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Abstract— There is a large and increasing amount of
unwanted traffic on the Internet today, including phishing,
spam, and distributed denial-of-service attacks. One way to
deal with this problem is to filter unwanted traffic at the
routers based on source IP addresses. Because of the limited
number of available filters in the routers today, aggregation
is used in practice: a single filter describes and blocks an
entire range of IP addresses. This results in blocking of all
(unwanted and wanted) traffic generated from hosts with
IP addresses in that range. In this paper, we develop a
family of algorithms that, given a blacklist containing the
source IP addresses of unwanted traffic and a constraint on
the number of filters, construct a set of filtering rules that
optimize the tradeoff between the unwanted and legitimate
traffic that is blocked. We show that our algorithms are
optimal and also computationally efficient. Furthermore,
we demonstrate that they are particularly beneficial when
applied to realistic distributions of sources of unwanted
traffic, which are known to exhibit spatial and temporal
clustering.

I. INTRODUCTION

It is well known that there is a large and increasing
amount of unwanted traffic on the Internet today, includ-
ing flooding and other denial-of-service attacks, scanning,
phishing, etc. The sources of unwanted traffic are typ-
ically compromised hosts infected with malicious code.
One mechanism that is used today to prevent unwanted
traffic from reaching the victims, is to use access control
lists (ACLs) at the routers to block packets that are
considered unwanted. ACLs are rules that can classify
packets according to a combination of fields in the IP
header. In this paper, we are interested in filtering based
on the source IP addresses of unwanted traffic [1]–[3].
We assume that these sources are known and given to
us as a (black)list. Several such blacklists are constructed
today from firewall and intrusion detection system logs,
made publicly available [4] or offered as a service [5],
[6]. ISPs [3] and organizations also maintain their own
private blacklists based on historical data relevant to their
own networks. Such systems that distinguish between the
unwanted and legitimate traffic are necessary to construct
blacklists but are considered out of the scope of this paper.
The input to the problem we study here is a blacklist, i.e.
a list of sources of unwanted traffic, that is considered
given and accurate.

Once a blacklist is given, filtering can be used as a
first, coarse but cheap, step of defense [1], [3]. Filtering
based on a blacklist involves constructing a set of ACL
rules to block unwanted traffic so as to meet certain
criteria. A router would ideally block each source in

a blacklist with a single ACL rule. Unfortunately, the
number of ACLs that can be instantiated in today’s
routers is orders of magnitude smaller than the number of
attackers. A practical approach used instead is to block
ranges (typically prefixes) of addresses. This aggregation
has the advantage that it reduces the number of filters and
the disadvantage that it also blocks traffic originating from
legitimate IP addresses in the blocked range. For a given
number of filters, the main tradeoff involved in filtering
is between the number of sources of unwanted traffic
successfully blocked and the legitimate traffic accidentally
blocked (also called “collateral damage”). Clearly, there
are several parameters that affect the effectiveness of fil-
tering, including the number of filters available compared
to the number of attackers, and the distribution of attack
sources in the IP address space.

The spatial and temporal behavior of sources of un-
wanted traffic have been studied recently by several
measurement papers [7]–[9]. These papers found that
the sources of unwanted traffic (or “Internet background
radiation” as it was called in [7]) exhibit clustering in the
IP address space, meaning that most sources of unwanted
traffic are concentrated in a few ranges. This has also
been consistent with our experience from studying various
blacklists of unwanted traffic [4], [5].

Motivated by this observation, we construct compact
rules that block entire ranges of source IP addresses.
In particular, we develop two algorithms that take as
input a blacklist of IP addresses and select ranges to
block. Algorithm FILTER-ALL-STATIC blocks all black-
listed sources so as to minimize the collateral damage.
Algorithm FILTER-SOME-STATIC blocks some of the
sources, trading-off a decrease in the number of black-
listed IP addresses filtered for a decrease in collateral
damage. Our algorithms are optimal with respect to the
above criteria and also computationally efficient. We also
extend these algorithms, to FILTER-ALL-DYNAMIC and
FILTER-SOME-DYNAMIC respectively, so as to deal
with time-varying blacklists, i.e., instances of a blacklist
at different times. The algorithms bring significant ben-
efit when applied to blacklists with inherent clustering
of addresses, as it is the case in practice [7]–[9]; we
demonstrate that through simulation using realistic models
for the spatial distribution of addresses in a blacklist [10].

This paper builds on our previous work [11], where we
looked at a related problem: how to filter attack sources
at the granularity of individual hosts or gateway tiers so
as to minimize the amount of legitimate traffic dropped,



subject to constraints in the number of filters and the
victim’s access bandwidth. The problem was a variation
of the two-dimensional knapsack and its solution had
high complexity. In this paper, we made the following
key observation: by thinking source addresses as numbers
in the range [0, 232 − 1], we can exploit the ordering in
the one-dimensional IP address space and group ranges
of consecutive addresses. This structure allows us to
develop greedy optimal algorithms, which is not possible
if arbitrary grouping of attackers is allowed. Furthermore,
filtering based on the IP source address is more in line
with the practice of filtering using ACLs and prefix-based
filtering.

The rest of the paper is structured as follows. Section
II gives the rationale behind the filtering problems studied
here, an overview of the algorithms, and introduces the
notation. Section III presents the four algorithms and
proves their optimality. Section IV applies the algorithms
to realistic models of input blacklists that exhibit differ-
ent degrees of clustering and density, and discusses the
tradeoffs involved. Section V concludes the paper.

II. PROBLEM FORMULATION

A. Definitions and Notation

Let us first define the notation, used throughout the
paper, also summarized in Table I.

Source IP addresses. Every IP address A is a 32-bit se-
quence and therefore can be thought as an integer number
in the range [0, 232 − 1]. Let us consider a set of consec-
utive IP addresses in that range, A = {A1, A2, . . . , Am},
in increasing order Ai < Ai+1. [Ai, Aj ] ⊆ A denotes the
set of consecutive addresses from Ai to Aj (included).

