Detection of Gauss-Markov Random Field on Nearest-Neighbor Graph

A. Anandkumar1 L. Tong1 A. Swami2

1School of Electrical and Computer Engineering
Cornell University, Ithaca, NY 14853

2Army Research Laboratory, Adelphi MD 20783

2007 International Conference on Acoustics, Speech and Signal Processing

Supported by the Army Research Laboratory CTA
Introduction: Distributed Detection

Setup

- **Sensors**: transmit local decisions
- **Fusion center**: Global Decision
- **Classical data model**: Conditionally IID

Sensor signal field

- Correlated sensor readings
- Large coverage area
- Large number of sensors
- Arbitrary sensor placement

Influence of correlation structure on detection performance
Detection of Correlation

Binary hypothesis testing

\(\mathcal{H}_1: \) Correlated data vs. \(\mathcal{H}_0: \) Independent observations

Questions

- How to model correlation?
- Is there an analytically tractable performance metric?
- How does correlation affect performance?
- How does node density affect performance?

New tradeoffs not encountered in IID scenario
Detection of Correlation

Binary hypothesis testing

\(\mathcal{H}_1 \): Correlated data vs. \(\mathcal{H}_0 \): Independent observations

Questions

- How to model correlation?
- Is there an analytically tractable performance metric?
- How does correlation affect performance?
- How does node density affect performance?

New tradeoffs not encountered in IID scenario
Detection of Correlation

Binary hypothesis testing

H_1: Correlated data vs. H_0: Independent observations

Questions

- How to model correlation?
- Is there an analytically tractable performance metric?
- How does correlation affect performance?
- How does node density affect performance?

New tradeoffs not encountered in IID scenario
Summary of Results

Questions Answered

- How to model correlation?
 - Gauss-Markov random field

- Is there an analytically tractable performance metric?
 - Closed-form detection error exponent for Neyman-Pearson

- How does correlation affect performance?
 - Depends on variance ratio
 - If signal under \mathcal{H}_1 is weak (low variance), correlation helps
 - If signal under \mathcal{H}_1 is strong (high variance), correlation hurts

- How does node density affect performance?
 - More node density more correlation as edge length is reduced
Questions Answered

- How to model correlation?
 - Gauss-Markov random field

- Is there an analytically tractable performance metric?
 - Closed-form detection error exponent for Neyman Pearson

- How does correlation affect performance?
 - Depends on variance ratio
 - If signal under \mathcal{H}_1 is weak (low variance), correlation helps
 - If signal under \mathcal{H}_1 is strong (high variance), correlation hurts

- How does node density affect performance?
 - More node density more correlation as edge length is reduced
Summary of Results

Questions Answered

- How to model correlation?
 - Gauss-Markov random field

- Is there an analytically tractable performance metric?
 - Closed-form detection error exponent for Neyman Pearson

- How does correlation affect performance?
 - Depends on variance ratio
 - If signal under H_1 is weak (low variance), correlation helps
 - If signal under H_1 is strong (high variance), correlation hurts

- How does node density affect performance?
 - More node density more correlation as edge length is reduced
Questions Answered

- How to model correlation?
 - Gauss-Markov random field

- Is there an analytically tractable performance metric?
 - Closed-form detection error exponent for Neyman Pearson

- How does correlation affect performance?
 - Depends on variance ratio
 - If signal under H_1 is weak (low variance), correlation helps
 - If signal under H_1 is strong (high variance), correlation hurts

- How does node density affect performance?
 - More node density more correlation as edge length is reduced
Previous Results on Detection Error Exponent

I.I.D case
- Closed-form for optimal detector and threshold
- Error exponent - Stein’s lemma

Correlated case
- Stationary Gaussian process (Donsker & Varadhan, 85)
- General formulas for Neyman-Pearson exponent (Chen, 96)
- Closed-form for Gauss-Markov random process (Sung & etal, 06)

Limitations of the closed form
- Requires causality, valid in 1-D case
- Cannot handle random placement of nodes
Outline

1. Introduction
2. Gauss-Markov Random Field
3. Statistical Inference
4. Results on Error Exponent
Outline

1. Introduction

2. Gauss-Markov Random Field

3. Statistical Inference

4. Results on Error Exponent
Model for Correlated Data: Graphical Model

\[X(i-1)X(i)X(i+1) \]

\[X_{i-1} \perp X_{i+1} | X_i \]

Linear graph corresponding to autoregressive process of order 1

Temporal signals
- Conditional independence based on ordering
- Fixed number of neighbors
- Causal (random processes)

Spatial signals
- Conditional independence based on (undirected) **Dependency Graph**
- Variable set of neighbors
- Maybe acausal

Remark

Dependency graph is **NOT** related to communication capabilities, but to the correlation structure of data!
Markov Random Field

Definition: MRF with Dependency Graph $G_d(\mathcal{V}, \mathcal{E})$

$\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $G_d(\mathcal{V}, \mathcal{E})$ if \mathbf{Y} is Gaussian random field, PDF satisfies positivity condition and Markov property.

