωn
N,N ) − no(logρ) (112)

≤ h(ωn
N,N ) + h(yn

0 ) − no(logρ)

+ I (W1; yn
P,N , yn

N,P , yn
D,N , yn

N,D , ȳn
N,N |)n) (113)

= h(ωn
N,N ) + h(yn

0 ) − no(logρ)

+ I (W1; yn
P,N , yn

D,N , ȳn
N,N |)n)

+ I (W1; yn
N,P , yn

N,D |yn
P,N , yn

D,N , ȳn
N,N ,)n) (114)

= h(ωn
N,N ) + h(yn

0 )
︸ ︷︷ ︸

≤n/10+no(logρ)

−no(logρ)

+ I (W1; yn
P,N , yn

D,N , ȳn
N,N |)n)

+ I (W1, W2; yn
N,P , yn

N,D |yn
P,N , yn

D,N , ȳn
N,N ,)n)

︸ ︷︷ ︸
≤h(yn

N,P ,yn
N,D )−no(logρ)≤n/11+no(logρ)

− I (W2; yn
N,P , yn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n) (115)

≤ h(ωn
N,N ) + n/10 + n/11 + no(logρ)

+ I (W1; yn
P,N , yn

D,N , ȳn
N,N |)n)

− I (W2; yn
N,P , yn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n) (116)

where

yn
0 !

(
yn

P,P , yn
P,D, yn

D,P, yn
D,D

)

/10 !
( ∑

(I1,I2):I1 ̸=N,I2 ̸=N

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

)
logρ

/11 !
( ∑

(I1,I2)∈{(N,P),(N,D)}

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

)
logρ

where (107) results from Fano’s inequality, where (108) uses
the fact that adding information does not reduce mutual infor-
mation, where (109) results from the chain rule, where (110)
follows from the fact that the knowledge of {ȳn

N,N ,ωn
N,N ,)n}

allows for the reconstruction of yn
N,N , i.e., follows from the

fact that yn
N,N ↔ {ȳn

N,N ,ωn
N,N ,)n} ↔ W1 forms a Markov

chain, where (111) is from the fact that

I (W1;ωn
N,N |yn

0 , yn
P,N , yn

N,P , yn
D,N , yn

N,D , ȳn
N,N ,)n)

= h(ωn
N,N |yn

0 , yn
P,N , yn

N,P , yn
D,N , yn

N,D , ȳn
N,N ,)n)

︸ ︷︷ ︸
≤h(ωn

N,N )

− h(ωn
N,N |yn

0 , yn
P,N , yn

N,P , yn
D,N , yn

N,D , ȳn
N,N ,)n, W1)︸ ︷︷ ︸

≥h(ωn
N,N |yn

0 ,yn
P,N ,yn

N,P ,yn
D,N ,yn

N,D ,ȳn
N,N ,)n,W1,W2)=no(logρ)

≤ h(ωn
N,N ) − no(logρ)

by using the fact that the knowledge of {ȳn
N,N , W1, W2,)n}

allows for reconstructing ωn
N,N up to noise level

(cf. (105), (104)), and where (112) - (116) are derived
using basic entropy rules.

Similarly for user 1̃, we have

n R1 − nϵn

≤ h(ωn
N,N ) + n/10 + n/11 + no(logρ)

+ I (W1; yn
P,N , yn

D,N , ȳn
N,N |)n)

− I (W2; ỹn
N,P , ỹn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n).

(117)

Adding (116) and (117), gives

2n R1 − 2n/10 − 2n/11 − no(logρ) − 2nϵn

≤ 2h(ωn
N,N ) + 2I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n)

−I (W2; yn
N,P , yn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n)

−I (W2; ỹn
N,P , ỹn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n) (118)

= 2h(ωn
N,N ) + 2I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n)

−h(yn
N,P , yn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n)

−h(ỹn
N,P , ỹn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n)

+ h(yn
N,P , yn

N,D |W2, W1, yn
P,N , yn

D,N , ȳn
N,N ,)n)

︸ ︷︷ ︸
=no(logρ)

+ h(ỹn
N,P , ỹn

N,D |W2, W1, yn
P,N , yn

D,N , ȳn
N,N ,)n)

︸ ︷︷ ︸
=no(logρ)

= 2h(ωn
N,N ) + 2I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n) + no(logρ)

−h(yn
N,P , yn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n)

−h(ỹn
N,P , ỹn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n)

≤ 2h(ωn
N,N ) + 2I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n) + no(logρ)

−h(yn
N,P , yn

N,D , ỹn
N,P , ỹn

N,D |W1, yn
P,N , yn

D,N , ȳn
N,N ,)n)

(119)

= 2h(ωn
N,N ) + 2I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n) + no(logρ)