Blacklists. The input to our algorithms is a blacklist.
A blacklist (BL) is simply a list of N unique source
addresses that are known to be sources of unwanted
traffic. An address is considered “bad” if it appears in
a blacklist or “good” otherwise. The process that distin-
guishes good from bad traffic is necessary to construct a
reliable blacklist but is out of the scope of this paper. In
this paper, blacklists are considered known and accurate.
We indicate with B = {b1, . . . , bN} ⊂ {1, . . . , m} the set
of indices used to denote bad addresses, i.e., Abi , ∀i ∈
{1, 2, . . . , N} denote a single address reported in the
blacklist. Similarly, G = {g1, . . . , gm−N} ⊂ {1, · · · ,m}
is the set of indices used to denote good addresses. If
we have several instances of the blacklist at different
times, we use the notations BLti and Nti ,to indicate
the blacklist, and the number of bad addresses at time
ti respectively.

Filters. A filter, in this paper, is a rule that specifies that
all addresses in the range [Ai, Aj ] should be blocked. We
use the terms address range/cluster/filter interchangeably.
Fmax denotes the maximum number of filters that can
be deployed. f ≤ Fmax denotes the number of filters
actually used.

Address Weight. In the basic version of the problem,
an address is either bad or good, depending on whether it
appears or not in a blacklist respectively. In other versions

BL Blacklist: a list of “bad” addresses
N Number of unique addresses in BL

BLti Instance of the blacklist at time ti
Nti Number of addresses in BLti

B = {b1, . . . , bNti
} set of indices used for bad addresses

G = {g1, . . . , gm−Nti
} set of indices used for good addresses

C̃l,r Collateral Damage from filter [Al, Ar]
(or simply Cl,r) (when Al, Ar are both bad)

f Number of filters used
Fmax Maximum number of available filters

wi weight assigned to address Ai

Rl,r ∈ {0, 1} variable indicating if filter [Al, Ar] is used

TABLE I
NOTATION

of the problem, we may also want to assign a weight wi

to address Ai. This weight can capture the amount of
good/bad traffic originating from the IP address space that
is filtered out; or it can express probability/certainty about
the “goodness”/“badness” of the address, e.g. based on
historical data; or it can express policy for treating various
addresses, e.g. to ensure that an important customer is
never blocked. More details on the assignment of wi will
be provided later in the discussion of the FILTER-SOME-
* algorithms.

Collateral Damage. We use C̃l,r to denote the collateral
damages caused by the filter [Al, Ar]. In this paper, we
use this term as a measure of the number of legitimate
hosts/source IP addresses that are blocked by a filter.1 If
the filter [Al, Ar] is not used, or it does not encompass any
good address, C̃l,r = 0; otherwise, C̃l,r > 0. In general,
each of the addresses Al and Ar can be good or bad.
When both Al and Ar are bad addresses, (as it will turn
out to be in the optimal solution), we use Cl,r, to indicate
the collateral damage caused by the filter [Al, Ar].

The obvious choice for C̃l,r is simply the total number
of good addresses included between Al and Ar,

C̃l,r =
∑

l≤i≤r

IG(i) (1)

where, IG is the indicator function of G. However, when
weights are assigned to addresses, the collateral damage
is:

C̃l,r =
∑

l≤i≤r

wiIG(i) (2)

If wi = 1 for every “good” address and wi = 0 for every
“bad” address, we have that C̃l,r represents exactly the
number of good addresses in the interval [Al, Ar].

B. Rationale and Overview of Filtering Problems

Protecting a network from unwanted traffic is a com-
plex problem with several different aspects [1], [3]. The
first step is to distinguish good from bad sources, based
e.g. on intrusion detection systems and historical data; this
part is out of the scope of this paper and is considered as a
pre-processing step that constructs a blacklist. The second

1In contrast, in previous papers [1], [11], the term “collateral damage”
referred to the volume of legitimate traffic filtered out.



step, which is the focus of this work, is the construction
of a compact set of filtering rules, so as to achieve certain
goals. Goals may include a combination of the following
objectives: filter all (or most) bad addresses; cause low
or no collateral damage to legitimate traffic; stay within
the budget in the number of filters; apply a policy to
favor/punish specific addresses.

In this work, we formulated a family of filtering prob-
lems, each targeted to a different goal, and we develop
optimal greedy (thus computational efficient) algorithms
that achieve these goals. We expect these algorithms to be
used as building blocks in a larger filtering-based defense
system.

Below we summarize the rationale behind each consid-
ered filtering problem and their relation to each other.

P0 FILTER-ALL-STATIC: Given a blacklist and a num-
ber of filters F , filter out all bad addresses, so as
to minimize the collateral damage.
Rationale: Filter out all bad addresses in a blacklist
is the natural first step. The blacklist is constructed
by a pre-processing step, that has identified and
confirmed a consistent malicious behavior of the
addresses that must be filtered out. This problem is
interesting only if F < N , otherwise we could filter
out each individual address with a single filter. We
develop a greedy optimal algorithm that solves this
problem.

P1 FILTER-SOME-STATIC: Given a blacklist and a
number of filters F , filter out some bad addresses,
so as to optimize the achievable tradeoff between
collateral damage (false positives) and unfiltered
bad addresses (false negatives).
Rationale: The requirement of P0 to filter out all
the source IPs is too strict and may lead to large
collateral damage if bad addresses are too spread
apart in the address space. P1 differs from P0 in
that it tolerates leaving some bad sources unfiltered
in exchange for a reduction in collateral damage.
Instead, it tries to find and block only those subsets
of bad addresses that have the highest negative
impact on the network performance. We develop a
greedy optimal algorithm thats solves this problem.
In the formulation, we provide a knob (namely, the
weight wi assigned to an address i) that allows the
administrator to express how much she values each
address and thus control the tradeoff achieved by
the optimal algorithm.