Markov Property

- A, B, C are disjoint
- A, B non-empty
- C separates A, B

$$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$$
Markov Random Field

Definition: MRF with Dependency Graph $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$

$\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$ if \mathbf{Y} is Gaussian random field, PDF satisfies positivity condition and Markov property.

Markov Property

- A, B, C are disjoint
- A, B non-empty
- C separates A, B

$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$
Markov Random Field

Definition: MRF with Dependency Graph $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$

$\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$ if \mathbf{Y} is Gaussian random field, PDF satisfies positivity condition and Markov property.

Markov Property

- A, B, C are disjoint
- A, B non-empty
- C separates A, B

$$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$$
Likelihood Function of MRF

Hammersley-Clifford Theorem (1971)

For a MRF \mathbf{Y} with dependency graph $\mathcal{G}_d(\mathcal{V}, \mathcal{E}_d)$,

$$\log \mathbb{P}(\mathbf{Y}; \mathcal{G}_d) = Z + \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c), \quad Z \triangleq e^{-\int \prod_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)},$$

where \mathcal{C} is the set of all cliques in \mathcal{G}_d and Ψ_C the clique potential.
Potential Matrix of GMRF

- Inverse of covariance matrix of a GMRF
- Non-zero elements of Potential matrix correspond to graph edges

```
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix}
```

\(\times : \) Non-zero element of Potential Matrix

Form of Log-Likelihood of zero-mean GMRF with potential matrix \(A \)

\[
- \log P(Y_n; G_d, A) = \frac{1}{2} (-n \log 2\pi + \log |A| + \sum_{(i,j) \in E_d} A(i,j)Y_iY_j + \sum_{i \in V} A(i,i)Y_i^2)
\]

Acyclic Dependency Graph

Given Covariance matrix, closed-form expression of likelihood
Outline

1 Introduction

2 Gauss-Markov Random Field

3 Statistical Inference

4 Results on Error Exponent
Hypothesis Testing for Independence

H_1: GMRF with dependency graph G_d

H_0: Independent observations

Model for Dependency Graph G_d under H_1

- Dependency graph is a proximity graph (edges between nearby points)
- Simplest proximity graph: nearest-neighbor graph

Definition of Nearest-Neighbor Graph

In NNG, (i, j) is an edge if i is nearest neighbor of j or vice versa

Additional assumptions

- Random placement of nodes (Uniform or Poisson distribution)
- Correlation function g: function of spatial distance
Optimal Detection

Log Likelihood Ratio (LLR) Detector

\[
\log \frac{P[Y_n, \mathcal{V}; \mathcal{H}_1]}{P[Y_n, \mathcal{V}; \mathcal{H}_0]} \leq \tau_n
\]

Neyman-Pearson Detection

Minimize Miss Probability

\[
P_M^\Delta = P[\text{Decision} = \mathcal{H}_0 | \mathcal{H}_1]
\]

with false alarm constraint

\[
P_F = P[\text{Decision} = \mathcal{H}_1 | \mathcal{H}_0] \leq \alpha
Outline

1. Introduction
2. Gauss-Markov Random Field
3. Statistical Inference
4. Results on Error Exponent
Error Exponent D

Closed-form of error probability not tractable

\[P_M \approx e^{-nD} \quad \text{Number of samples} \]

\[\log P_M \approx -nD \quad \text{Number of samples} \]

Sensors Placed in region with constant node density λ
Error Exponent \(D\)

Closed-form of error probability not tractable

\[
P_M \approx e^{-nD}
\]

\[
\log P_M \approx -nD
\]

Sensors Placed in region with constant node density \(\lambda\)
Error Exponent D

Closed-form of error probability not tractable

\[P_M \approx e^{-nD} \]

\[\log P_M \approx -nD \]

Sensors Placed in region with constant node density λ
Our Methodology

Approaches

- LLR as sum of node and edge functionals of dependency graph
- Error exponent through limit of LLR
- Evaluate limit using Law of Large Numbers for graph functionals
- Error exponent for performance analysis
Detailed Methodology

LLR as sum of node and edge functionals of dependency graph

\[
\text{LLR}(Y_n, G_d) = n \log \frac{\sigma_1}{\sigma_0} + \frac{1}{2} \left[\sum_{i \in V} \left(\frac{1}{\sigma_1} - \frac{1}{\sigma_0} \right) Y_i^2
+ \sum_{(i,j) \in E_{d}} \left\{ \log[1 - \frac{g^2(R_{ij})}{1 - g^2(R_{ij})}] + \frac{g^2(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i^2 + Y_j^2}{\sigma_1^2} - \frac{2g(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i Y_j}{\sigma_1^2} \right\} \right]
\]

Error exponent through limit of LLR

\[
D = \lim_{n \to \infty} \frac{1}{n} \text{LLR}(Y_n; G_d), \quad \mathcal{H}_0
\]

