Vehicular Urban Sensing: Dissemination and Retrieval

UC Irvine, May 21, 2009

Mario Gerla Computer Science Dept, UCLA www.cs.ucla.edu/NRL

Outline

• Vehicular Ad Hoc Networks (VANETs)

- Opportunistic ad hoc networking

V2V applications

- Content distribution
- Urban sensing
 - Mobeyes (UCLA)
- Bio inspired "harvesting"
- Security implications

The UCLA CAMPUS Testbed

Traditional Mobile Ad Hoc Network

- Instantly deployable, re-configurable (no fixed infrastructure)
- Satisfy a "temporary" need
- Mobile (eg, PDAs)
 - Low energy
- Multi-hopping (to overcome obstacles, etc.)
- Challenges: Ad hoc routing, multicast, TCP, etc

Examples: military, civilian disaster recovery

Vehicular Ad Hoc Network (VANET)

- No fixed infrastructure?
 - Several "infrastructures": WiFi, Cellular, WiMAX, Satellite..
- "Temporary" need?
 - For vehicles, well defined, permanent applications
- Mobile?
 - YES!!! But not "energy starved"
- Multi-hop routing?
 - Most of the applications require broadcast or "proximity" routing
 - Infrastructure offers short cuts to distant destinations
 - Multihop routing required only in limited situations (eg, Katrina scenario)

VANET => Opportunistic Ad Hoc Network

- Access to Internet readily available, but..
- opportunistically "bypass it" with "ad hoc" if too costly or inadequate

VANET New Research Opportunities

• Physical and MAC layers:

- Radios (MIMO, multi-channel, cognitive)
- Positioning in GPS deprived areas

• Network Layer & Routing:

- Mobility models
- Network Coding
- Geo routing
- Content based routing
- Delay tolerant routing
- Security and privacy
- New Applications:
 - Content distribution , mobile sensing, safety, etc

The Enabling Standard: DSRC / IEEE 802.11p

- Car-Car communications at 5.9Ghz
- Derived from 802.11a
- three types of channels: Vehicle-Vehicle *service*, a Vehicle-Roadside *service* and a *control broadcast* channel.
- Ad hoc mode; and infrastructure mode
- 802.11p: IEEE Task Group for Car-Car communications

V2V Applications

- Safe Navigation
- Efficient Navigation/Commuting (ITS)
- Location Relevant Content Distr.
- Urban Sensing
- Advertising, Commerce, Games
- Etc

V2V Applications

- Safe navigation:
 - Forward Collision Warning,
 - Intersection Collision Warning.....
 - Advisories to other vehicles about road perils
 - "Ice on bridge", "Congestion ahead",....

Car to Car communications for Safe Driving

Vehicle type: Cadillac XLR Curb weight: 3,547 lbs Speed: 75 mph Acceleration: **+ 20m/sec^2** Coefficient of friction: .65 Driver Attention: Yes Etc. Acc Coe Driv Etc.

Vehicle type: Cadillac XLR Curb weight: 3,547 lbs Speed: 65 mph Acceleration: - **5m/sec^2** Coefficient of friction: .65 Driver Attention: Yes

rt Status: Inattentive Driver on Right Alert Status: Slowing vehicle ahead Alert Status: Passing vehicle on loft

Vehicle type: Cadillac XLR Curb weight: 3,547 lbs Speed: 75 mph Acceleration: **+ 10m/sec^2** Coefficient of friction: .65 Driver Attention: **Yes** Etc.

Alert Status: Passing Vehicle on left

100 C

Alert Status

Vehicle type: Cadillac XLR Curb weight: 3,547 lbs Speed: 45 mph Acceleration: - 20m/sec^2 Coefficient of friction: .65 Driver Attention: No Etc.

Efficient Navigation

- GPS Based Navigators
- Dash Express (just came to market in 2008):

Intelligent Transport Systems intelligent lane reservations

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

- Environment sensing/monitoring:
 - Traffic monitoring
 - Pollution probing
 - Pavement conditions (eg, potholes)
 - Urban surveillance (eg, disturbance)
 - Witnessing of accidents/crimes

- Location related content delivery/sharing:
 - Traffic information
 - Local attractions
 - Tourist information, etc

Advertising (Ad Torrent):

- Access Points push Ads to passing cars
- Advertisement: multimedia file (data, image, video)
- Movie trailer; restaurant ad; club; local merchant..