P2 FILTER-ALL-DYNAMIC: Given a set of blacklists
BL = {BLt0 , BLt1 , · · · }, and number of filters, F ,
find a set of filter rules {St0 , St1 , · · · }, such that Sti

solves problem P0 when the input list is BLti .
Rationale: In practice, ISPs and organizations con-
tinuously collect data and update their blacklists
over time. P2 is a filtering problem that updates the
filtering rules, according to a time-varying black-
list. Similarly to P0, the goal is to filter out all
bad addresses at all times, at minimum collateral
damage. The trivial solution to this problem is to

iteratively solve P0 for every instance of the black-
list. However, the temporal correlation in successive
blacklists [8] can be exploited to design efficient
greedy algorithms, similar to P0.

P3 FILTER-ALL-DYNAMIC: Given a set of blacklists
BL = {BLt0 , BLt1 , · · · }, and number of filters, F ,
find a set of filter rules {St0 , St1 , · · · }, such that Sti

solves problem P1 when the input list is BLti .
Rationale: P3 is the version of P1 that deals with a
time-varying blacklist: it adapts the filtering rules,
according to a time-varying blacklist so as to filter
some, but not all, bad addresses.

For each of the above problems, we develop a greedy
optimal algorithm.

III. FILTERING PROBLEMS AND ALGORITHMS

In this section, we give the detailed formulation of each
problem and the optimal algorithm that solves it.

A. FILTER-ALL-STATIC

Problem P0: Given a blacklist, BL =
{Ab1 , Ab2 , ...AbN

}, and a number of filters Fmax < N ,
find a set of filters [Al, Ar], l, r = 1, . . . , N s.t. each bad
address is covered by some filter [Al, Ar] and the total
collateral damage from all filters is minimized, i.e.,

min
∑

l≤r

C̃l,r

1) Optimal Filtering - Dynamic Programming (DP)
Formulation: Let OPT (f, n) be the optimal solu-
tion to the problem, i.e., blocking n bad addresses
{Ab1 , Ab2 , ...Abn}, using up to f filters, with minimum
collateral damage. We can compute OPT (f, n) from
the optimal solution that blocks the subset of addresses
{Ab1 , Ab2 , ...Abn−1}: either we extend the f th filter from
Abn−1 to also cover Abn , thus filtering out the addresses
between Abn−1 and Abn and adding cost CAbn−1 ,Abn

;
or we use the optimal assignment of f − 1 filters to
addresses {Ab1 , ...Abn−1} and assign one filter to address
Abn

2. Below is the corresponding dynamic programming
equation:

Algorithm 1 FILTER-ALL-STATIC, DP Formulation
1: for f = 1, ...F do
2: for n = 1, ..N do
3: OPT (f, n) = min{OPT (f, n − 1) +

CAbn−1Abn
, OPT (f − 1, n− 1)}

4: end for
5: end for

Both the running time complexity and the memory
space required by DP are O(NFmax), corresponding
to the steps required to fill up the table and compute
OPT (Fmax, N).

2These are the only two possible cases, as it can be proved by
contradiction, using the same argument as in the proof of the Greedy
algorithm. Due to lack of space, we don’t repeat it here.



2) Optimal Filtering - Linear Programming (LP) For-
mulation: Below we also give an alternative formulation
as a binary optimization problem. The reason is that this
formulation can be extended to a similar formulation of
P1. Let Rl,r ∈ {0, 1} be decision variable equal to 1 iff
the filter [Al, Ar] is used; 0 otherwise. Then the following
program solves P0:

min
∑

l≤r

C̃l,rRl,r (3)

∑

l≤r

Rl,r ≤ Fmax (4)

∑

l≤i≤r

Rl,r ≥ 1 ∀i ∈ {b1, b2, . . . , bN} (5)

Rl,r ∈ {0, 1} ∀l, r ∈ {1, 2, . . . , m} (6)

Eq.(4) imposes that at most Fmax filters should be
used. Eq.(5) states that for every bad address i ∈ B
there should be at least one filter, Rl,r, for some l and
r, blocking it. Eq.(3) represents our objective function:
the sum of collateral damages caused by all the deployed
filters. Note that, the summation in Eq.(3) is over indices
l ≤ r for symmetry. Furthermore, since we are looking for
the minimum and C̃l,r ≥ 0, the optimal solution obtained
by solving the LP program will not contain intervals that
overlap on good addresses.

3) Optimal Filtering - Greedy Algorithm: The idea
is to compute the “distances” (i.e., collateral damages)
between consecutive bad addresses, and sort the resulting
vector. Alg.2 picks the two closest addresses and covers
them with a single filter. Then, it iteratively repeats this
step until all bad addresses are filtered. An example is
shown in Fig.1.

Algorithm 2 FILTER-ALL-STATIC, Greedy Algorithm
1: Compute Cbi,bi+1 , i = 1, ..., N − 1
2: Sort the resulting vector C in increasing order.
3: Pick up the first N − F components.
4: Add/extend a filter for each selected interval.

The rationale behind this algorithm is that we want to
cover all addresses while filtering out the smallest possible
number of addresses. The ordering of all addresses on a
single dimension, allows for this efficient solution.

Theorem 3.1: The greedy algorithm (Alg.2) computes
an optimal solution to P0 Problem.

Proof: Assume that we have enough filters to block
all bad addresses: F = N and we assign a filter to
each bad address. This is clearly an optimal solution with
zero collateral damage. However, it is also an infeasible
solution because, in reality, we have Fmax < N filters.
The algorithm then proceeds by decreasing the number
of filters by one in each step, while maintaining the
optimality of the solution, until it reaches a feasible
solution F = Fmax.