LLR is sum of graph functionals of a Marked process

\(Y_i\) are independent under \(\mathcal{H}_0\)
Detailed Methodology

LLR as sum of node and edge functionals of dependency graph

\[
\text{LLR}(Y_n, G_d) = n \log \frac{\sigma_1}{\sigma_0} + \frac{1}{2} \left[\sum_{i \in V} \left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_0^2} \right) Y_i^2 \right. \\
+ \left. \sum_{(i,j) \in E_d} \left\{ \log [1 - g^2(R_{ij})] + \frac{g^2(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i^2 + Y_j^2}{\sigma_1^2} - \frac{2g(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i Y_j}{\sigma_1^2} \right\} \right]
\]

Error exponent through limit of LLR

\[
D = \lim_{n \to \infty} \frac{1}{n} \text{LLR}(Y_n; G_d), \quad \mathcal{H}_0
\]

LLR is sum of graph functionals of a Marked process

\[Y_i\] are independent under \(\mathcal{H}_0\)
Detailed Methodology

LLR as sum of node and edge functionals of dependency graph

\[
\text{LLR}(Y_n; G_d) = n \log \frac{\sigma_1}{\sigma_0} + \frac{1}{2} \left[\sum_{i \in V} \left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_0^2} \right) Y_i^2 \right. \\
+ \sum_{\substack{(i,j) \in E \atop i < j}} \left\{ \log \left[1 - g^2(R_{ij}) \right] + \frac{g^2(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i^2 + Y_j^2}{\sigma_1^2} - \frac{2g(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i Y_j}{\sigma_1^2} \right\} \right]
\]

Error exponent through limit of LLR

\[
D = \lim_{n \to \infty} \frac{1}{n} \text{LLR}(Y_n; G_d), \quad \mathcal{H}_0
\]

LLR is sum of graph functionals of a Marked process

\(Y_i\) are independent under \(\mathcal{H}_0\)
Detailed Methodology

LLR as sum of node and edge functionals of dependency graph

\[
\text{LLR}(\mathbf{Y}_n, \mathcal{G}_d) = n \log \frac{\sigma_1}{\sigma_0} + \frac{1}{2} \left[\sum_{i \in \mathcal{V}} \left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_0^2} \right) Y_i^2 \right] \\
+ \sum_{(i,j) \in \mathcal{E}_d, i < j} \left\{ \log[1 - g^2(R_{ij})] + \frac{g^2(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i^2 + Y_j^2}{\sigma_1^2} - \frac{2g(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i Y_j}{\sigma_1^2} \right\}
\]

Error exponent through limit of LLR

\[
D = \lim_{n \to \infty} \frac{1}{n} \text{LLR}(\mathbf{Y}_n; \mathcal{G}_d), \quad \mathcal{H}_0
\]

LLR is sum of graph functionals of a Marked process

\(Y_i \) are independent under \(\mathcal{H}_0 \)
LLN for graph functionals (Penrose & Yukich, 02)

Pictorial Representation of result

Normalized sum of edge weights

\[\frac{\sum_{e \in E} \Phi(R_e)}{n} \]

Expectation of edges of origin of Poisson process

\[\mathbb{E} \sum_{X \in \mathcal{P}_\lambda} \phi(R_0, X) \]

Remarks

LLN states that limit is a localized effect around origin
Result on Error Exponent D

Applying LLN (Penrose & Yukich, 02)

$$D = \frac{1}{2} \left[\mathbb{E} \sum_{x \in \mathcal{P}_\lambda} f(g(R_0, x)) + \log K + \frac{1}{K} - 1 \right],$$

$$f(x) \overset{\Delta}{=} \log[1 - x^2] + \frac{2x^2}{K[1 - x^2]}, \quad K \overset{\Delta}{=} \frac{\sigma_1^2}{\sigma_0^2},$$

- R_0, x: edge-lengths in a NNG of origin of a homogeneous Poisson process of intensity λ

Closed-form Expression for D

$$D = \frac{1}{2} \left[\mathbb{E} f(g(Z_1)) - \frac{\pi}{2\omega} \mathbb{E} f(g(Z_2)) + \log K + \frac{1}{K} - 1 \right]$$

- Z_1, Z_2: Rayleigh distributed with Variances $(2\pi \lambda)^{-1}, (2\omega \lambda)^{-1}$
- $\omega \approx 5.06$: area of union of two unit radii circles, with centers unit distant apart
Questions

- How does correlation affect performance?
 - Depends on variance ratio
 - If signal under H_1 is weak (low variance), correlation helps
 - If signal under H_1 is strong (high variance), correlation hurts

- How does node density affect performance?
 - More node density more correlation as edge length is reduced

Exponential Correlation Function

\[g(r) = Me^{-ar}, \quad a > 0, 0 < M < 1 \]
Minimum Energy Routing for Optimal Inference

Minimize total energy of routing such that LLR is delivered to fusion center

Summary of Results

- Concept of dependency graph based routing
 - Exploit correlation to fuse data
- Proposed 2-approximation algorithm

Transmission scheme delivering LLR

Conclusion

Summary

- Derived a closed-form expression for error exponent of detection a GMRF with nearest-neighbor dependency
- Studied effect of correlation and node density on performance

Outlook

- Relax assumptions
- Extend to other dependency models
- Study Performance-Routing Energy tradeoff
Thank You!