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Abstract—We consider the problem of network coding across
three unicast sessions over a directed acyclic graph, where the
sender and the receiver of each unicast session are both connected
to the network via a single edge of unit capacity. We consider a
network model in which the middle of the network can only
perform random linear network coding, and we restrict our
approaches to precoding-based linear schemes, where the senders
use precoding matrices to encode source symbols. We adapt
a precoding-based interference alignment technique, originally
developed for the wireless interference channel, to construct a
precoding-based linear scheme, which we refer to as precoding-
based network alignment scheme (PBNA). A primary difference
between this setting and the wireless interference channel is that
the network topology can introduce dependencies among the
elements of the transfer matrix, which we refer to as coupling
relations, and can potentially affect the achievable rate of PBNA.
We identify all these coupling relations and we interpret them
in terms of network topology. We then present polynomial-time
algorithms to check the presence of these coupling relations in
a particular network. Finally, we show that, depending on the
coupling relations present in the network, the optimal symmetric
rate achieved by precoding-based linear scheme can take only
three possible values, all of which can be achieved by PBNA.

Index Terms—Network Coding, Multiple Unicasts, Interfer-
ence Alignment.

I. INTRODUCTION

Ver since the development of network coding and its
success in characterizing the achievable throughput for
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single multicast scenario [1] [2], there has been hope that the
framework can be extended to characterize network capacity
in other scenarios, namely inter-session network coding. Of
particular practical interest is network coding across multiple
unicast sessions, as unicast is the dominant type of traffic
in today’s networks. There have been some successes in this
domain, such as the derivation of a sufficient condition for
linear network coding to achieve the maximal throughput in
networks with multiple unicast sessions [3] [4]. However, find-
ing linear network codes for guaranteeing rates for multiple
unicasts is known to be NP-hard [5]. Only sub-optimal and
heuristic methods are known today, including methods based
on linear optimization [6] [7] and evolutionary approaches [8].
Moreover, scalar or even vector linear network coding [5] [9]
alone has been shown to be insufficient for achieving the limits
of inter-session network coding [10].

In this paper, we consider the problem of linear network
coding across three unicast sessions over a network repre-
sented by a directed acyclic graph (DAG), where the sender
and the receiver of each unicast session are both connected
to the network via a single edge of unit capacity. We refer
to this communication scenario as a Single-Input Single-
Output scenario or SISO scenario for short (Fig. 1a). This is
the smallest, yet highly non-trivial, instance of the problem.
Furthermore, we consider a network model, in which the
middle of the network only performs random linear network
coding, and restrict our approaches to precoding-based linear
schemes, where the senders use precoding matrices to encode
source symbols'. Apart from being of interest on its own right,
we hope that this can be used as a building block and for better
understanding of the general network coding problem across
multiple unicasts.

Our approach is motivated by the observation that under the
linear network coding framework, a SISO scenario behaves
roughly like a wireless interference channel. As shown in Fig.
1, the entire network can be viewed as a channel with a linear
transfer function, albeit this function is no longer given by
nature, as it is the case in wireless, but is determined by
the network topology, routing and coding coefficients. This
analogy enables us to apply the technique of precoding-based
interference alignment, designed by Cadambe and Jafar [11]
for wireless interference channels. We adapt this technique
to our problem and refer to it as precoding-based network

The precise definition of precoding-based linear scheme is presented in
Section III.
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Fig. 1. Analogy between a SISO scenario employing linear network coding
and a wireless interference channel, each with three unicast sessions (s;, d;),
i = 1,2,3. Both these systems can be treated as linear transform systems
and are amenable to interference alignment techniques.

alignment, or PBNA for short: precoding occurs only at
source nodes, and all the intermediate nodes in the network
perform random network coding. One advantage of PBNA
is complexity: it significantly simplifies network code design
since the nodes in the middle of the network perform random
network coding. Another advantage is that PBNA can achieve
the optimal symmetrical rate achieved by any precoding-based
linear schemes.

An important difference between the SISO scenario and
the wireless interference channel is that there may be alge-
braic dependencies, which we refer to as coupling relations,
between elements of the transfer matrix, which we refer to
as transfer functions. These are introduced by the network
topology and may affect the achievable rate of PBNA [12].
Such algebraic dependencies are not present in the wireless
interference channel, where channel gains are independent
from each other such that the precoding-based interference
alignment scheme of [11] can achieve 1/2 rate per session
almost surely. Therefore, traditional interference alignment
techniques, developed for the wireless interference channel,
cannot be directly applied to networks with network coding
but (i) they need to be properly adapted in the new setting,
and (ii) their achievability conditions need to be characterized
in terms of the network topology. Towards the second goal,
we identify graph-related properties of the transfer functions,
which together with a degree-counting technique, enable us to
identify the minimal set of coupling relations that might affect
the achievable rate of PBNA.

Our main contributions in this paper are the followings:

e PBNA Design: We design the first precoding-based
interference-alignment scheme for the SISO scenario,
in which the senders use precoding matrices to encode
source symbols, and the intermediate nodes in the middle
of the network perform random linear network coding.
The scheme is inspired by the Cadambe and Jafar scheme
in [11].

o Achievability Conditions: We identify the minimal set of
coupling relations between transfer functions, the pres-
ence of which will potentially affect the achievable rate
of PBNA. We further interpret these coupling relations in
terms of network topology, and present polynomial-time
algorithms for checking the existence of these coupling
relations.

e Rate Optimality: We show that for the SISO scenarios
where all senders are connected to all receivers via di-

rected paths, depending on the coupling relations present
in the network, there are only three possible optimal
symmetric rates achieved by any precoding-based linear
scheme (namely 1/3, 2/5 and 1/2), all of which are
achievable through PBNA.

The rest of the paper is organized as follows. In Section
II, we review related work. In Section III, we present the
problem setup and formulation. In Section IV, we present
our proposed precoding-based interference alignment (PBNA)
scheme for the network setting. In Section V, we present an
overview of our main results. In Section VI, we discuss in
depth the achievability conditions of PBNA. In Section VII,
we provide polynomial-time algorithms to check the presence
of the coupling relations that may affect the achievable rate
of PBNA. In Section VIII, we prove the optimal symmetric
rates achieved by any linear precoding-based scheme. Section
IX concludes the paper and outlines future directions. In
Appendices A-D, we present detailed proofs for the lemmas
and the theorems presented in this paper. In Appendix E, we
present a comparison between routing and PBNA.

II. RELATED WORK

A. Network Coding

Network coding was first proposed to achieve optimal
throughput for single multicast scenario [1] [2] [3], which
is a special case of intra-session network coding. The rate
region for this setting can be easily calculated by using linear
programming techniques [13]. Moreover, the code design
for this scenario is fairly simple: Either a polynomial-time
algorithm [14] can be used to achieve the optimal throughput
in a deterministic manner, or a random network coding scheme
[15] can be used to achieve the optimal throughput with high
probability.

One case, which is best understood up to now, is network
coding across two unicasts. Wang and Shroff provided a
graph-theoretical characterization of sufficient and necessary
condition for the achievability of symmetrical rate of one for
two multicast sessions, of which two unicasts is a special
case, over networks with integer edge capacities [16]. They
showed that linear network code is sufficient to achieve this
symmetrical rate. Wang et al. [17] further pointed out that there
are only two possible capacity regions for the network studied
in [16]. They also showed that for layered linear deterministic
networks, there are exactly five possible capacity regions.
Kamath et al. [18] provided a edge-cut outer bound for the
capacity region of two unicasts over networks with arbitrary
edge capacities.

For network coding across more than two unicasts, there is
only limited progress. It is known that there exist networks
in which network coding significantly outperforms routing
schemes in terms of transmission rate [4]. However, there
exist only approximation methods to characterize the rate
region for this setting [19]. Moreover, it is known that finding
linear network codes for this setting is NP-hard [5]. Therefore,
only sub-optimal and heuristic methods exist to construct
linear network code for this setting. For example, Ratnakar



et al. [6] considered coding pairs of flows using poison-
antidote butterfly structures and packing a network using these
butterflies to improve throughput; Traskov et al. [7] further
presented a linear programming-based method to find butterfly
substructures in the network; Ho et al. [20] developed online
and offline back pressure algorithms for finding approximately
throughput-optimal network codes within the class of network
codes restricted to XOR coding between pairs of flows;
Effros et al. [21] described a tiling approach for designing
network codes for wireless networks with multiple unicast
sessions on a triangular lattice; Kim et al. [8] presented an
evolutionary approach to construct linear code. Unfortunately,
most of these approaches don’t provide any guarantee in
terms of performance. Moreover, most of these approaches are
concerned about finding network codes by jointly considering
code assignment and network topology at the same time.
In contrast, our approach is oblivious to network topology
in the sense that the design of encoding/decoding schemes
is separated from network topology, and is predetermined
regardless of network topology. The separation of code design
from network topology greatly simplifies the code design of
PBNA.

The part of our work that identifies coupling relations is
related to some recent work on network coding. Ebrahimi and
Fragouli [22] found that the structure of a network polynomial,
which is the product of the determinants of all transfer matri-
ces, can be described in terms of certain subgraph structures;
Zeng et al. [23] proposed the Edge-Reduction Lemma which
makes connections between cut sets and the row and column
spans of the transfer matrices.

B. Interference Alignment

The original concept of precoding-based interference align-
ment was first proposed by Cadambe and Jafar [11] to
achieve the optimal degree of freedom (DoF) for K-user
wireless interference channel. After that, various approaches
to interference alignment have been proposed. For example,
Nazer et al. proposed ergodic interference alignment [24];
Bresler, Parekh and Tse proposed lattice alignment [25]; Jafar
introduced blind alignment [26] for the scenarios where the
actual channel coefficient values are entirely unknown to
the transmitters; Maddah-Ali and Tse proposed retrospective
interference alignment [27] which exploits only delayed CSIT.
Interference alignment has been applied to a wide variety
of scenarios, including K-user wireless interference channel
[11], compound broadcast channel [28], cellular networks [29],
relay networks [30], and wireless networks supported by a
wired backbone [31]. Recently, it was shown that interference
alignment can be used to achieve exact repair in distributed
storage systems [32] [33].

C. Network Alignment

The idea of PBNA was first proposed by Das et al., who also
proposed a sufficient condition for PBNA to asymptotically
achieve a symmetrical rate of 1/2 per session [34]. However,
the sufficient achievability condition proposed in [34] contains
an exponential number of constraints, and is very difficult to

verify in practice. Later, Ramakrishnan et al. observed that
whether PBNA can achieve a symmetrical rate of 1/2 per
session depends on network topology [12], and conjectured
that the condition proposed in [34] can be reduced to just
six constraints. Han et al. [35] proved that this conjecture is
true for the special case of three symbol extensions. They
also identified some important properties of transfer functions,
which are used in this paper. In [36], Meng et al. showed that
the conjecture in [12] is false for more than three symbol
extensions, and reduced the condition proposed in [34] to just
12 constraints by using two graph-related properties of transfer
functions. Later, Meng et al. reduced the 12 constraints to a set
of 9 constraints [37] by using a result from [35], and proved
that they are also necessary conditions for PBNA to achieve
1/2 rate per session. They also provided an interpretation of
all the constraints in terms of graph structure. At the same
time and independently, a technical report by Han et al. [38]
also provided a similar characterization.

This journal paper combines our previous work in [12],
[34], [36], [37], and extends them by finding the optimal sym-
metrical rates achieved by precoding-based linear schemes, of
which PBNA is a special case. Compared to the most closely
related work, namely [38], our work addresses a more general
setting: (i) it considers the use of any precoding-matrix, not
only the one proposed by Cadambe and Jafar [11] and (ii) it
applies to all network topologies, which subsume the cases
considered in [38]. In addition, we prove that PBNA can
achieve all the optimal symmetric rates achieved by precoding-
based linear schemes.

III. PROBLEM FORMULATION
A. Network Model

A network is represented by a directed acyclic graph
G = (V,E), where V is the set of nodes and F the set of
edges. We consider the simplest non-trivial communication
scenario where there are three unicast sessions in the network.
The #th (: = 1,2,3) unicast session is represented by a
tuple w; = (s;,d;,X;), where s; and d; are the sender
and the receiver of the ith unicast session, respectively;
X; = (XM, x® ... x®)N)T is a vector of independent
random variables, each of which represents a packet that s;
sends to d;. Each sender s; is connected to the network via a
single edge o;, called a sender edge, and each receiver node
d; via a single edge 7;, called a receiver edge. Each edge has
unit capacity, i.e., can carry one symbol of Fom in a time
slot, and represents an error-free and delay-free channel. We
group these unicast sessions into a set Q = {wq, wo,ws}. We
refer to the tuple (G,(2) as a single-input and single-output
communication scenario, or a SISO scenario for short. An
example of SISO scenario is shown in Fig. la. Clearly, in a
SISO scenario, each sender can transmit at most one symbol
to its corresponding receiver node in a time slot.

Given an edge e = (u,v) € E, let u = head(e) and v =
tail(e) denote the head and the tail of e, respectively. Given
anode v € V, let In(v) = {e € E : head(e) = v} denote
the set of incoming edges at v, and Out(v) = {e € E :
tail(e) = v} the set of outgoing edges at v. Given two distinct



edges e, e’ € E, a directed path from e to €’ is a subset of
edges P = {ej,ea, -+ ,e} such that e; = e, e, = ¢/, and
head(e;) = tail(e;41) for i € {1,2,--- ,k — 1}. The set of
directed paths from e to e’ is denoted by P.. . For i,j €
{1,2,3}, we also use P;; to represent Pg, .

Each node in the network performs scalar linear network
coding operations on the incoming symbols [2] [3]. The
symbols transmitted in the network are elements of a finite
field Fom. Let X; be the symbol injected at the sender node
s;. Thus, for an edge e = (u,v) € FE, the symbol transmitted
along e, denoted by Y., is a linear combination of the incoming
symbols at u:

X; if e = o33
Ye= | ()
> e'en(u) TereYer  otherwise.

where x./. denotes the coding coefficient that is used to com-
bine the incoming symbol Y, into Y,. Following the algebraic
framework of [3], we treat the coding coefficients as variables.
Let x denote the vector consisting of all the coding coefficients
in the network, i.e., x = (Zer : €/, ¢ € E head(e’) = tail(e)).

Due to the linear operations at each node, the network
functions like a linear system such that the received symbol
at 7; is a linear combination of the symbols injected at sender
nodes:

Yy, = mai(x) X1 + may (%) Xo + mai(x) X3 2

In the above formula, mj;(x) (j = 1,2,3) is a multivariate
polynomial in the ring Fz[x], and is defined as follows [3]:

mji(x) = Y tp(x) 3)

PePj;

Each tp(x) denotes a monomial in m ;(x), and is the product
of all the coding coefficients along path P, i.e., for a given
path P = {ej, e, - ,ex},

k—1
tP (X) = H x€i6i+1 (4)
i=1

Thus, ¢p(x) represents the signal gain along a path P, and
mj;(x) is simply the summation of the signal gains along all
possible paths from o to 7;. We refer to m;(x) as the transfer
Sfunction from o; to ;.

We make the following assumptions:

1) The nodes in V — {s;,d; : 1 < i < 3} can only
perform random linear network coding, i.e., there is no
intelligence in the middle of the network. The variables
in x all take values independently and uniformly at
random from Fam.

2) Except for the senders and the receivers, all other nodes
in the network have zero memory, and therefore cannot
store any received data.

3) The senders have no incoming edges, and the receivers
have no outgoing edges.

4) The random variables in all X;’s are mutually indepen-
dent. Each element of X; has an entropy of m bits.

5) The transmissions within the network are all synchro-
nized with respect to the symbol timing.

B. Transmission Process

The transmission process in the network continues for N €
Z~o time slots, where N > max{k1, ko, ks}. Both N and
k; are parameters of the transmission scheme. We will show
how to set these parameters in Section IV. Let x(*) = (JCS)P :
€’,e € E,head(e’) = tail(e)) denote the vector of coding
coefficients for time slot ¢, where xi’f)e represents the coding
coefficient used to combine the incoming symbol along ¢’ into
the symbol along e for time slot ¢. For an edge e, let Ye(t)
denote the symbol transmitted along e during time slot ¢, and
Y, = (Ye(l),Ye(Q), e 7Ye(N))T the vector of all the symbols
transmitted along e during the IV time slots. Define a vector
of variables, & = (x(1),x@ ... x(V) 9,0y, ---,60), where
01,--- , 0 are variables, which take values from Fom, and are
used in the encoding process at the senders.