In particular, assume that we want to decrease the
number of filters from F = N to F = N − 1. We insert
the filter that causes the smallest amount of collateral

f =N
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Fig. 1. Greedy algorithm for FILTER-ALL-STATIC. For f = N , one
filter is assigned to each attack source. For f = N − 1, the two closest
addresses (here Ab3 and Ab4 ) are merged into a single range (R34)
and assigned a single filter. The same process continues iteratively for
fewer filters.

damage; this is a filter between the two addresses with
the smallest distance, e.g. R34 in Fig.1. It is easy to see
that the obtained solution is still optimal in the case of
N − 1 filters. Now, imagine that we “shrink” the newly
added filter in a single point; e.g. in Fig.1 Ab3 and Ab4 are
merged into Ab34 . Then there is no conceptual difference
between the first solution (with N filters) and the new
solution (with N−1 filters). Thus, we can repeat the same
procedure: to reduce again the number of filters by 1, we
simply pick the 2nd smaller element in the sorted array
C̃ (e.g. filter RN−1,N in Fig.1), and so on. By induction,
the above argument proves that Alg.2 is optimal.

Complexity. In the above construction, at each step, the
number of filters will decrease exactly by one. Therefore,
if we start with N filters, we need to perform exactly
N−Fmax steps. The computational cost is due to sorting
the vector of distances between addresses, C, which is
O(N log(N)). In practice, the values in C are not all
distinct. Thus, sorting the distances can be done in even
faster ways leveraging the redundancy of equal/similar
values.

Since the greedy algorithm has low complexity and
computes the optimal, this is the algorithm to use for
problem P0, for all practical purposes.

B. FILTER-SOME-STATIC

Problem P1: Given a blacklist of N bad IP addresses,
a number of filters Fmax < N , and a weight wi as-
sociated with every source address, assign filters so as
to optimize the tradeoff between: (i) the total collateral
damage and (ii) the total benefit associated with blocking
bad addresses.

In section II-A, we introduced the weight wi as-
signed to an address Ai as a measure of its “bad-
ness”/“goodness”. W.l.o.g., let us assign a weight to every
address according to the following convention: wi ≥ 0
for every address not in the blacklist (“good” address),
and wi ≤ 0 otherwise (“bad” address). In the latter case,
we can interpret wi < 0 as the benefit associated with
blocking a single bad address Ai. Examples of wi in the



case of bad addresses include the number of reports from
this IP, the amount of traffic sent, etc. wi = 0 indicates
that we do not account for the specific address, whether
it is good or bad.

Problem P1 can be formulated as follows:

min
∑

l≤r

∑

l≤i≤r

wiRl,r (7)

∑

l≤r

Rl,r ≤ Fmax (8)

∑

(i,j) : i≤r and j≥l

Ri,j ≤ 1 ∀l, r ∈ {1, 2, . . . , N} (9)

Rl,r ∈ {0, 1} ∀l, r ∈ {1, 2, . . . , N} (10)

This is similar to the LP formulation of P0, but with
some major differences. Eq.(5) has been removed, since
we no longer require all IPs to be blocked. In addi-
tion, since the coefficient associated with every range,∑

l≤i≤r wi can be either positive or negative, the argu-
ment used in P0 to prove the non-existence of overlapping
ranges in the optimal solution, does not hold anymore.
For this reason, we need to explicitly introduce Eq.(9)
which prevents overlapping ranges. Without Eq.(9) the
above is exactly a knapsack 0/1 problem, with items
the filters/ranges. This is, in general, a well-known NP-
hard problem. In addition, Eq.(9) introduces correlation
between the knapsack items, since the choice of a bigger
interval excludes, for instance, to jointly select any of the
intervals included in it.

However, by leveraging the peculiarities of the problem
(such as the fact that all address can be represented as
points in a 1-dimensional space), we can design a greedy,
thus computationally efficient, algorithm to solve P1. The
new algorithm is described in Alg.3 and it is designed
along the lines of Alg.2.

Assume that we have as many filters as the number of
bad addresses, F = N . The optimal solution (of negative
value) will use a filter for every single bad address. If
we want to use N − 1 filters, the optimal solution will
connect two bad addresses, if and only if there is gain
in the objective function by extending an existing filter;
otherwise, a bad address (the one with the highest value)
will be left unblocked. We can state this condition by
observing that there is gain in connecting two consecutive
bad addresses, if and only if:

∃ i ∈ {1, ..., N} s.t.
∑

bi≤j≤bi+1

wjIG(j) ≤ |max{wbi , wbi+1}|

If such an index i does not exist, P1 will simply block
(N−1) IP addresses, and leave the address with the higher
weight unblocked.

More formally, let us denote with Ranges the set of
filter rules constructed, and with D the set of distances
(collateral damages) between consecutive filters. Start-
ing from an optimal solution with Fmax = N , Alg.3
iteratively decreases the number of used filters, while

Algorithm 3 FILTER-SOME-STATIC, Greedy Algorithm
1: Ranges = {Rj,j : j ∈ B}
2: D = {Cj,j+1 : j ∈ B}
3: F = N
4: Z =

∑
j∈B wj

5: while f > Fmax do
6: w = max Ranges
7: I = min D
8: if |w| < I then
9: Let (̄i, j̄) be such that: w = Rī,j̄

10: Ranges = Ranges \ {Rī,j̄}
11: if Cl,̄i, Cj̄,r ∈ D then
12: D = D \ {Cl,̄i, Cj̄,r}, where l, r ∈ B
13: D = D ∪ {Cl,r}, Cl,r = Cl,̄i + Cj̄,r + w
14: end if
15: Z = Z − w
16: f = f − 1
17: else
18: Let (̄i, j̄) be such that: I = Cī,j̄
19: D = D \ {Cī,j̄}
20: if Rl,̄i, Rj̄,r ∈ Ranges then
21: Ranges = Ranges \ {Rl,̄i, Rj̄,r}, where l, r ∈ B
22: Ranges = Ranges∪{Rl,r}, Rl,r = Rl,̄i + Rj̄,r + I
23: Z = Z + I
24: F = F − 1
25: end if
26: end if
27: end while

preserving the optimality of the solution, until a feasible
solution is reached (i.e., f ≤ Fmax).