−I (W2;yn
N,P ,yn

N,D ,ỹn
N,P ,ỹn

N,D |W1,yn
P,N , yn

D,N , ȳn
N,N ,)n)

−h(yn
N,P ,yn

N,D ,ỹn
N,P ,ỹn

N,D |W2,W1,yn
P,N ,yn

D,N ,ȳn
N,N ,)n)

︸ ︷︷ ︸
=no(logρ)

(120)

= 2h(ωn
N,N ) + 2I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n)

−I (W2; yn
N,P , ỹn

N,P , yn
N,D , ỹn

N,D , yn
P,N ,

yn
D,N , ȳn

N,N |W1,)
n)

+I (W2; yn
P,N , yn

D,N , ȳn
N,N |W1,)

n) + no(logρ) (121)

= 2h(ωn
N,N ) + I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n)

−I (W2; yn
N,P , ỹn

N,P , yn
N,D , ỹn

N,D , yn
P,N ,

yn
D,N , ȳn

N,N |W1,)
n)

+ I (W1, W2; yn
P,N , yn

D,N , ȳn
N,N |)n)

︸ ︷︷ ︸
≤h(yn

P,N ,yn
D,N ,ȳn

N,N )−no(logρ)

+no(logρ) (122)

≤ h(ωn
N,N ) + h(ωn

N,N ) + h(yn
P,N , yn

D,N , ȳn
N,N )

︸ ︷︷ ︸
≤n/12+no(logρ)

+no(logρ)

+I (W1; yn
P,N , yn

D,N , ȳn
N,N |)n)

−I (W2; yn
N,P , ỹn

N,P , yn
N,D , ỹn

N,D ,

yn
P,N , yn

D,N , ȳn
N,N |W1,)

n) (123)
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= h(ωn
N,N ) + n/12 + no(logρ) + I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n)

−I (W2; yn
N,P , ỹn

N,P , sn
N,P , yn

N,D , ỹn
N,D, sn

N,D , yn
P,N , yn

D,N , ȳn
N,N |W1,)

n)

+ I (W2; sn
N,P , sn

N,D |yn
N,P , ỹn

N,P , yn
N,D , ỹn

N,D, yn
P,N , yn

D,N , ȳn
N,N , W1,)

n)
︸ ︷︷ ︸

≤h(sn
N,P ,sn

N,D )−no(logρ)

(125)

≤ h(ωn
N,N ) + n/12 + no(logρ)

+I (W1; yn
P,N , yn

D,N , ȳn
N,N |)n)

−I (W2; yn
N,P , ỹn

N,P , yn
N,D, ỹn

N,D , yn
P,N ,

yn
D,N , ȳn

N,N |W1,)
n) (124)

≤ h(ωn
N,N ) + n/12 + I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n)

− I (W2; yn
N,P , ỹn

N,P , sn
N,P , yn

N,D , ỹn
N,D , sn

N,D , yn
P,N ,

yn
D,N , ȳn

N,N |W1,)
n)

+ h(sn
N,P , sn

N,D) + no(logρ) (126)

= h(ωn
N,N ) + n/12 + I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n)

+ h(sn
N,P , sn

N,D) + no(logρ)

− I
(
W2; yn

N,P , ỹn
N,P , sn

N,P , zn
N,P , yn

N,D , ỹn
N,D , sn

N,D , zn
N,D ,

yn
P,N , yn

D,N , ȳn
N,N |W1,)

n)
(127)

≤ h(ωn
N,N ) + n/12 + I (W1; yn

P,N , yn
D,N , ȳn

N,N |)n)

+ h(sn
N,P , sn

N,D) + no(logρ)

− I (W2; zn
N,P , zn

N,D , ȳn
N,N |W1,)

n) (128)

≤ h(ωn
N,N ) + n/12 + I (W1; W2, yn

P,N , yn
D,N , ȳn

N,N |)n)

+h(sn
N,P , sn

N,D) + no(logρ)

−I (W2; zn
N,P , zn

N,D , ȳn
N,N |W1,)

n) (129)

= h(ωn
N,N ) + n/12 + I (W1; yn

P,N , yn
D,N , ȳn

N,N |W2,)
n)

+ h(sn
N,P , sn

N,D)
︸ ︷︷ ︸
≤n/13+no(logρ)

+no(logρ)

− I (W2; zn
N,P , zn

N,D , ȳn
N,N |W1,)

n) (130)

≤ h(ωn
N,N )

︸ ︷︷ ︸
≤n/14+no(logρ)

+n/12 + I (W1; yn
P,N , yn

D,N , ȳn
N,N |W2,)

n)

+ n/13 + no(logρ) − I (W2; zn
N,P , zn

N,D , ȳn
N,N |W1,)

n)

(131)