Commerce (Flea Net):

- virtual market (bazaar) concept in VANET
- A mix of mobile and stationary users buy/sell goods using the vehicular network

CarTorrent : cooperative download of location multimedia files

You are driving to Vegas You hear of this new show on the radio Video preview on the web (10MB)

One option: Highway Infostation download

Incentive for opportunistic "ad hoc networking"

Problems:

Stopping at gas station for full download is a nuisance Downloading from GPRS/3G too slow and quite expensive 3G broadcast services (MBMS, MediaFLO) only for TV

Observation: many other drivers are interested in download sharing (like in the Internet)

Solution: Co-operative P2P Downloading via Car-Torrent

CarTorrent: Basic Idea

Co-operative Download: Car Torrent

Car Torrent inspired by BitTorrent: Internet P2P file downloading

Selection Strategy Critical

CarTorrent with Network Coding

- Limitations of Car Torrent
 - Piece selection critical
 - Frequent failures due to loss, path breaks
- New Approach network coding
 - "Mix and encode" the packet contents at intermediate nodes
 - Random mixing (with arbitrary weights) will do the job!

Network Coding

CodeTorrent

• Single-hop pulling (instead of *CarTorrent* multihop)

Simulation Results

Completion time density

Simulation Results

- Impact of mobility
 - Speed helps disseminate from AP and among vehicles
 - Speed hurts multihop routing (*CarTorrent*)
 - Car density+multihop promotes congestion (CarTorrent)

Vehicular Sensor Network

Vehicular Sensor Applications

• Environment

- Traffic density/congestion monitoring
- Urban pollution monitoring
- Pavement, visibility conditions
- Civic and Homeland security
 - Forensic accident or crime site investigations
 - Terrorist alerts

Accident Scenario: storage and retrieval

- Public/Private Cars (eg, busses, taxicabs, police, commuters, etc):
 - Continuously collect images on the street (store data locally)
 - Process the data and detect an event
 - Classify the event as Meta-data (Type, Option, Loc, time, Vehicle ID)
 - Distribute Metadata to neighbors probabilistically (ie, "gossip")
- Police retrieve data from public/private cars

Mobility-assist Meta-data Diffusion/Harvesting

How to store/retrieve the Metadata?

To store data (and maintain an index to it) several options:

- Upload to nearest Access Point (Dash Express; Cartel project, MIT)
- "Flood" data to all vehicles (eg, bomb threat)
- Publish/subscribe model: publish to a mobile server (eg, an "elected"vehicle)
- Distributed Hash Tables (eg, Virtual Ring Routing - Sigcomm 06)
- "Epidemic diffusion" -> our proposed approach

CarTel: A Distributed Mobile Sensor Computing System*

Hari Barakrishnan Comp Science Dept, MIT

* Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko, Allen Miu, Eugene Shih, Hari Balakrishnan and Samuel Madden, "CarTel: A Distributed Mobile Sensor Computing System," *SenSys'06*

Dash Express Navigation System

Network connectivity in Dash Express

- Cellular (GSM) and open WiFi to provide Internet connectivity

Dash Express node as a sensor reports the traffic information to Internet portal

- Real-time traffic information gathering
- Gathered traffic information is used for traffic flow analysis
- Routing recommendations based on traffic flow statistics + real-time traffic information

Dash Express users pull real-time traffic information via GSM or WiFi

Product released in Q1 2008

MobEyes (UCLA)

• "Epidemic diffusion" :

- Mobile nodes periodically broadcast meta-data of events to their neighbors
- A mobile agent (the police) queries nodes and harvests events
- Data dropped when stale and/or geographically irrelevant

MobEyes: Mobility-assisted Diffusion/Harvesting

- Mobeyes exploit "mobility" to disseminate metadata!
- Mobile nodes periodically broadcast meta-data to their neighbors
 - Only "originator" advertises meta-data to neighbors
 - Neighbors store advertisements in their local memory
 - Drop stale data
- A mobile agent (the police) harvests meta-data from mobile nodes by actively querying them (with Bloom filter)

Simulation Experiment

Simulation Setup

- NS-2 simulator
- 802.11: 11Mbps, 250m tx range
- Average speed: 5 to 25 m/s
- Mobility Models
 - Random waypoint (RWP)
 - Real-track model (RT) :
 - Group mobility model
 - merge and split at intersections
 - Westwood map

Meta-data harvesting delay with RWP

Higher mobility decreases harvesting delay

Harvesting Results with "Real Track"