Lines 6-7 check for the maximum and the minimum
of the lists Ranges, and D, respectively. At every step
of the while loop (Line 5), a greedy decision is taken: a
single filter is removed, or two different filters are merged
together (whenever they exist), depending on which re-
sults in the lowest increase in the objective function.
Specifically: if |w| < I , the filter Rī,j̄ corresponding to
the value w, i.e., Rī,j̄ = w, is removed from the list of
used filters (Line 10), and the list of distances between
filters, D, is correspondingly updated: if two intervals,
one on the left and one on the right of Rī,j̄ , are found,
they are merged together, resulting in the larger interval
Cl,r (Lines 12-13). Otherwise, the smallest distance, I , is
selected, and the two adjacent filters (if they exist) are
merged in a single filter which encompasses I (Lines
19-22). Unless the selected interval, I , reaches one the
extrema of the address space, and thus it is not actually
possible to merge two filters, the above algorithm, at every
step, reduces the number of used filters, f , by exactly one.

Finally, we observe that, the objective function, defined
in Eq.(7), can be split into two contributions

min
∑

l≤r

( ∑

l≤i≤r,

wiIG(i) +
∑

l≤i≤r

wiIB(i)

)
Rl,r (11)

thus allowing for an intuitive cost/benefit analysis. For
every address range, the first term represents the cost of
introducing that filter, which in our case is the collateral
damage, i.e., the (weighted) sum over all good addresses
that are accidentally blocked. The second term represents
the benefit from imposing filter Rl,r; this term depends
on the number of bad addresses blocked by the filter and
on the weight assigned to each of them. The tuning of
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Fig. 2. [Part of the proof of optimality of P1.] Z is the optimal solution
using f filters. Let Z̃ be an optimal solution for f − 1 filters, different
than the solution constructed inductively from Z (i.e., merging two filters
or releasing a single filter). This leads to a contradiction.

wi allows the network provider to control the outcome of
the algorithm, as it will be discussed later.

Theorem 3.2: Alg.3 computes an optimal solution to
P1.

Proof: In O(N − F ) iterations of the while cycle,
the number of filters is reduced from N to F ≤ Fmax,
thus obtaining a feasible solution for P1.

We now prove, by reverse induction, that for every F ≥
0, the above algorithm produces an optimal solution to
P1. When F = N , Z =

∑
j∈B wj represents an optimal

solution for P1, which blocks all the bad IPs, without
collateral damage; clearly, there is no better solution.

To prove the inductive step, we first observe that given
two optimal solutions of P1, SOPT

n , and, SOPT
m , with

n and m, filters respectively, if m < n, then we also
have SOPT

n ≤ SOPT
m . By contradiction, assume SOPT

n <
SOPT

m ; having at most n > m filters we can use m of
them to reproduce the same solution obtained with m
filters, SOPT

m . Moreover, since n < N , the remaining
n −m filters can be used to cover n −m bad IPs, each
of them with weight, wj ≤ 0, ∀j ∈ B. Thus, we have
constructed a solution with n filters Sn such that: Sn ≤
SOPT

m . Recalling that, SOPT
n ≤ Sn, we conclude that

SOPT
n ≤ SOPT

m . This implies that when searching for the
optimal solution with F ≤ Fmax filters, we can assume
that we are using exactly F = Fmax filters.

Now, assume that the above algorithm produces an
optimal solution, Z, with F = n, where n = 1, 2, ..., N .
This implies that an optimal solution, Z∗, can be con-
structed at the next step F = n − 1. In order to reduce
the number of filters from n to n − 1 we are given
exactly two options: either (i) release a filter or (ii) merge
two neighboring filters. Among these two options, Alg.3
chooses the one that leads to the smallest increment in
the objective function, thus guaranteeing the optimality
of the solution.

A different solution, that is not constructed using any
of the two aforementioned options (i.e. without neither
merging two different filters, nor completely releasing
an existing filter) does not decrement F . We can prove
this by contradiction. Assume that there exists an optimal
solution with n − 1 filters, that is constructed with a
completely new reallocation of filters with respect to Z,
e.g. by partially extending/releasiing a filter as shown in
Fig2. Let us denote this solution with Z̃. We show that

Z̃ cannot be an improved solution, i.e., Z̃ ≥ Z. By the
definition of Z̃, there is at least one filter, RZ̃ , which
does not coincide neither with a single range in Z, nor
with the possible result of a merging operation of two
ranges in Z, Fig.2. Then, if RZ̃ covers a portion of the
address space that is not covered in Z, it is possible to
construct a new solution Z̃ ′ by shortening RZ̃ . In fact all
ranges between bad IPs which are not covered in Z, and
that do not cause the merge of two different ranges, give
a non-negative contribution to Z. This is easily seen by
contradiction: if it was not true (i.e., they give a negative
contribution to Z), then we could add it to Z and thus
obtain a new solution Z ′ which uses the same number
of filters as Z, but such that Z ′ < Z, which violate
our assumption on the optimality of Z. With the same
argument we can prove that if RZ̃ covers only a portion
of the address space covered by in Z, then we can extend
RZ̃ and thus obtain a new solution Z̃ ′, such that, Z̃ ′ ≤ Z̃.
Iterating these steps, we obtain a new solution Z̃ ′ which
is or strictly lower than Z̃, or is exactly the same solution
we can obtain from Z releasing a filter, or merging two
of them.

1) Complexity: Given a pre-processing step in which
Ranges, and D are sorted, Lines 6-7, can be performed in
O(1) time. Under this assumption, Lines 12-22 perform
insertion and removal operations from sorted lists and,
each of them can be performed in O(log N). With a
simple modification to Alg.3 it can be easily proved
that N − Fmax iterations are required to converge to
the optimal solution. Thus the running time complexity
of Lines 5-27 is O((N − Fmax) log N), and the overall
complexity of Alg.3 results bounded by the maximum
between this cost and the sorting cost of the input vectors,
(e.g. O(N log N) using standard techniques).

2) How to select the wi’s?: The framework we intro-
duced provides the network provider with the flexibility
to control the output of the optimal solution, and therefore
to allocate filtering resources according to her needs and
preferences. The main knob to configure is the weight
wi assigned to each address Ai that can be used to
express preference per individual address. For example,
the weights wi can be tuned to assigned different access
“privileges” to different users (e.g. higher positive weights
to “trusted” or “preferred” customers); and conversely
they can also be used to make sure to block IPs that are
responsible for the highest number of malicious activities
(by assigning smaller negative weights to those IPs).