Each sender s; first encode X; into a vector XZ- of N
symbols:

X; = V;X; (5)

where V; is an N x k; matrix, each element of which is
a rational function in Fym (€)%, and is called the precoding
matrix at s;. Define the following N x N diagonal matrix
which includes all the transfer functions m;;(x®)) for the N
time slots:

0 mj; (x@) ... 0
My = . . , , (6)
0 0 mji (X(N) )

Hence, the input-output equation of the network can be
formulated in a matrix form as follows:

Y., = My, Xy + Mo X + M3 X
=M ViX; + My VaXy + M3 VX3 (N
— M;X

where Mz = (MMVl MQZ'VQ M&Vd), and X =
(XT XTI XI)7T. Since the elements of Mj; (1 < j < 3)
and V; are rational functions in Fam (£), the elements of M,
are also rational functions in terms of £.

C. Precoding-Based Linear Scheme

In this paper, we consider the following transmission
scheme, called precoding-based linear scheme:

Definition ITL.1. Given a SISO scenario (G, (), a precoding-
based linear scheme for (G,) is a transmission scheme,
where each sender s; (1 < ¢ < 3) uses a precoding matrix
V,; to encode source symbols, and the variables in ¢ all take
values independently and uniformly at random from Fom. We
use a tuple A = (£, V; : 1 <i < 3) to denote a precoding-
based linear scheme.

From the above definition, it can be seen that a precoding-
based linear scheme is a random linear network coding

2Given a field F, F(xy,---,z;) denotes the field consisting of all
multivariate rational functions in terms of (z1,- - ,zy) over F.



Fig. 2. An illustrative example for precoding-based linear scheme.

scheme. Given a precoding-based linear scheme, let Py,
denote the probability that the denominators of the precoding
matrices are all evaluated to non-zero values, and all receivers
can successfully decode their required source symbols from
received symbols.

Definition III.2. Given a precoding-based linear scheme A =
(&,V; : 1 < i < 3), we say that it achieves the rate tuple
(k?l ]Cz k3

NN W)’ if hmm%oo Psucc =1

Given a precoding-based linear scheme, if the conditions
of the above definition is satisfied, by choosing sufficiently
large finite field Fam, a random assignment of values to £ will
enable each receiver to successfully decode its required source
symbols with high probability. In this sense, given sufficiently
large Fom, a precoding-based linear scheme works for most
random realizations of &, but not all realizations.

Before proceeding, we introduce the following Schwartz-
Zippel Theorem [39].

Theorem II1.1 (Schwartz-Zippel =~ Theorem). Let
Q(x1,x2, -+ ,x,) be a non-zero multivariate polynomial of
total degree d in the ring Fl[z1, 22, - ,x,], where F is a
field. Fix a finite set S C F. Let ry,79,--- ,7, be chosen
independently and uniformly at random from S. Then,

Pr(Q(ri,r2,--- ,mn) =0) < —

Example III.1. We use an example to illustrate the above
concepts. Consider the network in Fig. 2. Note that under the
network model considered in the paper, interference is almost
unavoidable at the receivers. Consider a receiver d;. Without
loss of generality, assume that the (1,1) element of V; (i # j)
is a non-zero rational function f1;(£). Thus, the (1,1) element
of M;;V; is a non-zero rational function mj;(x™")f1(€).
Due to Theorem IIL1, the probability that m ;;(x(1)) f11(€) is
evaluated to zero under a random assignment of values to &
approaches to zero as m — oo. Hence, the probability that
M,;V; = 0 approaches zero as m — oo. This means that
interference is almost unavoidable at d;.

Next, we present a precoding-based linear scheme that
achieves a symmetric rate of % per unicast session. Let N = 3,
and k; = ky = ks = 1. Consider the following precoding
matrix Vi = (951) 9%2) 9%3)). According to Eq. (7), the output
vector at d; is Y., = M;X, where M, is as follows:

mu(x(l))%l) mgi(x(l))ﬂél) mgi(x(l))ﬁél)
M; = mu(X@))@f) m2i(X(2))9§2) m3z‘(x(2))9:(32)
may; (X(3))0§3) ma; (x(3))9§3) ms; (X(3))9z())3)

It can be verified that det(MM;) is a non-zero polynomial
in Fom (€)%, Let d be the total degree of det(M;). Due to
Theorem III.1, we have:

R@ucc ZPT(th(MJ 7& 0)
=1— Pr(det(M;)=0)>1- —

54.) = 1, it follows that lim,,, e Psyce =

Since limy, 00 (1— 5%
1. Hence, the above precoding-based linear scheme achieves
a symmetric rate % per unicast session. As we will show in
Section VI, using precoding-based alignment scheme, which
is a special case of precoding-based linear scheme, each
unicast session can achieve a symmetric rate % per unicast
session, which is the optimal symmetric rate achieved by any
precoding-based linear schemes. |
Table I summarizes the notations used in this paper, in
which ¢/, e € EF and 1 <14,7j,k < 3.

IV. APPLYING PRECODING-BASED NETWORK
ALIGNMENT TO NETWORKS

In this section, we first present how to utilize precoding-
based interference alignment technique to find a precoding-
based linear scheme for (G, €2). Then, we present achievability
conditions for PBNA. We then introduce the concept of
“coupling relations,” which are essential in determining the
achievability of PBNA.

Throughout this section, we assume that all the senders are
connected to all the receivers via directed paths, i.e., mij(x)
is a non-zero polynomial for all 1 < ¢, 5 < 3. This is the most
challenging case, since each receiver may suffer interference
from the other two senders. This case also models most
practical communication scenarios, in which it is common
that all the senders are connected to all the receivers. The
other setting, where some sender s; is disconnected from some
receiver d; (i # j), i.e., m;;(x) is a zero polynomial, is easier
to deal with, since there is less interference at receivers. We
defer the later case to Section VI, where we show that this
case can be handled similarly as the first case.

A. Precoding-Based Network Alignment Scheme

In this section, we present how to apply interference align-
ment to networks to construct a precoding-based linear scheme
for (G, (). The basic idea is that under linear network coding,
the network behaves like a wireless interference channel®,
which is shown below:

Ui == Hh-Wl + HQiWQ + HgiW3 + Nz

where W;, H;;, U;, and N; (j = 1,2,3) are all complex
numbers, representing the transmitted signal at sender j, the
channel gain from sender j to receiver ¢, the received signal at
receiver j, and the noise term respectively. As we can see from

i=1,2,3 (8)

3t can be seen that each row of M, is of the form
(mli(x)91 in(X)GQ M3Z’(X)93). Since mu(x)91, mgi(x)az and
mg; (x)03 are linearly independent, according to Lemma IV.2 (see Subsection
IV-B), det(M;) is a non-zero polynomial.

4The wireless interference channel that we consider here has only one sub-
channel.



TABLE I
SUMMARY OF NOTATIONS

Notations Meanings

w; = (si,d;) The ith unicast session, where s; and d; are the sender and receiver of w; respectively.

(G,Q) A SISO scenario, where G represents the network, and €2 the set of unicast sessions.

Oi, Ti The sender edge and the receiver edge for w;.

X, A vector that holds all the source symbols transmitted from s; to d;.

Fom The finite field which forms the support for all the symbols transmitted in the network.

Teole The coding coefficient used to combine the incoming symbol along €’ to the symbol along e.

X The vector consisting of all the coding coefficients in the network.

Pere The set of directed paths from ¢ to e.

Piji The set of directed paths from o; to 7.

tp(x) The product of coding coefficients along path P. It represents a monomial in a transfer function.

mj;(x) The transfer function from o; to 7;.

x( The vector consisting of all the coding coefficients in the network for time slot ¢.

I3 A vector that holds all the coding coefficients in the network for the whole transmission process, and
the variables used in the encoding process at all the senders.

Vi The precoding matrix used to encode the symbols sent by s;.

M;; A diagonal matrix, in which the element at coordinate (I, 1) is the transfer function m;(x(®).

Psuce The probability that the denominators of the elements in the precoding matrices are evaluated to non-zero

values, and all receivers can decode their required source symbols.

A=(6Vi:1<i<3)

A precoding-based linear scheme for (G, Q).

i, B

The alignment condition and the rank condition for w;.

2

Vi The precoding matrix proposed in [11] (see Eq. (12)-(14)).

P;, T The diagonal matrices used in the reformulated alignment conditions Eq. (10) and the reformulated rank
conditions %] ~ .

I, The n X n identity matrix.

pi(x), n(x) The rational functions that form the elements along the diagonals of P; and T respectively

Qijk The last edge that forms a cut-set between o; and {7, 7} in a topological ordering of the edges in the
network.

Bijk The first edge that forms a cut-set between {oj, a5} and 73, in a topological ordering of the edges in
the network.

Cere The set of edges that forms a cut-set between €’ and e.

Cij The set of edges that forms a cut-set between o; and 7;.

ged(f(2), 9(x))

The greatest common divisor of two polynomials f(x) and g(x).

Eq. (2), in a network equipped with linear network coding,
X ;’s (j # 1) play the roles of interfering signals, and transfer
functions the roles of channel gains. This analogy enables us to
borrow some techniques, such as precoding-based interference
alignment [11], which is originally developed for the wireless
interference channel, to the network setting.

A precoding-based network alignment scheme is defined as
follows:

Definition IV.1. Given a SISO scenario (G,Q2), n € Z~¢, and
s € {0,1}, a precoding-based network alignment scheme with
2n+s symbol extensions, or a PBNA for short, is a precoding-
based linear scheme A\ = (£, V; : 1 <i < 3), which satisfies
the following conditions:

1) Viisa (2n+ s) x (n+ s) matrix with rank n + s on
Fam (), and Vg, V3 are both (2n+s) X n matrices with
rank n on Fam ().

2) The following equations are satisfied [11]:

o : span(Mag; V) = span(M3; V3)
oy : span(M32V3) C span(M2Vy)
ot : span(Ma3Va) C span(M;3Vy)

where for a matrix E, span(E) denotes the linear space
spanned by the column vectors contained in E.

3) The variables in £ all take values independently and
uniformly at random from Fgm.

Definition IV.2. Given a SISO scenario (G,{2), and a rate

tuple (Ri,R2,R3) € Q2,, we say that (Ry,R2, R3) is
asymptotically achievable through PBNA, if there exists a
sequence (\,)32,, where each A, is a PBNA for (G,),
such that each )\, achieves a rate tuple r,, € Qio, and
lim, oo Ty = (R17 R27 RS)

In the above definition, 7 (1 < ¢ < 3) is called the
alignment condition for w;. It guarantees that the undesired
symbols or interferences at each receiver are mapped into
a single linear space, such that the dimension of received
symbols or the number of unknowns is decreased.

B. Achievability Conditions of PBNA

The following lemma provides sufficient conditions for

PBNA schemes to achieve the rate tuple (27;12, Ts TS )

Lemma IV.1. Assume that all the senders and all the re-
ceivers are connected via directed paths. Consider a PBNA

A= (§V; 1 < ¢ < 3). It achieves the rate tuple
"jfs, 53 ans ) if the following conditions are satisfied

(27
[11

1
Py : rank(M11 V] Mg Vo) =2n+s
@2 : rank(M12V1 MQQVQ) =2n+s
%3 : rank(M13V1 M33V3) =2n+s
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Fig. 3. Applying precoding-based interference alignment to a network which
satisfies the rank conditions of PBNA as per Lemma IV.1. At each sender edge
o; (¢ = 1,2,3), the input vector X; is first encoded into 2n 4 s symbols
through the precoding matrix V;; then the encoded symbols are transmitted
through the network in 2n + s time slots via random linear network coding
in the middle of the network; at each receiver edge 7;, the undesired symbols
are aligned into a single linear space, which is linearly indepdent from the
linear space spanned by the desired signals, such that the receiver can decode
all the desired symbols.

Proof. Suppose %, ~ PB5 are satisfied. Define the following
matrices:

D, =MnuV, 1\/121\’2)71
Dy = (M;pVy MyVy) ™t
D3 = (M13V; Ma3 Vi)™t

Let f;(§) denote the product of the denominators of all the
elements in V, and g;(&) the product of the denominators of
all the elements in D;. Thus, fl gi f) are both non-zero
polynomials in Fam [¢]. Define (& fi(€)gi(€). Let d
denote the total degree of ¢(§). Suppose 50 is an assignment
of values to £ such that ¢(&) # 0. Hence, the denominators
of the elements in V;’s and D;’s are evaluated to non-zeros.
Moreover, X; is a sub-vector of D;|¢,Y,, where D;|¢, is a
matrix acquired through evaluating each element of D; under
the assignment & = &y. Thus, all the receivers can decode their
required source symbols. Hence, the probability Ps,.. that
all the receivers can decoded their required source symbols
satisfies the following inequalities:

Pyyee > PT(q(f) 3& O) =1- PT(q(é_) O) >1-— i

2m
where the last inequality follows from Theorem IIL.1. Since
lim,, 00 (1 — 2%) =1, we have lim,,, 00 Psuce = 1. Hence,
A achieves (et 21—, 1), [ |

In Lemma IV.1, 4; (1 < i < 3) is called the rank condition
for w;. #; guarantees that d; can decode its required source
symbols with high probability when the the size of Fom is
sufficiently large. In Fig. 3, we use a figure to illustrate how to
apply PBNA to a network which satisfies the rank conditions.

We can further simplify the alignment conditions as follows.
First, we reformulate <7, ~ 275 as follows:

,5271/ : M21V2 = M31V3A
5272/ : M3,V =M VB
4273’ : Ma3Vy = M3V,C

where A is an n x n invertible matrix, and B, C are both
(n+ s) x n matrices with rank n. A direct consequence of <7
and 274 is that the precoding matrices are not independent from
each other: Both V3 and V3 are determined by V; through
the following equations:

Vo =M;3M,; ViC V3 =M;;M;,; VB (9

Substituting the above equations into <7/, the three alignment
conditions can be further consolidated into a single equation:

TV,C = V,BA (10)

where T = M;3My; M3, M, M5 M ' Eq. (10) suggests
that alignment conditions introduce constraint on V. Thus,
in general, we cannot choose V; freely.

Finally, using Eq. (9) and Eq. (10), the rank conditions are
transformed into the following equivalent equations:

Py rank(V; P1ViC)=2n+s

Py rank(V; PyViC)=2n+s

B, . rank(V,; P33V CA™') =2n+s
where P = M13Mo; M7 'My,!, Py = M3Mao M, My,
and Py = My M33M,; M;/'. Recalling each My, (1 <
k,l < 3) is a diagonal matrix (see Eq. (6)) with the elements

along the diagonal being of the form my;(x), P; and T are
both diagonal matrices. Define the following functions:

) = RS ) = T
() = M21(X)mss(x) _ mas(X)mar (x)miss (x)
Ps(x) ma3(x)ma1 (x) il miz(x)maz(x)m 31("()11)

It can been seen that p;(x) and n(x) form the elements along
the diagonals of P; and T respectively.

Next, we reformulate the rank conditions in terms of p;(x)
and 7(x). To this end, we need to know the internal structure
of V. We distinguish the following two cases:

Case I: n(x) is non-constant, and thus T is not an identity
matrix. For this case, Eq. (10) becomes non-trivial, and we
cannot choose V; freely. We use the following precoding
matrices proposed by Cadambe and Jafar [11]:

Vi=(w Tw T"w) (12)
Vi = MMy (w Tw T lw) (13)
Vi = MM, (Tw  T?w T'w)  (14)

where w is a column vector of 2n + 1 ones. The above
precoding matrices correspond to the configuration where
s =1, A =1,, C consists of the left n columns of I, 1,
and B the right n columns of I,;;. It is straightforward to
verify that the above precoding matrices satisfy the alignment
conditions.