Restricted mobility results in larger delay

Multi-agent Harvesting

Challenges

- Scale of operation: harvested region may include several city blocks
- Location and nature of the critical information not known a priori
- Multi-agent harvesting
- Bio Inspired Approach
 - "Social" animals solve a similar problem – *foraging* to find reliable food sources

Bio Inspired Algorithm Design

• Data-taxis

- Similar to the chemotactic behavior of E-coli bacteria
 - Modes of locomotion: tumble, swim, search
 - Strategy: greedy approach with random search
- Three modes of agent operation

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Collision avoidance

- Avoids collecting the same data by different agents
- Pheromone trail
- Move in a direction to minimize collision (Levy jump)

7/31/2007

Evaluation Framework

Simulation setup

- Manhattan mobility model
- Streets 2 and 6 with valuable information
- Up to 4 agents

Candidate algorithms

- RWF (Random Walk Foraging)
- BRWF (Biased RWF)
- PPF (Preset Pattern Foraging)
- DTF (Data-taxis Foraging)

7x7 Manhattan grid

Performance Results Aggregate number of harvested data

QuickTime™ and a decompressor are needed to see this picture.

Vehicular Security requirements

Sender authentication Verification of data consistency Protection from Denial of Service Non-repudiation Privacy

Challenge: Real-time constraint

Privacy Attack: Tracking

New security requirements for dissemination

Selective, private dissemination:

- Example #1: A driver wants to alert all taxicabs of company A on Washington Street between 10-11pm that convention attendees need rides
- Example #2: A Police Agent has detected a dangerous radiation leak:
 - He wants to warn the private cars in the radiation area ONLY
 - He wants to notify all the paramedics and firemen in a larger surrounding area.

Situation Aware Trust (SAT) critical for "selective" dissemination

Proactive Trust

- predict dyn attributes based on mobility and location service
- establish trust in advance

An attribute based situation example: Yellow Cab AND Taxi AND Washington Street AND 10-11pm 8/22/08

Security: attributes and policy group

A driver wants to alert all taxicabs of company A on Washington Street between 10-11pm that convention attendees need rides

C-VeT Campus - Vehicular Testbed

E. Giordano, A. Ghosh, G. Marfia, S. Ho, J.S. Park, PhD System Design: Giovanni Pau, PhD Advisor: Mario Gerla, PhD

The Plan

• We plan to install our node equipment in:

- 30 Campus operated vehicles (including shuttles and facility management trucks).
 - Exploit "on a schedule" and "random" campus fleet mobility patterns
- 30 Commuting Vans: Measure urban pollution, traffic congestion etc
- 12 Private Vehicles: controlled motion experiments
- Cross campus connectivity using 10 node Mesh (Poli Milano).

C-VeT Goals

Provide:

- A shared virtualized environment to test new protocols and applications
- Full Virtualization
 - MadWiFi Virtualization (with on demand exclusive use)
 - Multiple OS support (Linux, Windows).

Allow:

- Collection of mobility traces and network statistics
- Provide a platform for Urban Sensing, Geo routing etc
- Deployment of innovative V2V/V2I applications

Preliminary Experiments

• Equipment:

- 6 Cars roaming the UCLA Campus
- 802.11g radios
- Routing protocol: OLSR
- 1 EVDO interface in the Lead Car
- 1 Remote Monitor connected to the Lead Car through EVDO and Internet
- Experiments:
 - Connectivity map computed by OLSR
 - Azureus P2P application

Campus Initial Coverage Using MobiMesh

QuickTime™ and a decompressor are needed to see this picture.

"Instrumenting" the vehicle

Campus Demo: connectivity via OLSR

Conclusions

New VANET research opportunities:

- Mobility models:
 - Collection, measurements
 - Interaction between motion and network models
- Routing:
 - Geo routing, Delay tolerant routing, Network Coding,

• New Applications:

- Content, mobile sensing, harvesting
- Urban surveillance; pollution monitoring
- Intelligent higways
- Security:
 - Private dissemination
 - Situation Aware Trust

The Future

- Still, lots of exciting research ahead
- And, need a testbed to validate it!
 - Realistic assessment of radio, mobility characteristics
 - Account for user behavior
 - Interaction with (and support of) the Infrastructure
 - Scalability to thousands of vehicles using hybrid simulation
- We are building one at UCLA come and share!

Thank You!