Below are some options and guidelines for possible
assignments of wi based on Eq.(11):

• In general, wi ≥ 0 should be assigned to good ad-
dresses, wi ≤ 0 should be assigned to bad addresses.
For extreme flexibility/granularity, one could assign
wi to each individual address or blocks of addresses.
In fact, what matters is the ratio of weights between
good and bad addresses and not the absolute values.
E.g. one could assign wi = 1 to all good addresses
and wi = W < 0 to all bad addresses to express
their relative importance.



• One simple case is: wi = 1 for all good addresses
and wi = −∞ for all bad addresses. The objective is
then to minimize the collateral damage

∑
wi, while

filtering all bad address, and problem P1 degenerates
to P0.

• One could assign wi = 0 to show indifference to the
treatment of those addresses.

• Other possible assignments of the weights can be
driven by: historical data/reputation systems (e.g.
assign lower negative weight to IPs with worst
reputation, or that showed up repetitively in the
past instances of the blacklist); by a policy of the
network operator (e.g. protect important customers
from being accidentally blocked: the higher positive
weight to those addresses the higher the probability
that they will not be blocked); by the volume of
good/bad traffic exchanged and/or by the severity of
attacks launched.

3) Comparison between P1 and a P0-based heuristic:
Given a blacklist, P0 aims at filtering out all bad addresses
in it at the minimum possible collateral damage. In
contrast, P1 blocks only some addresses trying to find
a tradeoff between the bad traffic left unfiltered and the
collateral damage inevitably when F < N . An alternative
to P1 for trading-off good vs. bad addresses could be
to first select a specific subset of IPs, S ⊆ BL, (e.g.
the subset of heavy hitters) and then run P0 on this
specific subset. To allow a fair comparison in terms of
the solutions provided by this method, and the solutions
of P1, in the following of this section, we assume that the
objective function of P0 includes a constant term given by
the sum of weights assigned to all bad addresses included
S 3

Given any subset of the blacklist, S ⊂ BL, the solution
of P1 given the whole blacklist, ZP1(BL), is less or
equal to the solution of P0 given S as an input list,
ZP0(S), ∀S. We now prove that it exists a subset of
BL such that also the reverse relation holds true, that
is, ∃S∗ ⊂ BLs.t. ZP0(S∗) ≤ ZP1(BL). Obviously
this relation does not hold ∀S ⊂ BL; however, we can
construct S∗ by first running P1 on BL. Let us denote
the set of filters constructed by P1 as S̄. By Theorem 3.1,
running P0 on S̄ gives a solution that minimizes collateral
damages while filtering out all addresses in S̄. Given this
construction, the two solutions, ZP0(S̄) and ZP1(BL) are
guaranteed to have the same amount of bad traffic filtered
out; moreover, since ZP0(S̄) has the smallest amount of
collateral damages, we have: ZP0(S̄) ≤ ZP1(BL).

In conclusion, the technique discussed here represents
a heuristic method for P1. Only when an optimal subset
S∗ is somehow selected, this approach is as effective as
Alg.3. However, since the complexity of this heuristic
is lower-bounded by the complexity of Alg.2, which
is asymptotically equal to the complexity of Alg.3, we
conclude that, Alg.3 is a powerful method even compared
to this heuristic.

3In fact, all these addresses will be filtered out in any feasible
solutions of P0.

C. FILTER-ALL-DYNAMIC

Let us consider a time-varying blacklist, meaning that a
new instance of the blacklist is available in each time slot.
By appropriately choosing the timeslot, we can assume
w.l.o.g. that in each time slot, either one new bad address
arrives, or an old bad address departs. The goal is similar
to P0: to filter out all bad addresses at minimum collateral
damage in every time slot.

In the first time slot, we run the greedy algorithm
FILTER-ALL-STATIC and we create a sorted list of
collateral damage for filters of consecutive bad addresses.
In subsequent time slots, we update the sorted list and our
filtering choice by exploiting the greedy property. This
is very efficient: it is basically sufficient to add/remove
values from the sorted list, C, of collateral damages
caused by filters of the type: [Abi

, Abi+1 ] (consecutive
bad addresses). The new address Ai is located between
bad address Ali and Ari

, such that Ali < Ai < Ari
.

A symmetric argument holds for an old bad address, Ai,
that is removed from the blacklist, N ← N −1. The only
difference in this case, is that we basically remove from
C the two old values Cli,i and Ci,ri , and add a single
new value Cli,ri in the correct position. The notation
C[k] indicates the k-th component of the vector C before
the updating step was performed (i.e., before Ai was
added/removed). OPT indicates the value of the optimal
solution before the updating.

Algorithm 4 basically keeps the list sorted, and evalu-
ates the value of the new optimal solution. The optimality
of the new solution is based on the properties of P0,
described in previous section.

Algorithm 4 FILTER-ALL-DYNAMIC, Greedy Algo-
rithm
A new bad address, Ai, arrives: N ← N +1

1: Let Ili,ri
be the position of Cli,ri

in the vector C,
i.e., Cli,ri

= C[Ili,ri
]

2: Remove Cli,ri
from the sorted vector C.

3: if Ili,ri
≤ N − F then

4: OPT = OPT - Cli,ri

5: end if
6: Insert the two new values Cli,i and Ci,ri in the correct position.