We consider the following matrix,

fily1)  fa(yr) fr(y1)
H- fi(y2)  fa(ye) fr(y2)
fl(YT) fQ(YT) fr(Yr)



where f;(y) (¢ = 1,2,---,r) is a rational function in
terms of a vector of variables y = (y1, - ,yx) in Fam(y),
and the jth row of H is simply a repetition of the vec-
tor (f1(y), -+, fr-(y)), with y being replaced by a vector
of variables y; = (yj1,---,¥;x). Due to the particular
structure of H, the problem of checking whether H is full
rank can be simplified to checking whether fi(y), -, fr(y)
are linearly independent, as stated in the following lemma.
Here, f1(y), -, fr(y) are said to be linearly independent,
if for any scalars a1,---,a, € Fy, which are not all zeros,

alfl(y) +"'+arfr(y) 7é 0.

Lemma IV.2. det(H) # 0 if and only if fi(y), -, fr(¥)
are linearly independent.
Proof. See Theorem 1 of [35]. |

An important observation is that using the precoding ma-
trices defined in Eq. (12)-(14), all of the matrices involved in

1, Bh, B have the same form as H. Specifically, each row
of the matrix in %, is of the form:

(1 nx) " (x)
pi(x) pi(x)n" ! (%))
where for 1 < j < n + 1, the jth element is nj__l(x), and
for n +2 < j < 2n + 1, the jth element is p;(x)n’ "~ 2(x).
Hence, using Lemma IV.2, we can quickly derive:

5)

Lemma IV.3. Assume that all the senders are connected to
all the receivers via directed paths, and 7(x) is non-constant.
Consider a PBNA )\, = (£,V; 1 < i < 3), where
V,; is defined in Eq. (12)-(14). A, achieves the rate tuple

(gth, 525, ), if for each 1 < i < 3, the following

condition is satisfied:’

pi(x) ¢ S = {f ) 12), 0(2) € Byl F(2)alz) £0,
9(n(x))

ged(f(2),9(2)) = 1,dy <n,dy <n—1
(16)

Proof. If Eq. (16) is satisfied, the rational functions in Eq.
(15) are linearly independent. Therefore, due to Lemma
IV.2, condition 93; is satisfied. Hence, due to Lemma IV.1,

n+1 n n : -
(2557 31 3n57) 1s achieved by A,,. [ ]

g 8;833 € S, represents

a constraint on p;(x), i.e., p;(x) # ﬁzg)?’ the violation
of which invalidates the use of the PBNA t)0r achieving the
rate tuple (2’;;;11, 37+ 2nq) through the precoding matri-
ces defined in Eq. (12)-(14). Also note that Eq. (16) only
guarantees that PBNA achieves a symmetrical rate close to
one half. In order for each unicast session to asymptotically
achieve a transmission rate of one half, we simply combine
the conditions of Lemma IV.3 for all possible values of n, and

get the following result:

Note that each rational function

Theorem IV.1. Assume that all the senders are connected to
all the receivers via directed paths, and 7(x) is non-constant.

SNotation: For two polynomials f(x) and g(x), let ged(f(x), g(z)) denote
their greatest common divisor, and d the degree of f(x).

The symmetrical rate % is asymptotically achievable through

PBNA, if for each 1 <3 < 3,

e (L)
pilx) ¢ 5 {gm(x))

ged(f(2), 9(z)) = 1}

F[(2),9(2) € Folz], f(2)9(2) # 0,

a7

Proof. Consider the PBNA scheme ), defined in Lemma
IV.3. If Eq. (17) is satisfied, Eq. (16) is satisfied, and

: n+1 n n :
thus A, aclilleves the rate tuple (5057, 5% 5,,57)- Since
n n n

limy oo (95057 30570 2ng1) = (3,3.%). This implies that
the symmetrical rate % is asymptotically achievable through
PBNA. u

Case II: n(x) is constant, and thus T is an identity matrix.
For this case, Eq. (10) becomes trivial. In fact, we set n = 1,
s =0, and BA = C, and hence Eq. (10) can be satisfied by
any arbitrary V. Specifically, we use the following precoding
matrices:

Vv, = (6, 92)T (18)
Vo = M3My3' (61 62)7 (19)
Vi =MpMg, (6 602)7 (20)

where 6;,0y are variables. The above precoding matrices
correspond to the configuration where A = B = C = Is.
Using the above precoding matrices, @/ ~ 73 all become
equalities, i.e., the interfering signals are perfectly aligned
into a single linear space. Meanwhile, using these precoding
matrices, each row of the matrix in %] is of the following
form:

(0 pi(x)0)

Hence, using Lemma IV.2, we can quickly derive:

2n

Theorem IV.2. Assume that all the senders are connected
to all the receivers via directed paths, and n(x) is constant.
Consider the PBNA scheme A = (£, V; : 1 <4 < 3), where
the precoding matrices are defined in Eq. (18)-(20). Then A
achieves the symmetrical rate %, if for each 1 < < 3, p;(x)
is non-constant.

Proof. If p;(x) is not constant, the functions in Eq. (21)
are linearly independent, and therefore %, is satisfied due to
Lemma IV.2. Thus, (1,1, 1) is achieved by A according to
Lemma IV.1. ]

As shown in the above theorem, if 7(x) is constant, each
unicast session can achieve one half rate in exactly two time
slots by using PBNA.

C. Coupling Relations and Achievability of PBNA

In the previous section, we reformulated the achievability
conditions of PBNA in terms of the functions p;(x) and 7(x).
One critical question is: What is the connection between the
reformulated conditions and network topology? We start by
illustrating that through examples of networks whose structure
violates these conditions. Let’s first consider the network
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Fig. 4. Examples of realizable coupling relations: The left network realizes the
coupling relations p;(x) = n(x) = 1 such that the conditions of Theorem
IV.2 are violated; in the right network, n(x) # 1, but p1(x) = 11;’2‘),
which violates the conditions of Theorem IV.1.

shown in Fig. 4a. Due to the bottleneck e, it can be easily
verified that p;(x) = p2(x) = p3(x) = n(x) = 1, and
thus the conditions of Theorem IV.2 are violated. Moreover,
consider the network shown in Fig. 4b. It can be easily verified
that for this network, n(x) # 1, and p;(x) = 1+§7(3<) Thus
the conditions of Theorem IV.1 are violated. Moreover, by
exchanging o1 <> 09 and 71 < 79, we obtain another example,
where p2(x) = 14 7(x), and thus the conditions of Theorem
IV.1 are again violated. While the key feature of the first
example can be easily identified, it is not obvious what are
the defining features of the second example. Nevertheless,
both examples demonstrate an important difference between
networks and wireless interference channel: In networks, due
to the internal structure of transfer functions, network topology
might introduce dependence between different transfer func-
tions, e.g., p1(x) = 1 or pi(x) = 11(7]’2(); in contrast, in
wireless channel, channel gains are algebraically independent
almost surely.

The above dependence relations can be seen as special cases
of coupling relations, as defined below.

Definition IV.3. A coupling relation is an equation in the
following form:

f(mi1j1 (X)v My gy (X)a T My g (X)) =0 (22)

where f(z1,22, - ,2k) is a polynomial in Fom[zq,- -, 2k,
1 <i,75 <3 for 1 <[ <E. If there exists a network G such
that the transfer functions m;, j, (x), M4, j, (X), -+, My j, (X)
satisfy the above equation, we say that the coupling relation
Eq. (22) is realizable, or G realizes the coupling relation Eq.
(22).

As shown in Theorem IV.1, each rational function

S’ represents a coupling relation p;(x) = %.

The existence of coupling relations greatly complicates the
achievability problem of PBNA. As shown previously, most of
the coupling relations, such as p;(x) = 1 and p;(x) = li(n’&),
are harmful to PBNA, because their presence violates the
conditions of Theorems IV.1 and IV.2. The only exception
is n(x) = 1, which does help simplify the construction of
precoding matrices, and thus is beneficial to PBNA. Indeed,
as shown in Theorem IV.2, this coupling relation allows
interferences to be perfectly aligned at each receiver, and
each unicast session can achieve one half rate in exactly two
time slots. Unfortunately, as we will see in Section VII, this
coupling relation requires that the network possesses particular

F(n(x)
nx) €

structures, which are absent in most networks. For this reason,
we will mainly focus on the case 7(x) # 1, which is applicable
for most networks.

One interesting observation is that not all coupling relations
are realizable. For example, consider the coupling relation
p1(x) = n3(x), where both p;(x) and 7(x) are non-constants.
Let p1(x) = 239, 5(x) = 55 © of
p1(x) and n(x) respectively. Consider a coding variable .
that appears in both g ; and féxg Because the maximum
degree of each coding variable in a transfer function is at most
one, according to Eq. (11), the maximum of the degrees of x¢.
in u(x) and v(x) is at most two. However, it can be easily seen
that the maximum of the degrees of Z.. in s3(x) and 3(x) is
at least three. Therefore, it is impossible that p;(x) = n®(x).
This example suggests that there exists significant redundancy
in the conditions of Theorem IV.1. More formally, it raises the
following important question:

Q1: Which coupling relations p;(x) =
realizable?

The answer to this question allows us to reduce the set S’
defined in Theorem IV.1 to its minimal size. For ¢ = 1,2, 3,
we define the following set, which represents the minimal set
of coupling relations we need to consider:

{:{f(n(X)) €8 pi(x) = fin(x))
" Lg(n(x) 9(n(x))
Then the next important question is:

Q2: Given p;(x) = :)) € 8/, what are the defining
features of the networks for W 1ch this coupling relation holds?

As we will see in the rest of this paper, the answers to Q1
and Q2 both lie in a deeper understanding of the properties of
transfer functions. Intuitively, because each transfer function
is defined on a graph, it usually possesses special properties.
The graph-related properties not only allow us to reduce S’ to
the minimal set S, but also enable us to identify the defining
features of the networks which realize the coupling relations
represented by S..

In the derivation of Theorem IV.1, we only consider the
precoding matrices defined in Eq. (12)-(14). However, the
choices of precoding matrices are not limited to these matrices.
In fact, as we will see in Section VI, given different A, B, and
C, we can derive different precoding matrix V; such that Eq.
(10) is satisfied. This raises the following interesting question:

Q3: Assume some coupling relation p;(x) = < EZE:)S S
is present in the network. Is it still possible to ut1l1ze PBNA
via other precoding matrices instead of those defined in Eq.
(12)-(14)?

As we will see in Section VI, the answer to this question is
negative. The basic idea is that each precoding matrix V7 that
satisfies Eq. (10) can be transformed into the precoding matrix
in Eq. (12) through a transform equation Vi = G™1V F~1,
where G is a diagonal matrix and F a full-rank matrix (See
Lemma VI.3). Using this transform equation, we can prove
that if the precoding matrices cannot be used due to the

S(n(x))

!
) € S’ are

is realizable} (23)

For a non-zero rational function h(y) € Fy(y), its unique form is defined

as h(y) = £, where f(y), g(y) € Fyly] and ged(f(v), 9(y)) = 1.



presence of a coupling relation, then any precoding matrices
cannot be used.

V. OVERVIEW OF MAIN RESULTS

In this section, we state our main results. Proofs are deferred
to Sections VI and VIII, and Appendices.

A. Sufficient and Necessary Conditions for PBNA to Achieve

Symmetrical Rate %

Since the construction of V; depends on whether n(x) is
constant, we distinguish two cases.
1) n(x) Is Not Constant :

Theorem V.1 (The Main Theorem). Assume that all the
senders are connected to all the receivers via directed paths,
and 7(x) is not constant. The three unicast sessions can
asymptotically achieve the rate tuple (3, 3, 2) through PBNA
if and only if the following conditions are satisfied:

mis (X)mgl (X) mio (X)m31 (X)

m11(X) #

mos (X) ms2 (X) ’
mlg(X)mgl(X) mlg(X)mgl(X) (24)
maz(x) ms3a(x)
mlg(X)m23 (X) mso (X)mgl(x)
maoo (X) 7é mis (X) may (X) ) (25)
mia(X)masz(x)  maa(X)ma1(x)
mis (X) ms1 (X)
m x mas (x)mgl(x) mlg(X)mgz (X)
33( ) # m21(X) m12(x) (26)
ma3(X)ma1(x) | miz(x)msa(x)
ma1(x) mi2(x)
Proof. See Appendix B. |

Eq. (24)-(26) can be reformulated into the following equiv-
alent conditions:

ni ¢ 5= {Lapo. 2@
p2(x) ¢ Sy = {1,n(x),1 4+ n(x)} (28)
ps(x) ¢ S5 = {1,n(x),1+ n(x)} (29)

Note that in Theorem V.1, we reduce the conditions of
Theorem IV.l to its minimal size, such that each S! as
defined in Eq. (27)-(29) represents the minimal set of coupling
relations that are realizable. Moreover, as we will see later,
each of these coupling relations has a unique interpretation
in terms of the network topology. The interpretations further
provide polynomial-time algorithms to check the existence of
these coupling relations.

The conditions of the Theorem V.1 can be understood
from the perspective of the interference channel. As shown
in Section IV-A, under linear network coding, the network
behaves as a 3-user wireless interference channel, where
the channel coefficients m;;(x) are all non-zeros. Let H
denote the matrix with the (i, j)-element being m;;(x). It

is easy to see that the first two inequalities in Eq. (24)-
(26) can be rewritten as My (H) # 0 for some k # I,
where My;(H) denotes the (k,!)-Minor of H. For example,

map(x) # %TSM is equivalent to M33(H) # 0, and
mi1(x) # %’&?(x) is equivalent to Mos(H) # O.

Suppose that there exists My (H) = 0 for some k& # I.
For such a channel, it is known that the sum-rate achieved
by the three unicast sessions cannot be more than 1 in the
information theoretical sense (see Lemma 1 of [40]), ie.,
no precoding-based linear scheme can achieve a rate beyond
1/3 per user. Therefore, given that all senders are connected
to all receivers, the condition My;(H) # 0 is information
theoretically necessary for achievable rate 1/2 per session.
Hence, the first two inequalities of Eq. (24)-(26) are simply
the information theoretic necessary conditions, so they must
hold for any precoding-based linear schemes.

2) n(x) Is Constant : In this case, we can choose V7 freely
by setting BA = C. As stated in the following theorem, each
unicast session can achieve one half rate in exactly two time
slots.

Theorem V.2. Assume that all the senders are connected to all
the receivers via directed paths, and 7(x) is constant. The three
unicast sessions can achieve the rate tuple (4, 1, 3) in exactly
two time slots through PBNA if and only if the following
conditions are satisfied:

mlg(X)mzl(X)
mll(x) 7£ —m23(x) (30)
m12(x)m23(x)
TTLQQ(X) 7é —mlg(X) (31)
mas (x)m31 (X)
m33(x) # a1 (X) (32)
Proof. See Section VI-B. |

Eq. (30)-(32) can be reformulated into the following equiv-
alent conditions:

pi(x) #1 V1<i<3

B. Topological Interpretations of the Feasibility Conditions

As we have seen, the following coupling relations are impor-
tant for the achievability of PBNA: 1) n(x) = 1; 2) p;(x) = 1
and p;(x) = n(x) where i = 1,2,3; 3) p1(x) = 1157’2(),
pi(x) = 14+n(x), where i = 2, 3. As we will see, the networks
that realize these coupling relations have special topological
properties. We defer all the proofs to Appendix C.

We assume that all the edges in E are arranged in a
topological ordering such that if head(e) = tail(e’), e must
precede ¢’ in this ordering.

Definition V.1. Given two subsets of edges S and D, we
define an edge e as a bottleneck between S and D if the
removal of e will disconnect every directed path from S to D.

Given 1 < 4,5,k < 3, let ay;;, denote the last bottleneck
between o; and {7;, 7 } in this topological ordering, and f;
the first bottleneck between {o;, a1} and 7.
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Fig. 5. A graphical illustration of the four edges, a213, B213, 312, and
B312, which are important in defining the networks that realize n(x) = 1.