≤ n/14 + n/12 + I (W1; yn
P,N , yn

D,N , ȳn
N,N |W2,)

n)

+ n/13 + no(logρ) − I (W2; zn
N,P , zn

N,D , ȳn
N,N |W1,)

n)

(132)

where

/12 !
( ∑

(I1,I2):I2=N

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

)
logρ

/13 !
( ∑

(I1,I2)∈{(N,P),(N,D)}
(1 − α)λα,1I1,I2

)
logρ

/14 ! (1 − α)λ1,α
N,N logρ

where sn
N,P and zn

N,D (cf. (125)), as shown at the
top of this page, are defined in (87). In the above,
(127) is from the fact that the knowledge of {yn

N,P , ỹn
N,P ,

sn
N,P , yn

N,D , ỹn
N,D , sn

N,D ,)n} implies the knowledge of zn
N,P

and zn
N,D (cf. (87)). Most of the above steps are based on

basic entropy rules.

Similarly, considering user 2 and user 2̃, we have

2n R2 − 2n/20 − 2n/21 − no(logρ) − 2nϵn

≤ n/24 + n/22 + I (W2; zn
N,P , zn

N,D , ȳn
N,N |W1,)

n)

+ n/23 + no(logρ) − I (W1; yn
P,N , yn

D,N , ȳn
N,N |W2,)

n)

(133)

where

/20 !
( ∑

(I1,I2):I1 ̸=N,I2 ̸=N

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

)
logρ

/21 !
( ∑

(I1,I2)∈{(P,N),(D,N)}

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

)
logρ

/22 !
( ∑

(I1,I2):I1=N

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

)
logρ

/23 !
( ∑

(I1,I2)∈{(P,N),(D,N)}
(1 − α)λ1,α

I1,I2

)
logρ

/24 ! (1 − α)λα,1N,N logρ.

Finally, combining (132) and (133), gives

d1 + d2

≤ 1
2 logρ

[
2/10 + 2/11 +/12 +/13 +/14

+ 2/20 + 2/21 +/22 +/23 +/24

]

= 1
2

[
2
( ∑

(I1,I2):I1 ̸=N,I2 ̸=N

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

)

+ 2
( ∑

(I1,I2)∈{(N,P),(N,D)}

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

)

+
∑

(I1,I2):I2=N

∑

∀(A1,A2)

A1λ
A1,A2
I1,I2

+
∑

(I1,I2)∈{(N,P),(N,D)}
(1 − α)λα,1I1,I2

+ (1 − α)λ1,α
N,N

+ 2
( ∑

(I1,I2):I1 ̸=N,I2 ̸=N

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

)

+ 2
( ∑

(I1,I2)∈{(P,N),(D,N)}

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

)

+
∑

(I1,I2):I1=N

∑

∀(A1,A2)

A2λ
A1,A2
I1,I2

+
∑

(I1,I2)∈{(P,N),(D,N)}
(1 − α)λ1,α

I1,I2
+ (1 − α)λα,1N,N

]

=
∑

(I1,I2):I1 ̸=N,I2 ̸=N

(
1 + α

)(
λ1,α

I1,I2
+ λα,1I1,I2

)

+
∑

(I1,I2)∈{(N,P),(P,N),(N,D),(D,N)}

2 + α

2

(
λ1,α

I1,I2
+ λα,1I1,I2

)

+
(
λ1,α

N,N + λα,1N,N

)
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+
∑

(I1,I2):I1 ̸=N,I2 ̸=N

(
2λ1,1

I1,I2
+ 2αλα,αI1 ,I2

)

+
∑

(I1,I2)∈{(N,P),(P,N),(N,D),(D,N)}

(3
2
λ1,1

I1,I2
+ 3α

2
λα,αI1,I2

)

+ (λ1,1
N,N + αλα,αN,N )

=
(
1 + α

)(
λ1,α

P,P + λα,1P,P

)
+

(
1 + α

)(
λ1,α

P↔D + λα,1P↔D

)

+
(
1 + α

)(
λ1,α

D,D + λα,1D,D

)

+ 2 + α

2

(
λ1,α

P↔N + λα,1P↔N

)
+ 2 + α

2

(
λ1,α

D↔N + λα,1D↔N

)

+
(
λ1,α

N,N + λα,1N,N

)

+
(
2λ1,1

P,P + 2αλα,αP,P

)
+

(
2λ1,1

P↔D + 2αλα,αP↔D

)

+
(
2λ1,1

D,D + 2αλα,αD,D

)
+

(3
2
λ1,1

P↔N + 3α
2
λα,αP↔N

)

+ (3
2
λ1,1

D↔N + 3α
2
λα,αD↔N

) + (
λ1,1

N,N + αλα,αN,N

)
(134)

which completes the proof.
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