Let, Ili,i, and Ii,ri be their positions in C respectively.
7: if max{Ili,i, Iri,i} ≤ N − F then
8: if Ili,ri

< N − F then
9: OPT = OPT + Cli,i + Cri,i − C[N − F ]

10: else
11: if Ili,ri

= N − F then
12: OPT = OPT + Cli,i + Cri,i − C[N − F − 1]
13: else
14: OPT = OPT + Cli,i +Cri,i−C[N−F ]−C[N−F −1]
15: end if
16: end if
17: else
18: if min{Ili,i, Iri,i} ≤ N − F then
19: if Ili,ri

≤ N − F then
20: OPT = OPT +min{Cli,i, Cri,i}
21: else
22: OPT = OPT +min{Cli,i, Cri,i} − C[N − F ]
23: end if
24: end if
25: end if

Handling batch arrivals/departures. If in one timeslot,
several bad addresses arrive and/or depart together, then



we can apply the above algorithm for each individual
arrival and departure. As long as the number of entering
and departing addresses remains smaller than N , the
computational cost of updating the list remains smaller
than the cost of re-running P0 from scratch for every
instance. However, it is possible, that a more efficient
variation may exist for batch arrivals/departures.

Clearly, the efficiency of Alg.4 depends on the charac-
teristics of the time-varying blacklist, i.e., on how much
blacklists change from one time slot to the next. One
extreme case is that the blacklist never changes: then we
run the greedy algorithm for P0 once. The other extreme
is that the blacklist is always completely different from
one time slot to the next; then we run the greedy algorithm
for P0 for every instance. In practice, it is has been
observed that there is temporal correlation in blacklists
[8], which the Alg.4 should be able to exploit to make
greedy decisions.

D. FILTER-SOME-DYNAMIC

Similarly, we can design a time-varying version for P1

to leverage the temporal correlation between successive
time instances of the blacklist and thus be computationally
more efficient than running Alg.3 form scratch on every
instance of the blacklist. Below we only outline the main
ideas.

Assume, that a new address is added to the blacklist.
The key idea is that, given an optimal solution of P1,
any filter cannot be further extended without causing
the objective function to increase or remain at the same
value. When a new address, Ai, is added to the blacklist
we can assume to temporarily place a filter on it, with
associated coefficient equal to wi. Then, we can extend it
until there exist a possible extension (to the left, or to the
right of the filter) which causes the coefficient associated
with that filter (i.e., the sum of weights of good and
bad addresses covered by the filter) to decrease, and thus
possibly improve the objective function. When no further
extensions are possible, we are in one of two possible
situations: we have merged the newly created filter with
an existing one, and in this case the algorithm stops; or
we have created a new filter disjoint from all other filters.
In the latter case we need to remove a filter. This is done
by removing the filter with the smallest contribution to the
objective function (it can be either the filter just created
with this process or an existing one).

Similarly, when an address is removed from the black-
list we have two possible cases, depending on whether
the address was filtered in the original solution or not.
In the latter case, no modification is required. However,
if the address removed from the blacklist was included is
some filter, say Rli,ri , we must ensure that the coefficient
associated with Rli,ri is still the smallest among all
unused filters in Ranges. Otherwise, the one which gives
the smallest contribution must be added instead of Rli,ri .

IV. PERFORMANCE ANALYSIS

In Section III, we designed greedy algorithms and
proved their optimality. However, the performance of each

algorithm strongly depends on the number of available
filters and also on the inherent characteristics of the input
blacklist, namely the density and the degree of clustering.
Clearly, the higher both of these metrics are, the better the
tradeoff between collateral damage (false positives) and
unfiltered bad addresses (false positives). E.g. a blacklist
with N addresses spread at equal distances 232/N apart
is the worst case input; consecutive addresses is the best
case, as they can be blocked with a single filter. The
interesting question is then how do actual blacklists look
like and how do our algorithms perform in practice.

There is a number of measurement papers that have
studied the structure of addresses in IP traffic, both wanted
[10] and unwanted [7]. With regards to the sources of
unwanted traffic, which are of interest here, they all
observed clustering in the sense that a few prefixes contain
most of sources [7]–[9]. In particular Barford et al. [7]
showed that sources of unwanted traffic exhibit multi-
fractal behavior and provided a probabilistic model for
generation of such addresses. This work built on and
extended the work by Kohler et al. [10], which modeled
the spatial distribution of destination IP addresses in
legitimate traffic, showed that they exhibit multifractal
behavior and provided a deterministic way to generate
such a distribution using Cantor sets.

In our evaluation, we use the multi-fractal model from
[10], which is an extreme case of the model in [7],
to generate blacklists with realistic spatial distribution
of sources in the IP address space. In particular, the
following parameters of the model in [10] are of interest:
• 0 ≤ h ≤ 1 controls the fractal exponent and is set

to h = 1/3, as in canonical Cantor dust.
• 0 ≤ m0 ≤ 1 controls the spatial variabil-

ity/clustering, which is the crucial parameter in the
filtering problem. We considered a range of m0 ∈
{0.65, 0.7, ...0.95}, where higher m0 means higher
clustering.

For computational reasons we considered 1/1000 of the
entire address space (232/1000 addresses). We varied
the degree of clustering via the parameter m0. Instead
of using h, we varied the density d, i.e., the % of the
total address space considered being bad, by varying the
number of bad addresses N . We considered a low density
(N = 5000 bad addresses leading to density d = 0.001)
and a high density (d = 0.1) scenario.

We generated several blacklists with different charac-
teristics and simulated the algorithms for the static case,
namely FILTER-ALL-STATIC, FILTER-SOME-STATIC.
We are interested in several performance metrics: (i) the
collateral damage or “CD” (or false positives) and (ii) the
number of unfiltered IPs (false negatives) (iii) number of
filters F used. Below are the results.

A. Performance of FILTER-ALL-STATIC
In Fig.3, we consider input blacklists with varying

degrees of clustering, for both low and high density of
bad addresses.

In Fig.3(a), we show the performance of FILTER-ALL-
STATIC for a blacklist with low density d = 0.001.
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Fig. 3. Performance of FILTER-ALL-STATIC (P0) for blacklists with
various densities and degrees of clustering

As expected for higher degree of clustering (i.e., higher
m0), the algorithm performs better. Moreover, we observe
that higher gains are obtained when a small amount
of collateral damage is allowed (CD

N ' 1). When the
collateral damage is high, all solutions use a very low
number of filters (F ∈ [1, 10]), and there is no substantial
difference in terms of collateral damage. When collateral
damage is low (CD

N ¿ 1 ), m0 does not have a significant
effect either. This is due to the way bad IPs are distributed
in the address space and also due to the requirement to
cover all bad IPs. Indeed, in the case of a low density,
regardless of the degree of clustering degree, there will
always be some isolated IPs located “far away” from the
main bulk of bad IPs; covering those addresses causes a
large portion of the good address space to be filtered.