0: T 0: T
o 1 1 o o 1 1
gy € T2 o o >0
: I3 5 €1 T3 é T3 -

@ n(x) =1 (b) p2(x) = n(x)

Fig. 6. Additional examples of coupling relations

As shown below, the four edges, ao13, £213, a312, and SB312,
are important in defining the networks that realize n(x) = 1.
A graphical illustration of the four edges is shown in Fig. 5.

Theorem V.3. n(x) =
B213 = Bs12.

In [35], the authors independently discovered a similar
result. Consider the example shown in Fig. 4a. It is easy to
see that in this example, ao13 = ag12 = [213 = [312 = €, and
thus 7(x) = 1. In Fig. 6a, we show another example, where
Q213 = (312 = €1, f213 = P312 = €2, and thus 7(x) = 1.

Given two subsets of edges, S and D, a cut-set C' between
S and D is a subset of edges, the removal of which will
disconnect every directed path from S to D. The capacity of
cut-set C' is defined as the summation of the capacities of the
edges contained in C. The minimum cut between S and D is
the minimum capacity of all cut-sets between S and D.

1 if and Ol‘lly if 213 = (312 and

Theorem V.4. The following statements hold:

1) pi(x) = 1 if and only if the minimum cut between
{01,029} and {71, 73} equals one; p;(x) = n(x) if and
only if the minimum cut between {o1,03} and {71, 72}
equals one.

2) pao(x) = 1 if and only if the minimum cut between
{o1,02} and {7, 73} equals one; pa(x) = n(x) if and
only if the minimum cut between {02, 03} and {7, 72}
equals one.

3) ps(x) = 1 if and only if the minimum cut between
{02,03} and {r1, 73} equals one; p3(x) = n(x) if and
only if the minimum cut between {01,053} and {72, 73}
equals one.

For instance, in Fig. 4a, the cut-set with minimum capacity
between {02,053} and {71, 72} contains only one edge e, and

thus ps (x) = (x).

Given two edges e; and ey, we say that they are parallel
with each other if there is no directed paths from e; to es, or
from e to e;. As shown below, two edges are important in
defining the networks that realizes the third coupling relation
in Eq. (27)-(29), e.g., 913 and aspo are used to define the

networks that realize p;(x) = 1157’2(), and so on.

Theorem V.5. The following statements hold:

1) pi(x) = 1157’2() if and only if the following conditions
are satisfied: a) agpo is a bottleneck between o; and
To; b) ap13 is a bottleneck between o1 and 73; ¢) 319
is parallel with asg13; d) {as12, @013} forms a cut-set
between oy from 7.

2) po(x) = 1+n(x) if and only if the following conditions
are satisfied: a) «aqo3 is a bottleneck between o, and
73; b) (321 1s a bottleneck between o5 and 71; ¢) 93
is parallel with aga1; d) {a123, 301} forms a cut-set
between o5 from 5.

3) ps(x) = 1+n(x) if and only if the following conditions
are satisfied: a) asp3; is a bottleneck between o3 and
71; b) 139 is a bottleneck between o3 and 7y; ) 31
is parallel with aq32; d) {aas1, 132} forms a cut-set
between o3 from 73.

Consider the network as shown in Fig. 4b. It is easy to see
that e = a312 and e; = «913, and all the conditions in 1)
of Theorem V.5 are satisfied. Therefore, this network realizes
the coupling relation p;(x) = 11(77’2() Note that these three
coupling relations are mutually exclusive when 7(x) is not
constant. If any two of these coupling relation were to occur
in the same network, then it would induce a graph structure

that forces 7(x) to be a constant [35].

C. Optimal Symmetric Rates Achieved by Precoding-Based
Linear Schemes

For SISO scenarios where all senders are connected to all
receivers, there are only three possible rates achievable through
any precoding-based network coding schemes.

Definition V.2. We classify the networks based on the cou-
pling relations present in the network as follows:

o Type I : Networks in which at least one of the coupling
relations, p;(x) = 1 and p;(x) = n(x) (1 < i < 3), is
present.

o Type II : Networks in which p;(x) ¢ {1,n(x)} for
1 < ¢ < 3, but one of the three mutually exclusive
coupling conditions, p1(x) = %, p2(x) = 14 n(x),
and p3(x) = 1 + n(x), is present.

e Type III : Networks in which none of the above
coupling relations is present.

Theorem V.6. Assume that all the senders are connected to
all the receivers via directed paths. The following statements
hold:

1) The optimal symmetric rate achieved by precoding-
based linear schemes for T'ype I networks is 1/3 per
unicast session.



2) The optimal symmetric rate achieved by precoding-
based linear schemes for T'ype II networks is 2/5 per
unicast session.

3) The optimal symmetric rate achieved by precoding-
based linear schemes for T'ype [I1 networks is 1/2 per
unicast session.

Moreover, all of the above optimal symmetric rate is achiev-
able through PBNA schemes.

Proof. See Section VIII. |

VI. SUFFICIENT AND NECESSARY CONDITIONS FOR
PBNA TO ACHIEVE SYMMETRIC RATE %

In this section, we explain the main ideas behind the proofs
of Theorem V.1 and V.2. Consistent with Section V, we
distinguish two cases based on whether 7(x) is constant.

A. n(x) Is Not Constant

In this subsection, we first present a simple method to
quickly identify a class of networks, for which PBNA can
asymptotically achieve symmetric rate % Then, we sketch the
outline of the proof for the sufficiency of Theorem V.1. Next,
we explain the main idea behind the proof for the necessity
of Theorem V.1.

1) A Simple Method Based on Theorem IV.I1: As shown
in Theorem IV.1, the set S’ contains an exponential number
of rational functions, and thus it is very difficult to check
the conditions of Theorem IV.1 in practice. Interestingly, the
theorem directly yields a simple method to quickly identify
a class of networks for which PBNA is feasible. The major
idea of the method is to exploit the asymmetry between p;(x)
and 7)(x) in terms of effective variables. Here, given a rational
function f(y), we define a variable as an effective variable of
f(y) if it appears in the unique form of f(y). Let V(f(y))
denote the set of effective variables of f(y). Intuitively, this
asymmetry allows us more freedom to control the values of
pi(x) and 7(x) such that they can change independently,
which makes the network behave more like a wireless channel.
The formal description of the method is presented below:

Corollary VIL.1. Assume all m;;(x)’s (¢,j = 1,2, 3) are non-
zeros, and 7)(x) is not constant. Each unicast session can
asymptotically achieve one half rate through PBNA if for

i = 17273’ pz(x) 7& 1 and V(T](X)) 7& V(pl(x))

Proof. 1f the above conditions are satisfied, we must have

pi(x) géf]g”gg € &’. Thus, the theorem holds. [ ]

Consider the networks shown in Fig. 7a and Fig. 2, which
we replicate in Fig. 7b for easy review. As shown in these
examples, due to edge e, n(x) contains effective variables
Zgge; Terys Which are absent in the unique form of p;(x)
(2 = 1,2, 3). Thus, by Corollary VI.1, each unicast session can
asymptotically achieve one half rate through PBNA. However,
Corollary VI.1 doesn’t subsume all possible networks for
which PBNA can achieve one half rate. For instance, in Fig.
7c, we show a counter example, where V(n(x)) = V(p1(x)),
and thus Corollary VI.1 is not applicable. Nevertheless, it is
easy to verify the network satisfies the conditions of Theorem
V.1, and thus PBNA can still achieve one half rate.

71 1
o; T,
O 2 2 O
o3 € T3
(@ (b)

Fig. 7. Tlustration of type III networks. (i) It can be seen that for all the
three examples, PBNA can achieve one half rate. (ii) The three examples can
be verified by using different methods: for (a) and (b), due to edge e, 7(x)
contains coding variables Ts5e, Ter,, Which are absent in the unique forms
of p1(x), p2(x) and p3(x), and thus Corollary VL1 applies to both cases;
Corollary VI.1 doesn’t apply to (c), but PBNA can still achieve a symmetric
rate % for this network according to Theorem V.1. (iii) For both (a) and (b),

routing can only achieve a symmetrical rate %; for (c), PBNA and routing
can both achieve a symmetrical rate %

2) Sufficiency of Theorem V.1: As shown in Section IV, not
all coupling relations p;(x) = ch 87]833 € &’ are realizable due
to the special properties of transfer functions. Indeed, since the
transfer functions are defined on graphs, they exhibit special
properties due to the graph structure. As we will see, these
properties are essential in identifying the minimal sub-set of
realizable coupling relations. In fact, we only need two such
properties, namely Linearization Property and Square-Term

Property.

The proof consists of three steps. First, we use Linearization
Property and a simple degree-counting technique to reduce S’
to the following set S;’: We consider the general form of p; (x)
as below

h(X) _ mﬂb(x)mPfI(x)
Mg (X)pp (X)
Note that S only includes a finite number of rational func-
tions. where a,b,p,q = 1,2,3 and a # p,b # q. Moreover,
by the definition of transfer function, the numerator and
denominator of h(x) can be expanded respectively as follows:

(33)

mab(x)mm (X) = tp, (X)tpz (X)

Z(Pl,Pz)GPa,b prq
Mo (X mpn(x) = 3

Hence, each path pair in Py, X Pp, contributes a term in
Mab(X)Mpq(x), and each path pair in Py X Ppp contributes
a term in mgq(X)mpp(x).

(P3,P1)EPagXPpb tp, (X)tP4 (X)

The first property, the Linearization Property, is stated in the
following lemma. According to this property, if p;(x) # 1, it
can be transformed into its simplest non-trivial form, i.e., a
linear function or the inverse of a linear function, through a
partial assignment of values to x.



Lemma VL1 (The Linearization Property). Assume h(x) is
not constant. Let h(x) = 583 such that ged(u(x), v(x)) =1
Then, we can assign values to x other than a variable x..s
such that u(x) and v(x) are transformed into either u(xce ) =
C1Zeer + Co, V(Teer) = €2 OF U(Teer) = €2, 0(Teer) = C1Teer +
co, Where cq, ¢, co are constants in Fom, and cyco # 0.

Proof. See Appendix A. ]

The second property, namely the Square-Term Property, is
presented in the following lemma. According to this property,
the coefficient of x2,, in the numerator of h(x) equals its
counter-part in the denominator of h(x). Thus, if 22, appears
in the numerator of h(x) under some assignment to x, it must
also appear in the denominator of h(x), and vice versa.

Lemma VL2 (The Square-Term Property). Given a coding
variable x.., let fi(x) and f2(x) be the coefficients of
22, in mgp(x)mype(x) and Mg, (x)myp,(x) respectively. Then
[i(x) = fa(x).

Proof. See Appendix A ]

Now, we sketch the outline for the proof of the sufficiency
of Theorem V.1. The proof consists of three steps:

First, we use the Linearization Property and a simple degree-
counting technique to reduce S’ to the following set Sy

S// _ {aO + aln(x)
! bo + b17m(x)

Next, we iterate through all possible configurations of
ag, a1, bg, b1, and utilize the Linearization Property and the
Square-Term Property to further reduce Sy’ to just four rational
functions:

eSS ao,al,bo,bl € Fq} 34

Sy = {Ln(xm +n(x), ”(X)} 35)

1+ n(x)

Finally, we use a recent result from [35] to rule out the
fourth redundant rational function in &Y, resulting in the
minimal set S; defined in Theorem V.1. The detailed proof
is deferred to Appendix B.

3) Necessity of the Conditions of Theorem V.1: We first
show how to get a precoding matrix V that satisfies Eq. (12).
The construction of V; involves solving a system of linear
equations defined on Fom (£)(2):

r(z)(#C —BA) =0 (36)

In the above equation, r(z) = (r1(2), - ,Tnts(z)), where
ri(z) € Fam(§)(2) for 1 < i < n 4 s. Assume ro(z) is a
non-zero solution to Eq. (36). Substitute z with 7(x), and we
have n(x)ro(n(x))C = ro(n(x))BA. Finally, construct the
following precoding matrix

Vi = (g (=) rf (n(x?)) rg (n(x*"+)))

(37

Apparently, V; satisfies Eq. (10). Hence, each non-zero so-
lution to Eq. (36) corresponds to a row of V; satisfying Eq.
(10). Conversely, it is straightforward to see that each row of
V; satisfying Eq. (10) corresponds to a solution to Eq. (36).

As we will prove in Appendix B, rank(zC — BA) = n. If
s = 0, zC — BA becomes an invertible square matrix, and

Eq. (36) only has zero solution. Thus, in order for Eq. (12) to
have a non-zero solution, s must equal 1.

As an example, consider the case where s = 1, n = 2,
and 2™ = 4. Let « be the primitive element of F, such that
a® =1 and a® + a + 1 = 0. Moreover, let A = I, and

1 « o a
a? 1 1 «
It’s easy to verify that r(z) = (a?22+ o, 2+, 22 + az +a?)

satisfies Eq. (36). Thus, we substitute z with 7(x’/) and
construct VI = (e(n(x})) v’ (5(x?)) --- 1’ (n(x?))).
Apparently, Eq. (10) is satisfied. From this example, we can
see that given different A, B, C, we can construct different
precoding matrix Vi, and thus the choices of precoding
matrices are not limited to those defined in Eq. (12)-(14). An
interesting observation is that the above precoding matrix V;
is closely related to Eq. (12) through a transform equation:
Vi1 = V7iF, where

a o «
F=]1]0 1 «
a2 0 1

Actually, this observation can be generalized to the following
Lemma.

Lemma VIL.3. Assume s = 1. Any V; satisfying Eq. (10) is
related to V7 through the following transform equation

V; =GViF (38)

where V7 is defined in Eq. (12), Fisan (n+ 1) x (n + 1)
matrix, and G is a (2n+1) X (2n+1) diagonal matrix, with the
(i,7) element being f;(n(x*)), where f;(z) is an arbitrary non-
zero rational function in Fam (£)(2). Moreover, the (n + 1)th
row of FC and the 1st row of FBA are both zero vectors.

Proof. See Appendix B. ]

Using Lemma VI.3, we can prove that if a coupling relation
pi(x) = g EZE;‘;; € &' is present in the network, any PBNA
cannot achieve one half rate per unicast session. This implies
that the conditions of Theorem V.1 are also necessary for
PBNA to achieve one half rate per unicast session. We defer

the detailed proof to Appendix B.

B. n(x) Is Constant

Proof of Theorem V.2. In the proof of Theorem IV.2, we’ve
proved the sufficiency of Theorem V.2. If p;(x) = 1, P;
becomes an identity matrix. We will show that it is impossible
for PBNA to achieve one half rate for each unicast session.
We only prove the case for ¢ = 1. The other cases i = 2,3
can be proved similarly, and are omitted. The matrix in the
reformulated rank condition B} becomes (Vi V;C). Since
rank(V;C) = n, there are n columns in V; that are linearly
dependent of the columns in V;C. Thus, it is impossible for
PBNA to achieve one half rate for wj. |

In Fig. 8, we show an example of this case. Note that
the network in Fig. 8 has rich connectivity such that each
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Fig. 8. An example where 7(x) = 1 and p;(x) # 1 for ¢ € {1,2,3}, and
thus each unicast session can achieve one half rate in exactly two time slots
due to Theorem V.2. For this example, routing achieves symmetric rate of
one

sender is connected to its corresponding receiver via a disjoint
directed path. Thus, there is no coding opportunity that can be
exploited, and routing is sufficient to achieve rate 1 per unicast
session, which is the maximum symmetric rate achieved by
any network coding schemes. Hence, this class of networks is
of less significance than the class of networks considered in
Theorem V.1.

C. Some s; Is Disconnected from Some dj; (i # j)

In this case, since the number of interfering signals is
reduced, at least one alignment condition can be removed,
and thus the restriction on V; imposed by Eq. (10) van-
ishes. Therefore, we can choose V; freely, and the feasibility
conditions of PBNA can be greatly simplified. For exam-
ple, assume moi(x) = 0 and all other transfer functions
are non-zeros. Hence, the alignment condition for the first
unicast session vanishes. Using a scheme similar to above,
we set V1 = (91 92)T, V2 = M13M§31(91 02)T and
V3 = M12M§21(91 62)7, and thus the interferences at 7o
and 73 are all perfectly aligned. It is easy to see that (1,3, 3)
is feasible through PBNA if and only if p;(x) is not constant
for every ¢« = 1, 2, 3. Using similar arguments, we can discuss
other cases.

VII. CHECKING THE FEASIBILITY CONDITIONS OF PBNA

In this section, we propose a polynomial-time algorithm to
check the feasibility conditions of PBNA. We use C¢,¢, to
denote the set of bottlenecks between two edges e; and e,
and use C;; to represent C,,ﬂj. Using this notation, it can be
easily seen that oy, is the last edge of the topological ordering
of the edges in C;; N Ci, and B;jk is the first edge of the
topological ordering of the edges in Cjr. N Ca, ;. r.-

We assume G is stored as an adjacency list, i.e., for each
node v € V', we associate it with the set of its incoming edges
and the set of its outgoing edges. Moreover, we assume all the
edges in G have been arranged in topological order.

The checking process consists of the following steps: 1)
Check if n(x) = 1; 2) if n(x) = 1, check the conditions of
Theorem V.2; 3) otherwise, check the conditions of Theorem
V.1. In the following discussion, we present the building blocks
involved in these steps.

1) Calculating C..r: We use Algorithm 1 to calculate the
set of bottlenecks C..r which separates e from ¢’. The algo-
rithm consists of two steps: 1) Lines 1-3 are used to calculate
the set of edges traversed by the paths in P,../, denoted by

Algorithm 1: Calculate C.

1 Use BFS (Breadth First Search) algorithm to calculate the set
of edges reachable from e, denoted by Ef;

2 Use reverse BFS algorithm to calculate the set of edges which
is connected to €', denoted by Eb;

3 B, +— E1N Ey;

4 Ceer < {e}, C < {e};

5 for each e; € E,../ in the topological order do

6 C«+C—{ei};

7 for each e such that head(e1) = tail(e2) do
8 | if ez € Ecer then C < CU{ea} ;

9 end

10 if C contains one edge then C../ < C..r UC ;
11 end

E../. Note that in the reverse BFS algorithm, we start from ¢’
and move upwards by following the incoming edges associated
with each node. 2) Lines 4-11 are used to calculate C,,. In this
step, we iterate through each edge e € E../ in the topological
order. In each iteration, we calculate C, which forms a cut
separating e from e’. If C contains only one edge, we then
incorporate C into Ce.r. The running time of the algorithm is
O(h|E|), where h is the maximum in-degree of nodes in G'.

2) Checking if n(x) = 1: Using algorithm 1 and Theorem
V.3, we can easily check whether this coupling relation holds.
First, we calculate C31 NCss, Co1 NCa3, from which we get the
two edges o312 and ao13. Then, we calculate Ci2 N Cogyy,rps
Ci13 N Cqyyy,m4» from which we get 8315 and [B213. Finally, we
use Theorem V.3 to check if n(x) = 1 by checking whether
a312 = B312 and az13 = B213.

3) Checking if p;(x) = 1 or pi(x) = n(x): Due to
Theorem V.4, we use Ford-Fulkerson Algorithm to check these
coupling relations. For example, in order to check whether
p1(x) = 1, we add a super sender node s’, which is connected
to s; and s, via two directed edges of capacity one, and a
super receiver node d’, to which d; and d3 are connected
via two directed edges of capacity one. We then use Ford-
Fulkerson Algorithm to calculate the maximum flow from s’
to d’, which is identical to the minimum capacity of cut-
sets between {s1, s2} and {dy,d2}, denoted by Ci213. Thus,
by checking whether 213 = 1, we can identify whether
p1(x) = 1. Similarly, we can check other coupling relations.

4) Checking if p1(x) = 1_2(77’2() or p2(x), p3(x) = 1+n(x):
We use Algorithm 2 to check if p;(x) = 1157’2() The other
two coupling relations can be checked similarly. Note that Line
4 consists of two steps: First, we start from ag12 and use BFS
to check if a3 is reachable from a312; then we start from
a913 and use BFS to check if asgio is reachable from asq3.
The running time of the algorithm is O(h|E|).

VIII. OPTIMAL LINEAR PRECODING-BASED RATES

In this section, we prove that for SISO scenarios where
all the senders are connected to all the receivers via directed
paths, there are only three possible symmetric rates achieved
by any precoding-based linear schemes. We’ll also show that
PBNA can achieve the optimal symmetric rate achieved by
precoding-based linear schemes. In order to show this, we first
prove that for the networks that violate one of the following



n(x)

Algorithm 2: Check if p;(x) = 7 ey

1 ai2 < the last edge of C31 N Cso;

2 13 < the last edge of C21 N Cas;

3 if aziz ¢ Ci2 or ao13 ¢ Ci3 then return false ;

4 Use BFS algorithm to check whether o312 is connected with
a213 by a directed path;

5 if a312 1s connected with ai213 then return false;

6 Let G denote the subgraph of G’ induced by
E' — {as12, a213};

7 Use BFS algorithm to check whether 7; is connected to o in
G

8 if 7 is connected to o1 in G; then return false ;

9 else return true ;

three conditions: p;(x) # 1157’8{), p2(x) # 1+ n(x), and
p3(x) # 1+ n(x), it is not possible to achieve a symmetric
rate of more than 2/5 per user, through any precoding-based
scheme (the proof follows from [41]). We also show that this
outer bound of 2/5 is achievable through our PBNA scheme
and thus it is tight.

Consider any precoding-based linear scheme over N chan-
nel uses. Let 0y, U, U5 be vectors from the spaces span(Vy),
span(V32), and span(V3), respectively. Consider a Type IT
network, without loss of generality , we assume that the
network realizes p; (x) = —2&L_ (see Fig. 4b). This relation

) 14 (x) .
can be equivalently represented in matrix form as

M, = M3 Mzo 'Myo + My Moz ' M3

(39)

Lemma VIIL1. If v; aligns with 03 at do and with v, at ds,
then v; must align in the space spanned by v and vs at dy.

Proof. Since v aligns with 03 at do and with vy at ds, it
follows that,

dy: Mgt = a M3at3
dz: Mizt; = b Ma3ts

(40)
(41)

where a, b are scalars. At dy, we see the vector M;v;. Using
(39), (40) and (41) we get,

M9, = M3 Mzo ™ "M 2@ + Moy Mgz ™ M3,
= a M31’L~}2 —+ b Mglﬁg

This shows that the desired vector at d; aligns with the space
spanned by the interference. ]

Theorem VIII.1. For a T'ype II network the symmetric
rate achievable per user through any precoding-based scheme
cannot be more than 2/5.

Proof. Suppose every sender sends d symbols over n dimen-
sions, through any linear precoding scheme. Consider wy , lets
use 12 and [y3 to represent the number of dimensions of signal
space of d; that align with wy at d3 and w3 at ds respectively,
and Vi and Vi3 to represent their corresponding spaces.
From Lemma VIII.1, we know that V;5 and V;3 must have
no intersection, otherwise the intersection part will contain
vectors that will align with interference at d,. Therefore, we
must have l12 + l13 < d. Now consider wy, we already
know that there is a /13 dimensional space where interference

from w; and ws are aligned. So the number of interference
dimension is given as (d+d—1y3) = 2d — l13. The number of
desired dimensions at ds is d, and this d dimensional desired
signal space should remain resolvable from the interference
space, so we we have 3d — ;3 < n. Similarly, consider User
3 to obtain another inequality : 3d — /12 < n. Combining
these inequalities we get 6d — (113 + l12) < n. But we know
li2+li3 < d, so 6d —d < 2n = d/n < 2/5, which implies
it is not possible to achieve a symmetric rate more than 2/5
per user. ]

Corollary VIII.1. For Type II networks, it is possible to
achieve a rate of 2/5 per user through through a finite time-
slot precoding based network alignment scheme, i.e., the outer
bound is tight.

Proof. Without loss of generality, assume the T'ype II net-
works has a coupling relation p;(x) = 5 Z(nxz(). This scheme
can be easily modified to fit the other coupling relations too.
Suppose we use a 2n+1 = 5 symbol extension, then according
to the PBNA scheme in Section IV we have precoding vectors
V; = (w Tw T?w), V, = (w Tw) and V3 = (Tw T?w).
The given coupling relation only affects User 1, so the rates at
Receiver 2 and 3 will remain unaffected. The matrix equivalent
of the coupling relation is given in (39), which can be rewritten
as,

Mg = M3 M3z, 'Mip + M3 M3 "M, T 42)

At Receiver 1, the desired signal space is given M;;V;
and the interference space is given by M3, V3 ( Note: The
interference from transmitter 2 and 3 are aligned, i.e., M2,V
= M3;V3). Substituting the alignment equation from Receiver
2 for V3 we get,

Ms; Vs = M3 Mas ™Mo (Tw T?w) (43)

From (42) and (43), it can be seen that the second column
of the desired signal space (M;;V;) can be written as a
linear combination of the two columns of the interference
space. The other two columns of the desired space are linearly
independent of the column of interference space. User 1 could
use these two dimension to send its signal without interference.
In other words, each user would be able to achieve a rate of
2/5 |

Proof of Theorem V.6. Type I networks fail to satisfy certain
conditions which are information theoretically necessary to
achieve any rate more than 1/3 user per session, this was
explained in a remark under Theorem V.1 in Section V. The
outer bound for T'ype I1 networks was derived in Theorem
VIII.1 and the achievability was shown in Corollary VIILI.
Type 111 networks were the main focus of this paper, previous
sections discussed in detail about schemes and their feasibility
for achieving 1/2 rate per user in detail and it is a well known
fact that it is not possible to achieve more than 1/2 per user
for SISO scenarios in fully connected networks [11]. |

IX. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we consider the problem of network coding for
the SISO scenarios with three unicast sessions. We consider a



network model, in which the middle of the network performs
random linear network coding. We apply precoding-based
interference alignment [11] to this network setting. We show
that network topology may introduce algebraic dependence
(“coupling relations”) between different transfer functions,
which can potentially affect the rate achieved by PBNA.
Using two graph-related properties and a recent result from
[35], we identify the minimal set of coupling relations that
are realizable in networks. Moreover, we show that each of
these coupling relations has a unique interpretation in terms of
network topology. Based on these interpretations, we present
a polynomial-time algorithm to check the existence of these
coupling relations.

This work is limited to three unicast sessions in the SISO
scenario (i.e., with min-cut one per session) and following a
precoding-based approach (all precoding is performed at the
end nodes, while intermediate nodes perform random network
coding). This is the simplest, yet highly non-trivial instance
of the general problem of network coding across multiple
unicasts. Apart from being of interest on its own right, we
hope that it can be used as a building block and provide insight
into the general problem.

There are still many problems that remain to be solved
regarding applying interference alignment techniques to the
network setting. For example, one important problem is the
complexity of PBNA, which arises in two aspects, i.e., pre-
coding matrix and field size, and is inherent in the framework
of PBNA. One direction for future work is to apply other
alignment techniques (with lower complexity) to the network
setting. The extensions to other network scenarios beyond
SISO with more than three unicast sessions are highly non-
trivial. Finally, the current paper applies precoding at the
sources only, while intermediate nodes performed simply
random network coding; an open direction for future work
is alignment by network code design in the middle of the
network as well.
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APPENDIX A
PROOFS OF GRAPH-RELATED PROPERTIES

A. Linearization Property and Square-Term Property

The following lemma plays an important role in the proof
of Linearization Property and the interpretation of the coupled
relations, p;(x) = 1 and p;(x) = n(x). The basic idea of this
lemma is that we can multicast two symbols from two senders
to two receivers via network coding if and only if the minimum
cut separating the senders from the receivers is greater than
one.

Lemma A.1. mgp(X)Mpg(X) # Maq(X)mypp(x) if and only if
there is disjoint path pair (P;, P>) € Pap X Ppq or (Ps3, P1) €
Paq X Ppb.

Proof. We add a super sender s and connect it to s/, and s;) via
two edges of unit capacity, and a super receiver d, to which
we connect d;, and d; via two edges of unit capacity. Thus,
the transfer matrix at d is

Magq (%)

Mg (%)

Map(X)

M= Mipp(X)

It is easy to see det(IM) = mqp(X)Mpq(X) — Mag(X)Mpp(X).
Hence, we can multicast two symbols from s to d, ie.,
det(M) # 0, if and only if the minimum cut separating s
from d is at least two, or equivalently there is a disjoint path
pair (P1, P2) € Pop X Ppq or (Ps, Py) € Pag X Ppp. [ ]

The proof of Lemma VI.1 involves finding a subgraph H
such that some coding variable appears exclusively in the
denominator or numerator of h(xp), i.e., h(xp) restricted
to H. In fact, due to Lemma A.1, such subgraph H always
exists, if h(x) is not constant.

Proof of Lemma VLI. In this proof, given a path P, let Ple :
€'] denote the path segment of P between two edges e and
€', including e, ¢’. We arrange the edges of G’ in topological
order, and for e € E’, let o(e) denote e’s position in this
ordering. Moreover, denote 11 (X) = Mqp(X)Mpge (%), ho(x) =
Maq(X)Mpp(x) and d(x) = ged(hi(x), ha(x)). Let s1(x) =

(a) o(e2) > o(es) and (b) o(e2) > o(es) and
o(e1) < o(ea) o(e1) > o(es)

Fig. 9. The construction of H (in the proof of the Linearization
Property) enabled by Lemma A.1 (P is disjoint with P>)

(©) o(e2) < o(e3)

Ifil((xx)) and sy(x) = ]22((:)). Hence ged(s1(x),s2(x)) = 1. It

follows u(x) = ¢s1(x),v(x) = cs2(x), where ¢ is a non-zero
constant in Fom. By Lemma A.1, there exists disjoint path
pair (P1, P2) € Pap X Ppg o1 (Ps, Py) € Puy X Ppp. Now we
consider the first case.

We arbitrarily select another path pair (Pj, P;) € Pug X Ppb.
Since Py, Pj both originate at 0, and P», P; both terminate at
Tq» there exist e; € Py NPj and e5 € P,N P4 such that the path
segment along P4 between e; and ey is disjoint with Py U Ps.
Similarly, there exist e3 € P, P; and e4 € P; N P, such that
the path segment between e3 and e4 along Pj is disjoint with
Py U P,. Construct the following two paths: Py = Pi[o, :
61] UPé[el : 62] UPQ[GQ : Tq] and Pil = PQ[O—p : 63] @] Pi[eg :
es) U Pileg : 7] (see Fig. 9). Let H denote the subgraph of
G’ induced by P, U P, U Py U PY.

We then prove that the theorem holds for H. If o(es) >
o(es) (Fig. 9a and 9b), the variables along Psles : es] are
absent in ho(xy). We then arbitrarily select a variable e
from Psles : ez, and write hy(xp) as f(Xy)Teer + 9(Xy),
where x; includes all the variables in xy other than z..
Meanwhile, ho(xpg) can be written as ha(x%). Clearly, xcer
will not show up in d(xy) and thus it can also be written as
d(x’;). We then find values for x%;, denoted by r, such that
f(r)ha(r)d(r) # 0. Finally, denote ¢y = cg(r)d~(r), ¢; =
cf(r)d=1(r) and ¢3 = chy(r)d!(r) and the theorem holds.
On the other hand, if o(e2) < o(es) (see Fig. 9c), the variables
along Pjle; : e4] are absent in ho(xp). We then select a
variable z..r from Pjle; : e4]. Similar to above, it’s easy to
see that u(x) and v(x) can be transformed into cjx. + ¢
and c; respectively.

For the case where (Ps, Py) € Paq X Ppp is a disjoint path
pair, we can show that u(x) and v(x) can be transformed into
¢y and c1Z.er + co respectively. |

The basic idea of Lemma V1.2 is to construct a one-to-one
mapping between the square terms in the numerator of h(x)
and those in the denominator of h(x).

Proof of Lemma VI.2. First, we
Q = {(P1.P) € Pap x Ppg : 7o | tr(x)tp,(x)}
and O = {(P3,P4) S Paq X Ppb : itze/ | tps(x)tp4(x)}.
Consider a path pair (P, P,) € Q. Since the degree of
Zeer in tp,(x) and tp,(x) is at most one, we must have
Zeer | tp,(X) and Zeer | tp,(x). Thus e,¢’ € Py N Py. Let
P}, P? be the parts of P, before e and after ¢’ respectively.

define two sets



Fig. 10. Illustration of Square-Term Property. A term with xie, introduced
by (Pi,P2) in the numerator of h(x) equals another term introduced by
(P3, Py) in the denominator of h(x).