The horizontal line shows the point where the ratio
between collateral damage and filtered IPs is CD

N = 1.
At the top right of Fig.3(a), we also show the worst case
input blacklists: equally spaced source IPs is the worst
case deterministic input, and uniformly distributed IPs is
the worst probabilistic input. When the number of filters
F takes extremes values (F = 1, F = N ), the 2 curves
basically coincide. In all other cases, as expected, the
uniform distribution outperforms the deterministic case:
the algorithm finds some bad addresses that are closer
than other and merges them together thus limiting the
collateral damage compared to the deterministic case.
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Fig. 4. Performance of FILTER-SOME-STATIC (P1) for a blacklists
with medium degree of clustering (m0 = 0.75). Varying the weight
W controls the tradeoff between (collateral damage) and (number of
filtered bad addresses). Both these numbers are normalized with respect
to the total number of bad addresses (N ).

In Fig.3(b), we consider a high density blacklist (d =
0.1) for various degrees of clustering. Comparing this
figure to the previous, we observe the following. On one
hand, the number of filters required to block all bad IPs
without collateral damage is still quite high. On the other
hand, contrary to the low density case, as the number of
available filters decreases the collateral damage remains
limited. In fact, it is always possible to construct a solution
that covers all bad IPs keeping the ratio low CD

N ' 1.

B. Performance of FILTER-SOME-STATIC

Next, we analyze the performance of FILTER-SOME-
STATIC as the number of filters varies. We assign the
same weight, W < 0 to bad addresses and the same
weight W = 1 to all good addresses; we then vary W .
In this simple case, W represents the relative weight of
bad addresses with respect to good addresses. Thus, by
varying W we tune the tradeoff between the bad IPs
filtered and the collateral damage: the higher W , the
higher the number of bad IPs filtered at the expense of
higher collateral damage; and vice versa.

Similarly to what we did before, we analyze the per-
formance of FILTER-SOME-STATIC both in the case of
low (d = 0.001) and high density (d = 0.001). In the case
of low density, Fig.4(a), we see that we can cover most of



the IPs at low cost; but in order to cover the last IPs, we
pay higher collateral damage. More precisely, depending
on the number of available filters, we can cover from 70%
up to 100% of the bad IPs while keeping the ratio CD

N
within one order of magnitude. However, if the number
of filters is small, there is an exponential increase in the
collateral damage to cover the remaining 20% of bad
IPs. In practical scenarios, where the number of filters is
not enough to cover all bad IPs, this further motivates
the investigation of solutions that provide a good balance
between the number of bad and good IPs filtered. In some
cases, we may tolerate to block, for instance, up to 80%
of unwanted traffic and to incur CD which is linear with
N ; in other cases, we may want to provide a higher
protection from possible attacks at the expense of an
exponential increase of the collateral damages. With the
framework introduced here, all these different solutions
can be simply obtained, by tuning W . Therefore, W is
the control available to the network operator that offers
flexibility in the quality of services they may want to
provide.

We would also like to point out that, while in this
section we presented the results using only two different
constant weights, one for good and one for bad addresses,
within the same framework it is also possible to assign
different weights to a single IP or a group of IPs, to
allow for finer control. For instance, by assigning weights
equal to −∞, (or +∞) to a specific group of IPs, we can
force the algorithm to always filter (or not filter) those
addresses.

In Fig.4(b), where higher density of bad IPs is con-
sidered, results achieved by FILTER-SOME-STATIC are
quite different. The ratio CD

N is significantly lower (≤ 2)
than in the low density case (≤ 70). There is an increase
in the amount of collateral damage only to cover the last
5 − 10% of IPs; even covering this last part of the BL,
the collateral damage remains quite low in all cases.

C. FILTER-ALL-DYNAMIC, FILTER-SOME-DYNAMIC

The model introduced in [10], [7] is appropriate for
the spatial distribution of source IPs of unwanted traffic.
However, in a practical deployment the temporal behavior,
i.e., how bad addresses appear, disappear, and re-appear in
the blacklist, will also affect the performance of a filtering
system. In same cases, a new IP appearing in the BL
may be located in a region of the address space which
is already blocked; in these cases, there is no need to
re-evaluate a new set of filter rules, since the old one
already provides an optimal solution. In other cases, it
may be useful to recompute a new solution. FILTER-
ALL-DYNAMIC and FILTER-SOME-DYNAMIC aim to
tackle these later cases by rapidly providing an adaptation
of the existing filtering rules to the new input BL at a
much lower computational cost than running from scratch
FILTER-ALL-STATIC and FILTER-SIME-STATIC for
each instance from scratch.

Recent experimental evidence [8] and our own expe-
rience indicate that there is often temporal correlation in

blacklists. One intuitive explanation may be that poorly
administered networks are more likely to be infected for
a period of time thus leading to temporal predictiveness
of BLs and potentially of our filtering rules. As part of
future work, we plan to evaluate the effectiveness of the
dynamic algorithms using real time-varying blacklists [4],
[5].

V. SUMMARY AND FUTURE WORK

In this paper, we designed optimal greedy algorithms
that construct compact filtering rules to block IP address
ranges given a blacklist. We are currently exploring sev-
eral directions for future work. First, we are interested in
extending our algorithms to be prefix-aware, in the sense
that the ranges/filters will be aligned with prefixes/masks
that can be directly specified by ACLs. Second, we are
in the process of applying our algorithms to publicly
available blacklists [4] and Dshield data [5]. Finally,
we are interested in using the filtering algorithms as a
building block of a bigger system that effectively protects
a network from unwanted traffic.
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