Similarly, define P5 and PZ. Then construct two new paths:
Py = Plu{ee}UP; and Py = P} U {e, e} U P}
(see Fig. 10). Clearly, tp, (X)tp,(x) = tp,(X)tp,(X),
and thus (Ps;,P;) € Q. The above method establishes
a one-to-one mapping ¢ : Q1 — Oy, such that for
(P, B)) = (B, ), tp (X)tp,(x) = tp,(X)tp,(x).
Hence, fi(x) = fz(phpﬂegl tp(X)tp,(x) =

%Z(P&P@egg tP3(X)tP4( ) f2( ) u

B. Other Graph-Related Properties

In this section, we present other graph-related properties,
which reveal more microscopic structures of transfer functions,
and are to be used in the proofs of Theorems V.3 and V.5.
Before proceeding, we first extend the concept of transfer
function to any two edges e,¢/ € E', ie., Mee(x) =
> pep, , tp(x), where P is the set of paths from e to €.

The followmg lemma states that any transfer function
Meer (x) is fully determined by the two edges e, ¢’

Lemma A.2. Consider two transfer functions me,.,(x) and
Meges (X). Then me, e, (X) = Meye, (x) if and only if e; = e3
and €9 = €4.

Proof. Apparently, the “if” part holds trivially. Now assume
e1 # e3 or es # e4. Then, there must be some edge which
appears exclusively in Pe,c, OF Pege,, implying me,, (x) #
Mege, (X). Thus, the lemma holds. [ |

The following result was first proved by Han et al. [35].
It states that each transfer function m../(x) can be uniquely
factorized into a product of irreducible polynomials according
to the bottlenecks between e and ¢’

Lemma A.3. We arrange the bottlenecks in C..- in topological

order: ey, eq,- - , ey, such that e = ej, ¢’ = eg. Then, me (X)
. k—1
can be factorized as mee(x) = [[;—; Mese,,, (), Where

Me,e,,, (X) is an irreducible polynomial.

In addition, as shown below, any transfer function mee (x)
can be partitioned into a summation of products of transfer
functions according to a cut between e and ¢’.

Lemma A.4. Assume U = {ej,es, - ,ex} is a cut which
separates e from e'. If e;||e; for e; # e; € U, we have
Meer (X) = Elemeei(x)meie/(x). Otherwise, the above
equality doesn’t hold.

Proof. For e; € U, let P!, denote the set of
paths in P

which pass through e;. Because e;lle;

for e, # e € U, P!, is disjoint with P/
Hence, mee(x) = 27 1ZP6P1 tp(x). Note that
Mee, (X)Me,er (X) = Z(Pl,P2)e7> ce; X P ,tp (x)tp, (x).

Moreover, each monomial tp(x) in Mmee (x) corresponds
to a monomial tp, (X)tp,(x) in Mee, (X)Me,e (x). Hence,
Mee,(X)Meer(X) = Y pepi  tr(x), and the lemma
holds. On the other hand, if some e; is upstream of e;,
Pi, NP, #0,and thus mee (x) # S0, ZPEPZQ/ tp(x),
indicating that the lemma doesn’t hold. |

APPENDIX B
PROOFS OF FEASIBILITY CONDITIONS OF PBNA

A. Reducing 8’ to S!

In order to utilize the degree-counting technique, we use
the following lemma. Basically, it allows us to reformulate
each J; gz((xgg € &' to its unique form % such that we can
compare the degrees of a coding variable in «(x) and S(x)
with its degrees in the numerator and denominator of p;(x)

respectively.

Lemma B.1. Let F be a field. z is a variable and y =
(y1,y2, -+ ,yx) is a vector of variables. Consider four non-
zero polynomials f(z),g(z) € Flz] and s(y),t(y) € Fly],
such that ged(f(2),g9(2)) = 1 and ged(s(y),t(y)) = 1.
Denote d = max{dy,d,}. Define two polynomials in F[y]:
aly) = f(5E)H(y) and Bly) = g(53)t"(y)- Th

i/t y I\t /v \Y). e
ged(a(y), B(y)) = 1.

Proof. See Appendix D. |

We use the following three steps to reduce S’ to S!.

Step I: 8’ = 8§ = {abgigllg((:) i ag,a1,bo,b1 € Fom}.
Assume p;(x) = % € §'. We will prove that d =

max{ds,d,} = 1. Let p;(x) = ;‘E;‘;, n(x) = égx)) denote the
unique forms of p;(x) and n(x) respectively. Without loss of
generality, let f(z) = Z?:o ajzd, g(z) = 2220 bjz7 where
arb; # 0. We first consider the case where [ < k and thus
d = k. Define the following two polynomials:

k

a(x) = f(n(x)t*(x) = ZFO a;t* = (x)s’ (x)
B(x) = g(n(x))t*(x) = Z;zo bt (x)s7 (x)

Due to Lemma B.1, we have a(x) = cu(x), 8(x) = cv(x),
where ¢ in a non-zero constant in IF,. Moreover, according
to Lemma VI.1, we assign values to x other than a coding
variable z... such that u(x) and v(x) are transformed into:

V(Teer) = €2

V(Zeer) = C1Zeer + Co

U(Teer) = C1Teer + Co

Or U(Teer) = Co

where ¢y, c¢1,c2 € Fy and cico # 0. We only consider the first
case. The proof for the other case is similar. In this case, a(x)
and S(x) are transformed into a(xee) = cc1Zeer + cop and
B(Zeer) = cco respectively.



By contradiction, assume d > 2. We first consider the case
where [ < k and thus d = k. In this case, we have
k

a(xee/) = Z .

Jj=0

ﬂ(xee’) = Zl.

j=0

ajtk_j(xee/)sj (Teer) = CC1Zeer + CCp
bit" I (2eer )8 (Teer) = cea

Assume s(zeer) = Y7 s;x) , and H(xee) = ZT tixl
where s,t,» # 0. Thus max{r,r'} > 1. Note that the degree
of Teer in t°79 (2o )87 (weer) is kr' + j(r — 7). We consider
the following two cases:

Case . r £ 7. If r > 1/, d, = kr > 2, contradicting that
do = 1. Now assume r < r’. Let I; and [y be the minimum
exponents of z in f(z) and g(z) respectively. It follows that
do = kr' —11(r' —r) =1 and dg = kr' — lo(+' —r) = 0.
Clearly, I > O due to dg = 0. If r > 0, kr/ — lo(+' — 1) >
kr'—lar’ > 0, contradicting dg = 0. Hence, r = 0, and I = k
due to dg = 0. Meanwhile, d, = (k—I;)r’ = 1, which implies
that [y = k — 1 and v’ = 1. Thus, z*~! is a common divisor
of f(z) and g(z), contradicting ged(f(z),g(z)) = 1.

Case II: » = r’. Since d, = 1 and dg = 0, all the terms
in @(@eer) and B(zeer) containing z¥7, must be cancelled out,
implying that

k j
S
E sl =ty =thf(=) =0
aj ? aJ < > Tf <tT)

=0

: S J S
E bith=Isl =15y b, () =tFg () =0
: ; t, t,
=0 Jj=0

Sr

Hence z — $* is a common divisor of f(z) and g(2), contra-
dicting ged(f(z),9(2)) = 1.

Therefore, we have proved d = 1 when | < k. Using similar
techm(}ue we can prove that d = 1 when [ > k. This implies
that £ g can only be of the form aotarn(x) Hence, we

bo+bin(x) *
have reduced S’ to §7.

Step 2: S = S = {1,n(x),1 + 77( ), 11(7:8()} We
consider the coupling relatlon p1(x) = g(n x)) The coupling
relations py(x) = £ E:’]E:;) and p3(x) = % can be dealt

_ nx) _ myq(x)masz(

with similarly. Define q1(x) o) = mls(x)mM(i; Assume
the characteristic of IF is p. Given an integer m, let m,, denote
the remainder of m divided by p. Since S; only consists of
a finite number of rational functions, we iterate all possible
configurations of ag, a1, bg, by as follows:

Case I: L&) = ataiz yhere gia0biby # 0, and agh; #

9] - bothis (Zee)q1(Zeer)
: _ a0+0a1P1(Teer)q1(Teer
a1 bg. For this case, we have py(2ee) = N IR

It immediately follows

aocg — bOCOC2 — b()ClCQ{L‘ee/
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Case II: fézg = “D;‘zlz, where agaibg # 0. Similar to Case

I, we can derive

Qg C%

q1 (-ree’) =

biciz?,, + (2pb1coct — a1¢102)Teer + b1c3 — arcoes

which contradicts Lemma VI.2.

Case III: g((jg = 52, where aibobr # 0. Thus ﬁ =
bo 1 + by

2L Since the coefficient of each monomial in the
a1 n(x) ai

denominators and numerators of p;(x) and 7(x) equals one,
n(x)

it follows §° = bl = 1. This indicates that p;(x) = T+
Case IV: ’968 = 45—, Where agbob1 # 0. It follows that
B aoc3 — bococa — by Caleer
q1 (xee’) -

2 2.2
blcO + 2pb10061$eel + b161$65/

Similar to Case I, this also contradicts Lemma VI.2.
Case V: 58 = %, where ap # 0. Hence, qi(zeer) =
a0C2l
c a: ,+2 COC1T ot FC

5 _ = ap+ayz, where aga; # 0. Thus, it follows

p1(x) = ag + a1n(x). Similar to Case III, a; = a9 = 1,

implying that p;(x) = 1 + n(x).

= a1z, where a; # 0. Similar to Case III,

a; =1 and hence p; (x) = n(x).
Therefore, we have proved that J; 52833

form of the four rational functions in S%.
reduced S} to S5
Step 3: S§) = S!. We note that in Proposition 3 of [35],

7, contradicting Lemma VI.2.

can only take the
Thus, we have

it was proved that p1(x) # 1+ n(x), p2(x) 125;&) and
p3(x) # I +n x) Combined with the above results, we have
reduced SY to S

In summary, according to Theorem IV.1, if the conditions
of Theorem V.1 are satisfied, the three unicast sessions can
asymptotically achieve the rate tuple (1 L 1) through PBNA.

B. Necessity of the Conditions in Theorem V.1

As shown previously, each row of V satisfying the align-
ment conditions corresponds to a non-zero solution to Eq. (36).
Lemma B.2. rank(zC — BA) =n

Proof. Denote D = BA. Let c; and d; denote the ith
column of C and D respectively. Hence, cy,--- ,c, are lin-
early independent and so are dy,--- ,d,. Assume there exist

fi(z),+ fulz) € Fam(€)(2) such that 357, fi(2)(z¢; —
d;) = 0. Without loss of generality, assume f;(z) = g}f(j)

for i € {1,2,--- ,n}, where g;(z),h(z) € Fam(&)[z]. Thus,
S gi(2)(ze; —d;) = 0. Let k = max;eq1 2, n3{dg, }
and assume g;(z) = Zf:o ari(€)z!, where a;;(€) € Fam (€).
Then, it follows

q1 (xee’) blc .f
1%ee’

Let uy(@eer ), v1(xeer) denote the numerator and denominator
of the above equation respectively. Assume u(Zeer) | V1(Teer)

and thus z. = % is a solution to v1(xeer) = 0.
However, vl(%) = ag? (apby — a1bo) # 0. Hence,

U1 (Zeer) 1 V1(Teer). Thus, by the definition of ¢p(x) and
Lemma V1.2, z2,, must appear in u; (2. ), which contradicts
the formulation of wj (2, ).

2
(2pb16061 — alclcg)xee/ + blco — a1CpC2

n

Z 9i(2)(zc; —



Therefore, the following equations must hold:

Z a,i(§)ci =0 Zao,i(f)df, =0
=1 =1

Z(al,i(f)ci —a41,:(£)d;) =0
i=1
Thus a;;(§) = 0 for any ¢ € {1,---,n},l € {0,---,k},
implying f;(z) = 0. Hence, rank(2C — D) = n. u

Vie{0,-- k—1}

The following lemma reveals that any non-zero solution
to Eq. (36) is linearly dependent on the particular vector
(1,2,2%,-++,2"), which forms each row of the precoding
matrix V7.

Corollary B.1. Eq. (36) has a non-zero solution if and only
if s = 1. Moreover, when s = 1, Eq. (36) has a non-zero
solution in the form of r(z) = (1,z,22,--- ,2")F, where F
is an (n + 1) x (n + 1) matrix over Fom (§). Moreover, any
solution to Eq. (36) is linearly dependent on (1, z,--- ,2")F.

Proof. We first prove the “only if” part. If s =0, zC — BA
is an invertible square matrix. Thus, Eq. (36) has only zero
solution. Hence, if Eq. (36) has only non-zero solution, it must
be that s = 1.

We then prove the “if” part. Assume s = 1. We will
construct a non-zero solution to Eq. (36) as follows. There
must be an n X n invertible submatrix in zC —D. Without loss
of generality, assume this submatrix consists of the top n rows
of zC — D and denote this submatrix by E, ;1. Let b denote
the (n+1)th row of 2C—D. In order to get a non-zero solution
to equation (36), we first fix 7,,41(z) = —1. Therefore, equa-
tion (36) is transformed into (r1(z), - ,7(2))Eny1 = b.
Let E; denote the submatrix acquired by replacing the th
row of E, 1 with b. Hence, we get a non-zero solution to
(36), r(z) = (dStC;E]:L e ’dgtcil]::lil ,—1). Moreover, 7(z) =
(det Eq,--- ,detE,,, — det E, 1) is also a solution. Note that
the degree of z in each det E; is at most n. Thus, r(z) can be
formulated as (1, z,--- ,2™)F, where F is an (n+1) x (n+1)
matrix. Since rank(zC —D) = n, all the solutions to equation
(36) form a one-dimensional linear space. Thus, all solutions
must be linearly dependent on r(z). |

Based on Corollary B.1, we can easily derive that each
V, satisfying Eq. (10) is related to V] through a transform
equation, as defined in Lemma VI.3.

Proof of Lemma VI.3. Let r; be the ith row of Vi, which
satisfies Eq. (10). According to Corollary B.1, r; must have
the form f;(n(x%))(1,n(x%),--- ,n"(x*))F, where f;(z) is a
non-zero rational function in Fom (£)(z). Hence, V can be
written as GV7F. Moreover, Eq. (36) can be rewritten as
follows:

(2,22, ,2"THFC = (1,2,--- , 2" )FBA

The right side of the above equation contains no z"*!, and
thus the (n + 1)th row of FC must be zero. Similarly, there
is no constant term on the left side of the above equation,
implying that the 1st row of FBA is zero. ]
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In the followings, we will prove the necessity of the con-
ditions in Theorem V.1. Assume a coupling relation p;(x) =

g EZE:gg € S/ is present in the network. Without loss of gen-
D

erality, assume f(z) = Y 7_,arz" and g(z) = D°7_ bi2",
where a, # 0 and b, # 0. We’ll prove that it is impossible for
w; to asymptotically achieve one half rate by using any PBNA.
We only consider the case ¢ = 1. The other cases ¢ = 2,3 can
be proved similarly, and are omitted.

Consider a PBNA A = (£, V; : 1 <4 < 3) with 2n + s
symbol extensions, where n > max{p, ¢} + 1. According to
Corollary B.1, s must equal 1, and thus V7 is a (2n + 1) x
(n + 1) matrix. By Lemma V1.3, V; = GViF, where F
is an (n + 1) x (n + 1) invertible matrix. The jth row of
Viis ;= fj(n(x9)(1 nxD)) - g7 (xU)))F. Since the
(n + 1)th row of FC is zero, we have

£,C = fi(n(x) (L n(xD) - (xO)H

where H consists of the top n rows of FC and rank(H) = n.
For 0 <1 <n —p—1, define the following vector:

(44)

l n—p—l
—
al:(o...()a,o .apO...O)T
l n—p—I—1
— — 7
b;=(0 --- 0 by -bq0~-~0)
It follows that
FOE))g' (xD) = (1 nxD) - p"(xW)a  @5)
g(n(xn' (x) = (1p(xD) - "1 (x))by  (46)

Define aj = F~'a; and b] = H™'b;. We can derive:
rja; = f;(n(x")) (L n(x) - n"(x9)))Fa

" (x))ay

)f(n(x9))n' (x

)1 (x)g(n(xD))n' (x7)

= pi(x9) f(n(x9) (1 n(xD) - " (xD))by
= pi(xU) f;(x9) (A n(xD) - (xD)))Hy;
= pi(x(j))erbz

)
)

where (a) follows from Eq. (45); (b) follows because

. x() x@ )yl (x@ ,
p1(x0)) = f(néx(j);; = ggzgxm;;ZIEMS? (c) is due to Eq.

(46); (d) follgows from Eq. (44). Let H; = (V; P;V;C)
denote the matrix in the reformulated rank condition 4. Since
ag, - ,ap_p—1 are linearly independent, the above equation
means that there are at most n+1—(n—p) = p+1 columns in
'V that are linearly independent of the columns in P,V ;C.
Therefore, d; can decode at most p 4+ 1 source symbols. This
means that it is impossible for w; to achieve one half rate by

using any PBNA. ]
APPENDIX C
PROOFS OF INTERPRETATIONS OF COUPLING RELATIONS
A n(x) =1

First, note that 7(x) can be rewritten as a ratio of two ratio-

nal functions 7(x) = }Eig; where f;jx(x) £ %ﬂaf(x)




Hence, in order to interpret n(x) = 1, we first study the
properties of f;;,(x).

The following lemma is to be used to derive the general
structure of f;;1(x). Basically, it provides an easy method to
calculate the greatest common divisor of two transfer functions
with one common starting edge or ending edge.

Lemma C.1. The following statements hold:

1) For ey, es, es € E' such that ey, es are both downstream
of e1. Let e be the last edge of the topological order-
ing of the edges in Cc e, N Cepes- Then me,o(x) =
ng(mel €2 (X), Mejez (X))

2) For ey, es,e3 € E’ such that ey, e; are both upstream
of e3. Let e be the first edge of the topological or-
dering of the edges in Ce,c; N Ceyey- Then mee, (x) =
ng(m61€3 (X)’ m€2€3 (X))

Proof. First, consider the first statement. By Lemma A.3,
the following equations hold: M, e, (X) = Meye(X)Mee, (X)
and Meyes(X) = Meye(X)Meey(X). Thus me,e(x) |
ged(me, e, (X), e, ey (X)). Assume ged(mee, (X), Mee, (X)) #
1. By Lemma A.3, there exists bottlenecks ey4, es such that
Meyes (X) | ged(Mee, (X), Meey (X)). Clearly, e5 € Ce,eyMCey ey
and e5 is downstream of e, which contradicts that e is the last
edge of the topological ordering of Ce,., N Ce,,. Hence, we
have proved that gcd(mee, (X), Mee, (x)) = 1, which in turn
implies that Mme,c(x) = ged(Me, e, (X), Me, e, (X)). Similarly,
we can prove the other statement. ]

Using the above lemma, f;;i(x) can be reformulated as a
fraction of two coprime polynomials, as shown below.

Corollary C.1. f;;i(x) can be formulated as

Mo, Bijk (X)mocqtjk,‘rj (X)

fijr(x) = (47)
Y Meijp,Bijn (X)
where ng(mUjﬁijk (X)maijkﬂ'j (X)a Mayjk,Bijk (X)) =1
Proof. fi;jr(x) can be calculated as
Moy, (x)maijkﬂ'j (x)mjk‘(x)
fiju(x) =
Mo,k (X)maijk;"'k (X)
_ Magm (x)m;r(x)
ma'ijkﬂ'k (X)
_ Moy ,75 (X)mUj,Bz‘jk: (X)mﬂijkaTk (X)
maijk,ﬁijk(x)mﬁijk,m (X)
Mo ,Bijk (X)maijkﬂ} (X)
Moij1,Bijk (X)
By Lemma , gcd(ma,,,,n,(X),May,,,~ (X)) = 1 and
thus  ged(ma,; ), 6,0 (X), May,r (X)) = 1. Meanwhile,
ged(Mma, ;6.5 (X)> Mo; 6,5, (X)) = 1. Hence, we must have
ng(mUj Bijk (X)maijkﬂ'] (X)7 Moy j1,Bijk (X)) =1L u

According to Corollary C.1, the structure of f;;x(x) must
fall into one of the two types, as shown in Fig. 11. In Fig. 11a,
ajk # Bijk and fi;x(x) is a rational function, the denomi-
nator of which is a non-constant polynomial m.,;, s,;,(X).
On the other hand, when ay;; € Cjp and thus oy, =
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aiji= Bijk

I

. T,

7 o T
X,

@) ajjk # Bijk (b) aijr = Bijk

Fig. 11. The structure of f;;(x) can be classified into two types: 1) oy, #
Bijk such that f;;1(x) is a rational function with non-constant denominator;
2) a;jk = Bijk such that f;;,(x) is a polynomial.

Bijk, as shown in Fig. 11b, f;;x(x) becomes a polynomial
moj,aijk(x)mocijk,‘rj (X)

Moreover, using Corollary C.1, we can easily check whether
two f;;x(X)’s are equivalent, as shown in the next corollary.
It is easy to see that Theorem V.3 is just a special case of this
corollary.

Corollary C.2. Assume i,j,k,i', k" € {1,2,3} such that i #
J,j #Fkand i’ # 35,5 #K. fijr(x) = fij(x) if and only if
Qijr = irjrr and Bijr = B i

Proof. By Corollary C.1, if o = aujw and By =
Birjrr, we must have fi;p(x) = fijw(x). Conversely, if
fijk(x) = fi'jk'(x)’ Ma;jk,Bijk (X) = mai/jk/,ﬁi/jk/ (X) Thus
Qi = Ot jk! and /Bijk = 6i’jk’ by Lemma A.2. |

B. pi(x) =1 and p;(x) = n(x)
Using Lemma A.l, we can easily prove Theorem V.4, as
shown below.

Proof of Theorem V4. Apparently, by Lemma A.1 and the
definition of p;(x), p1(x) = 1 if and only if the minimum
cut separating 01,02 from 71 and 73 is one, i.e., Ci2,13 = 1.
In order to interpret pi(x) = n(x), we consider ¢;(x) =

;71(’;)) = 21;82;?&) Hence p;(x) = n(x) is equivalent to
a1 Ex) = 1. Similarly, using Lemma A.1, it is easy to see that

p1(x) = n(x) if and only if the minimum cut separating o1, o3
from 7y, 72 is one, i.e., Ci3,12 = 1. |

C. p1(x) = 7280 and pa(x), ps(x) = 1+ n(x)
Note that the three coupling relations can be respectively
reformulated in terms of f;;x(x) as follows:

mi1(x) = f312(x) + fo13(x)
mao2(X) = fr23(x) + fa21(x)
m33(x) = fa31(x) + fi32(x)

Thus, as shown below, the three coupling relations can also
be interpreted by using the properties of f;;x(x).

Proof of Theorem V.5. We only prove
The other statements can be proved
we prove the “if” part. Due to asi;2 €

statement  1).
similarly. First,
012 and



azz € Cis, f312(x) = Moy,as12 (X)maslz,ﬁ (X) and
f213 (X) = Mo1,a013 (X)mazm,ﬁ (X) Hence, f312 (X) + f213 (X)
- m01705312 (X)maslzﬂ'l (X) + m017a213(x)m0¢2137ﬁ (X)
On the other hand, because «3ia|la13  and

{as12, @213} forms a cut which separates o from 7y,
m11(X) = Moy s, (X)Magra,m (X) Moy a0y (X)Masys,r (X)
by Lemma A.4. Therefore, m11(x) = f312(x) + f213(x).

Next we prove the “only if” part. Assume mq1(x) =
f312(x) + fa13(x). If az12 ¢ Ci2 but g3 € Ci3, f312(x) is a
rational function whose denominator is a non-constant polyno-
mial, while f213(x) is a polynomial. Hence f312(x)+ f213(%)
must be a rational function with non-constant denominator,
and thus mu(X) 75 f312(X)+f213(X). Similarly, if az12 € C12
but a3 ¢ C13, we can also prove that mq1(x) # f312(x) +
f213(x).

Now assume «agiz ¢ Cio and «

) 218 ¢ Ci3. It fol-
lows that f3jo(x) = 2w f;’;fg: ;:;312 ) and Jas(x) =

Moy 15 () Mezian () Because 1(x) # 1, we have fa1o(x) #

Magy3,6215 (X

f213(X) which indicates that aiz1o # a3 Or 312 # B213 by
Corollary C.2, and may,, 83,5 (X) 7 Masgys, 815 (X). Therefore,
by Lemma A.3, one of the following cases must hold: 1)
There exists an irreducible polynomial m.. (x) such that
mee'(x) ‘ ma3127ﬁ312(x) but mee'(x) Jf ma213;5213(x); 2)
there exists an irreducible polynomial me.(x) such that
Meer (X) 1 Magiz,B312 (x) but meer (x) | Magi3,8213 (x).

Consider case 1). Define the following polynomials:
f(x) = lcm(mam’z,ﬂsm(x)vmo&zwﬁmg(x)) 7 and filx) =
f(x)/masm-ﬂsm (X) and f2 (X) = f(x)/m&2137ﬁ213 (X)
Hence, we have mee (X) 1 f1(X), Meer(X) | f2(x), and
f312(X) + f213(X) = [m01,3312(x)m(¥312771(X)fl(x) +
May,B213 (X)moézlsﬂ'l (X)fg (X)]/f(x) Moreover, due to
ng(masu,ﬂsu (X)’ Moy,B312 (X)m()ﬂsu,ﬁ (X)) = L it
follows that mee (X) 1 Moy Bera (X)Magis,~ (X). This
implies that mees (X) 1, Moy ,B312 (X)moéslz,‘l'l (X)fl(x) +
m017ﬂ213(x)ma21377'1(X)fQ(X>' However, m€€'<x) | f(X)
This indicates that f312(x)+ fo13(x) is a rational function with
non-constant denominator. Thus m11 (x) # f312(x) + f213(x%).
Similarly, for case 2), we can also prove that
m11(x) # f312(x) + f213(x).

Thus, we have proved that s € (Ci2 and
a1y € Ciz. It immediately follows that mqq(x) =
Moy, az1s (X)Magia,m (X) + Moy az1s (X)Mags,r (). Hence
each path P in P, . either pass through asi2 or ags,
implying that {as12, @213} forms a cut separating o from
71. Moreover, according to Lemma A.4, a312||a213. [ |

APPENDIX D
PROOFS OF LEMMAS ON MULTIVARIATE POLYNOMIALS

In this section, we present the proof of Lemma B.1. We
first prove that Lemma B.1 holds for the case where s(x)
and t(x) are both univariate polynomials. In order to extend
this result to multivariate polynomials, we employ a simple
idea that each multivariate polynomial can be viewed as
an equivalent univariate polynomial on a field of rational

"We use lem(f(x),g(x)) to denote the least common multiple of two
polynomials f(x) and g(x).
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functions. Specifically, we prove that the problem of checking
if two multivariate polynomials are co-prime is equivalent to
checking if their equivalent univariate polynomials are co-
prime. Finally, based on this result, we prove that Lemma
B.1 also holds for the multivariate case.

A. The Univariate Case

In the following lemma, we show that Lemma B.1 holds
for the univariate case.

Lemma D.1. Let F be a field, and z,y are two variables.
Consider four non-zero polynomials f(z),g(z) € F[z] and
s(y),t(y) € Fly], such that gcd(f(z),9(z)) = 1 and
ged(s(y),t(y)) = 1. Denote d = max{dy,d,}. Define two
polynomials a(y) = f(54)t(y) and B(y) = g(54)t(y),
Then ged(a(y), B(y)) = 1.

Proof. Assume w(xz) = ged(a(z), B(x)) is non-trivial. Thus
we can find an extension field F of F such that there
exists g € F which satisfies w(zo) = 0 and hence
a(xg) = B(xg) = 0. In the rest of this proof, we restrict
our discussion in F. Note that ged(f(z),g(z)) = 1 and
ged(s(z),t(z)) = 1 also hold for F. Assume ¢(x) = 0 and
thus x — zo | t(x). Since ged(s(z),t(x)) = 1, it follows
that © — 29 { s(z) and thus s(xg) # 0. Hence, either
alxg) # 0 or B(zg) # 0, contradicting that a(zg), B(xo)
are both zeros. Hence, we have proved that ¢(xg) # 0. Then

e v i) = i 5 0 nd olicy) = iy =
xo

which implies that z — 77 is a common divisor of f (2)
and g(z), contradicting gcd(f(z),9(z)) = 1. Thus, we have
proved that ged(a(y), 8(y)) = 1. [ |

B. Viewing Multivariate as Univariate

In order to extend Lemma D.1 to the multivariate case,
we first show that each multivariate polynomial can be
viewed as an equivalent univariate polynomial on a field
of rational functions. Let y = (y1,%2, - ,yx) be a vec-
tor of variables. For any i € {1,2,---,k}, define y; =
(Y1, ,Yi—1,Yi+1, " ,Yk), i.€., the vector consisting of all
variables in y other than y;. Note that any polynomial f(y) €
F[y] can be formulated as f(y) = fo(y:) + fi(yi)yi +- -+
I»(yi)y?, where each f;(y;) is a polynomial in Fly;]. Because
Fly;] is a subset of F(y;), f(y) can also be viewed as a
univariate polynomial in F(y;)[y;]. We use f(y;) to denote
f(y)’s equivalent counterpart in F(y;)[y;]. To differentiate
these two concepts, we reserve the notations, such as “|”,
“gcd” and “lcm” for field I, and append “1” as a subscript to
these notations to suggest they are specific to field F(y;). For
example, for f(y),g(y) € Fly] and u(y;),v(y;) € F(y:)[yil.
g(y) | f(y) means that there exists h(y) € Fly] such that
f(y) = h(y)g(y), and u(y;) |1 v(y;) means that there exists

w(y;) € Fly:](yi) such that v(y;) = w(y:)u(y:).

Lemma D.2. Assume ¢(y;) € Fly;] and f(y) € Fly] is
of the form f(Y) = Z] ij(yl)yl? where f](yz} [ ]
Then g(y;) | f(y) if and only if g(yi) | f;(y:) for each
je {0317 ap}




Proof. Apparently, if g(y;) | f;(y;) forany j € {0,1,--- ,p},
9(yi) | f(y). Now assume ¢(y;) | f(y). Thus there exists

hy) € Fly] such that f(y) = g(yi)h(y). Let h(y) =
Z?:o h;(yi)y:;. Hence, it follows that f;(y;) = h;(y:)g(y:)
and thus g(y:) | f;(y:). u

The following result follows immediately from Lemma D.2.

Corollary D.1. Let g(y;) and f(y) be defined as Lemma D.2.
Then ged(g(yi), f(y)) = ged(g(ya), fo(yi)s - fp(¥i)-

Proof. Note that any divisor of ¢(y;) must be a polyno-
mial in Fly;]. Let d(y;) = ged(g(y:), f(y)) and d'(y;) =
ged(g(yi); fo(yi),--+ 5 fp(yi))- By Lemma D.2, d(y;) |
fi(y:) for any j € {0,1,--- ,p}, implying that d(y;) | d'(y:).
On the other hand, d'(y;) | f(y), and thus d'(y;) | d(y:)-
Hence, d(y;) = d'(y:). [ |

Corollary D.2. For t € {1,2,---,s}, let f,(y) € Fly] be
defined as f,(y) = 371 fij(yi)y], where fi;(yi) € Fly;].
Let g(y;) € Fly;]. It follows
ged(g(yi); [1(¥), -+ fe(y))
=ged(g(yi), fro(yi)s -+ s fipa (¥i)s -
fs()(yi)v e 7fsps (yz))

Proof. We have the following equations

ged(g(yi), f1(y), -+, fe(y))
=ged(9(yi), f1(¥), -, 9(yi)s fe(y))
=ged(ged(g(yi), f1(y)), - ged(g(yi), fs(¥)))
=ged(9(yi), fro(ya)s -+ s fip (¥i)s -+
9(yi), fso(yi), - 7fsp5(yi))
i)s f1o(yi)s s fipy (yi)yo o
st(yi)a"' >fsps(yi))

=ged(g(y

Lemma D.3. For t € {1,2,--- s}, let a;(y),b:(y) € Fly]
such that b;(y) # 0 and gcd(a:(y),b ( )) = 1. For t €
{1,2,---,s}, let v (y) = lem(bi(y), - ,b:(y)). Then we

have
s (5 ) =

Proof. We use induction on s to prove this lemma. Apparently,
the lemma holds for s = 1 due to ged(a1(y),b1(y)) = 1.
Assume it holds for s — 1. Thus it follows

it )P ) )

1(y) s(¥)
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—sed (e () ),
)
%wﬁﬁﬁ )
Cd(gcd o >)b< >>’“5‘1(y>’gcd(vfsffy(;/,)bs(y)))

_ng(laU‘i 1(y ) =1

In the above equations, (a) is due to ged(as(y),bs(y)) =
1; (b) follows from the fact that Y& | vs—1(y) and

bs(y)
thus Zg; = gcd(vs,l(y),%); (c) follows from the

inductive assumption; (d) is due to the equality: vs(y) =

Vg bs
lem(vs—1(y), bs(y)) = m u

In general, each polynomial h(y;) € IF%
form h(yz) = Z(‘J’((;'T)) + le((ylgyz + o+ Z” - yz , where for
each J € {0117' o 7p}’ a’](yl)ﬂbj(yl) € F[yi] ( ) 7& 0,
ged(a;(yq),bi(y:)) = 1, and a,(y;) # O. Note that for

vi)ly Z] is of the

each y] which is absent in h(y;), we let a;(y;) = 0
and b;(y;) = 1. Moreover, define the following polynomial
pn(ys) = lem(bo(y:), ba(yi), -+ bp(yi))-

Corollary D.3. For j € {1,2,---,s}, let f;(y;) € F(y:)[yi]-
Define v(y;) = lem(up (yi), -, ps(yi) and fi(y) =
v(yi) fi(y:). Thus ged(v(yq), f1(y), -+, fs(y)) =1

Proof. Assume f;(y;) has the following form:

ajo(y:) | a51(y:) ajp, (¥i) p,
filyi) = =< + Yi ooy
5) bjo(yi)  bj1(yi) bip; (i)

where for any j € {1,2,---,s} and t € {0,1,---,p,},
aji(yi); bje(yvi) € Flysl bjulys)  # 0 and
ged(a;e(yi) bje(yi)) = 1. Apparenty, w(y;) is
the least common multiple of all b;(y;)’s. Define
uje(y:) = Jf’{y% €  Fly;. Hence, we have
fi(y) = >0 0 aje(yi)uje(yi)yt. Then it follows
ng(U(Yi)7f1(Y))"" 7fé(Y))
(a)
Zecd(v(yi), ar0(yi)uao(yi), -+ > aip, (yi)tap, (vi), -+
aso(yi)uso(¥i), asp, (Vi) usp, (¥i))
@y

where (a) is due to Corollary D.2 and (b) follows from Lemma
D.3. |

Generally, the definitions of division in F[y] and F(y;)[y;]
are different. However, the following theorem reveals the two
definitions are closely related.

Theorem D.1. Consider two polynomials f(y), g(y) € F[y],

where g(y) # 0. Then g(y) | f(y) if and only if g(y;) |1 f(y:)
for every ¢ € {1,2,--- | k}.



Proof. The division equation between f(y;) and g(y;) is as
follows

fQyi) = hi(yi)g(y:) + ri(y:)

where h;(y;),r:(y;) € F(yi)y:], and either r;(y;) = 0 or
d,, < dg4. Due to the uniqueness of Equation (48), f(y) | 9(¥)
immediately implies that for any ¢ € {1,2,--- ,k}, r;(y;) =0
and thus g(y:) |1 f ().

Conversely, assume for every i € {1,--- ,k}, g(vi) |1 f(vs)
and hence 7;(y;) = 0. Denote h;(y) = pun, (y:)hi(y;). Clearly,
hi(y) € F[y]. Then, the following equation holds

pn, (yi) F(y) = hi(y)g(y)

By Corollary D.3, gcd(,uh (yi), hi(y)) = 1. Thus, un, (y:) |
9(y). Define g(y) = By Lemma D.2, §(y) € Fly].

(48)

Mh (yl)
Define u(y) = m € Fly]. It follows that
g(y)
uy) ged(f(y),9(y))
__ n(yiely)
ged(hi(y)g(y), pn; (yi)g(y))
_ pn (¥)g(y)
9(y)eged(hi(y), pn; (yi)
_ 1 (yi)g(y)
9(y)
= Hh; (yv)

Note that variable y; is absent in u(y). Because y; can be
any arbitrary variable in y, it immediately follows that all the
variables in y must be absent in u(y), implying that u(y) is
a constant in F. Hence g(y) | f(y). |

Moreover, in the next theorem, we will prove that checking
if two multivariate polynomials are co-prime is equivalent to
checking if their equivalent univariate polynomials are co-
prime.

Theorem D.2. Let f(y),g(y) be two non-zero polynomi-

als in F[y]. Then ged(f(y),9(y)) = 1 if and only if
ngl(f(yz)ag(yl)) =1 for any (&S {1727 o >k}
Proof. First, assume for any ¢ € {1,2,-- ,k},

ged, (f(vi),9(y;)) = 1. We use contradiction to prove
that ged(f(y), g(y)) = 1. Assume u(y) = ged(f(y), 9(y))
is not constant. Let y; be a variable which is present in u(y).
By Theorem D.1, u(y;) |1 f(y:) and w(y;) |1 g(y:), which
contradicts that ged, (f(y:), 9(y:)) = 1.

Then, assume ged(f(y),g(y)) = 1. We also use
contradiction to prove that for any ¢ € {1,2,---,k},
gcd, (f(vi),9(yi)) = 1. Assume there exists i € {1,---,k}
such that v(y;) = ged,(f(yi),g(y:)) is non-trivial. Define
w(y) = molyi)o(ys) € Flyl. Clearly, w(y;) | f(y:) and

w(y;) |1 9(yi). Thus, there exists p(y;), ¢(y;) € F(y;)[y:] such
that

fly) =w(y)p(yi)  g(vi) = w(yi)q(y:)

Let s(y;) = lem(pp(yi), pq(y:)). Define p(y) = (
and q(y) = s(yi)q(y:). Apparently, p(y),q(y
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follows that

s(yi)f(y) =wy)p(y)  s(yig(y) = w(y)a(y)
Then the following equation holds

s(yi)ged(f(y),9(y)) = w(y)ged(p(y), a(y))

Due to Corollary D.3, ged(s(y.). ecd(p(y),a(y)) =
ged(s(yi), p(y),q(y)) = 1. Hence s(y;) [ w(y). Let w(y) =
<0y, According to Lemma D.2, w(y) is a non-trivial poly-

nomial in F[y]. Thus, @w(y) | ged(f(y),g(y)), contradicting
ged(f(y), 9(y)) = L. n

C. The Multivariate Case

Now, we are in the place of extending Lemma D.1 to the
multivariate case.

Proof of Lemma B.1. Note that if we substitute F with F(y;)
and ged with ged; in Lemma D.1, the lemma also holds.
Apparently, f(2),9(z2) € TF(y;)[z]. We will prove that
ged,(f(2),9(2)) = 1. By contradiction, assume r(z) =
gedy (£(2),9(2)) € F(yi)[2] is non-trivial. Let f(z) = L&)
and g(z) = rgzg Clearly, f(z) and g(z) are both non-zero
polynomials in F(y;)[z]. Then we can find an assignment to
yi, denoted by y, such that the coefficients of the maximum
powers of z in r(z), f(z) and g(z) are all non-zeros. Let 7(z)
denote the univariate polynomial acquired by assigning y; =
y; to r(z). Clearly, 7(z) is a common divisor of f(z) and g(z)
in F[z], contradicting ged(f(z), g(z)) = 1. Moreover, due to
gcd(s(y), t(y)) = 1 and Theorem D.2, ged, (s(yi),t(yi)) = 1.
Thus, by Lemma D.1, ged, (a(y;), 5(yi)) = 1. Since 4 can be
any integer in {1,2, - - - , k}, it follows that gcd(a(y), B(y)) =
1 by Theorem D.2. |

APPENDIX E
PBNA vs. ROUTING

In Section VIII, we characterized the optimal rates for
different network topologies and under the network model con-
sidered in this paper (precoding and RLNC). In this appendix,
we provide a comparison of the rate achieved by PBNA to
that achieved by routing. 8 Depending on the network structure
one scheme can perform better than the other. In Fig. 12, we
provide a taxonomy of the networks based on their structure
and we provide the rates achievable by routing and PBNA.
In particular, we classify networks based on the coupling
relations in Section V-C, repeated here for convenience.

e Type I: Networks in which at least one of the coupling
relations, p;(x) = 1 and p;(x) = n(x) (1 < i < 3),
is present. This network structure makes it information
theoretically impossible for any precoding-based linear
schemes to achieve a rate of more that % per session,
under the considered network model (precoding at the
edge and RLNC in the middle).

8We would like to point out that the two schemes are not directly
comparable under the model we consider. Routing involves intelligence inside
the network, whereas in our problem setup, the internal nodes have no
intelligence and can only perform random linear network coding. Therefore,
routing by definition is not included in the problem we study in this paper.
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Fig. 12. A comparison between PBNA and routing in terms of achievable
symmetric rate for various types of networks.

e Type II: Networks in which p;(x) ¢ {1,n(x)} for
1 < ¢ < 3, but one of the three mutually exclusive
coupling conditions, p;(x) = #()x) p2(x) =14 n(x),
and ps(x) = 1 + n(x), is present. The structure of these
networks makes it impossible for any precoding-based
linear schemes to achieve rate above % per user under
the considered network setting.

e Type I11I: Networks in which none of the above coupling

relations is present and PBNA achieves rate %

Type 111 networks, the ones with n(x) # 1, are the main
focus of this paper. For this type of networks, the performance
of routing varies for different networks. In contrast, PBNA
always achieves a guaranteed rate % per session.

The following points can be noted from Fig. 12:

e Type I networks can be further classified into two cases
based on the sparsity bound. When the sparsity bound
equals %, both PBNA and routing can only achieve a
symmetnc rate of 1 3 per user. An example of such network
is shown in Fig. 13a When the sparsity bound is greater
than %, routing can achieve a symmetric rate of % per
user. However, PBNA can only achieve a symmetric
rate of % per user, which is the optimal symmetric rate
achieved by any precoding-based linear schemes. Fig. 13b
illustrates such an example.

o Type II networks, due to the presence of the coupling

relations, p;(x) = 11(;2() or pa(x) = 1+ n(x) or
p3(x) = 14 n(x), will have a network structure where
each source has a disjoint path to its corresponding
receiver, making it possible to achieve a rate of 1 per
user with routing. In contrast, PBNA can only achieve a
symmetric rate of % for these networks. An example of
such a network is shown in Fig. 13c.

o For Type III networks, PBNA can achieve a symmetric
rate of 1. Consider the special case of n(x) = 1, it can be
shown (see Subsection E-A) that in these networks, there
are disjoint paths from each source to its corresponding
receiver, and routing can always achieve a symmetric rate
of 1 per user here. An example is shown in Fig. 13f.
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For the less constrained case of 7(x) # 1, however, the
performance of routing depends on additional properties.
We can see that there are networks in which routing
can only achieve a symmetric rate of % 3 (see Fig. 13d);
and there are also networks where routlng can achieve a
symmetric rate of one due to the rich connectivity in the
network (see Fig. 13e).

A. Characterizing the Routing Rate for Type II1 Networks
) with n(x) =1

In this subsection, we prove that for Type III networks with
7(x) = 1, routing can always achieve a symmetric rate of one.
We will first define the following polynomials:

L(x) = mi3(x)msa(X)me1(x) R(x) = mia(x)mas(x)msy (x)

Thus, 7n(x) = %. Given two distinct edges/nodes eq, e,
if there exists a directed path from e; to ez, we say e is
upstream of ey (or e; is downstream of es), and denote this
relation by e; < eo. Similarly, e; A£ vy implies that there is
no directed path from e; to es.

Given two subsets of nodes S, D C V, let EC(S; D) denote
the minimum capacity of all the edge cuts separating S from
D. Define the following subsets of edges:

Sié{eeE—{ai} ceeCy NGy, j #k,
j,ke{1,2,3} —{i}}

Dié{eeE—{Ti} ce€Cj NGy #k,
gk e{1,2,3} = {i}}

The following proposition was stated in [35], which gives
a graph theoretic interpretation of the condition 7(x) = 1.

Proposition E.1. L(x) = R(x) if and only if there exists two
distinct integers i,j € {1,2,3} such that S; N S; # 0 and
D;ND; # 0.

Lemma E.1. Let ¢, j be two distinct integers in {1, 2,3}, and

e2 € D;N D;. If S;NS; # 0, then there exists e; € S; N S;
such that e; < es or e = es.

Proof. Same as lemma 5 in [35] . |

Lemma E.2. For a given 4,5,k € {1,2,3} and i # j # k, if
SiNS; #0; D;ND; #0and EC({s4,s;};{di,dr}) > 1,
then there exists a path P!, from s; to d; such that for each

e € Pl sj ke, s A€, and € £d;, e £ dy.

Proof. Without loss of generality, suppose ¢ = 1, 7 = 2 and
k = 3. We can choose two edges e; € S; N Sy and ey €
Dy N Dy such that e; < es or e = es (from lemma 1). Now
consider the edge e, by definition cutting this edge would cut
the flows s1 — da, s1 — d3 , so — di and s9 — d3. Since we
also have EC({s;, s;};{di,dr}) > 1, we can see that there
should exist a path P;, such that e; & Pj,. Consider any edge
e e Py,
o If this edge €’ has d (or d3 ) as a downstream node, then
there will exist a path Pys (or Py3) such that e; & P (
or e; ¢ Pi3), which contradicts the definition of edge e;
(or eg ). Thus €' £ da, € £ ds.
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Fig. 13. Example networks. (a) shows a Type I network, for which PBNA and routing both achieve symmetric rate %. (b) shows another Type I network,

for which routing can achieve symmetric rate 5, and PBNA can only achieve symmetric rate
symmetric rate one, and PBNA can only achleve symmetric rate £. (d) shows a Type III network, for which routing can only achieve symmetric rate

3

. (c) shows a Type II network, for which routing can achieve

3 >

and PBNA can achieve symmetrlc rate 5. In (e), we show another Type IIT network, for which routing can achieve symmetric rate one, and PBNA can only
achleve symmetric rate 3. (f) shows a Type IIT network, for which routing can always achieve symmetric rate one, and PBNA can only achieve symmetric

rate -

o Similarly, if edge ¢’ is downstream of s, it would result
in a path Py; such that e; ¢ Py, which again will
contradict the definition of e;. Thus so 4 €.

o If edge €' is downstream of s3, it would result in a path
P31, where e; ¢ Psp. But by definition of ey, e € Psq,
this in turn would result in paths P/, and Pj5 that does
not go through edge e;. Thus s3 £ €.

Theorem E.1. Assume that all the senders are connected to
all the receivers via directed paths. If 7(x) = 1 and p;(x) # 1
for 1 <4 < 3, then routing can achieve the rate tuple (1,1, 1).

Proof. Without loss of generality, suppose ¢ =1, j =2,k =3
and S;NSy # 0 ; DyN Dy # (). From Lemma E.2, we can see
that there exist two disjoint paths, P; € Py and P> € Pso.
Therefore, w; and wy can transmit one unit flow through P;
and P, respectively. Meanwhile, w3 can route one unit flow
through the rest of the network. This implies that routing can
achieve the rate tuple (1,1, 1). |



