Second Generation P2P Live Streaming

Keith Ross

Polytechnic Institute of NYU

Some P2P success stories

BitTorrent ecosystem

• The most successful <u>open</u> app of the decade

Skype

The most successful VoIP app

ppStream

The most successful IPTV app

BitTorrent Ecosystem

Overlap in Torrent Indexing

Tracker Distribution

NYU:poly POLYTECHNIC INSTITUTE OF

Client Type Popularity

uTorrent & Azurues also form independent DHTs

6

Content Classification

Skype

Minimal infrastructure

- P2P user location
- P2P NAT traversal
- I6M concurrent users

Services

- PC-PC phone
- PC-phone
- Video

D

Conferencing

Peer-Assited Video Streaming

- Peers redistribute video <u>chunks</u> to each other (similar to BitTorrent)
 - utilize peer upload capacity
 - reduces load on server
- Large scale deployments on Internet
 - thousands of live/on-demand channels
 - millions of world-wide users daily

Leading P2P Video Companies

- CoolStreaming
- PPStream
- PPLive
- Sopcast
- ------UUSee-

CoolStreaming

- The First P2P Video System that attracts I + million users
- Shutdown in Jun 10, 2005 due to copyright issues.
- Base technology for Roxbeam Corp., which launched live IPTV programs jointly with Yahoo Japan in October 2006.

 [Infocom05] Xinyan Zhang, Jiangchuan Liu, Bo Li, Tak-Shing Peter Yum, CoolStreaming/DONet: A Data-driven Overlay Network for Efficient Live Media Streaming, In Proceedings of IEEE INFOCOM 2005

PPLive (http://www.pplive.com)

One of the Largest P2P Video Systems in the World

Developed by Xin Yao (HUST, China) in 2004.

85+ Million Users by 2008

Around <mark>800</mark> Channels

PPStream (http://www.pps.tv)

#I P2P Video System in the World

Developed by Liang Lei and Hongyu Zhang (China) in 2005.

350M installations

I2 Million active users each day

Thousands of channels

Num of Channels

Some P2P success stories

BitTorrent ecosystem

• The most successful <u>open</u> app of the decade

Skype

The most successful VoIP app

ppStream

The most successful IPTV app

Second-Generation P2P Live Streaming

Keith Ross

Polytechnic Institute of NYU

Today's Talk

Overview of P2P Video Streaming

- View-Upload Decoupling (VUD): A Redesign of P2P
 Video Streaming
- Queuing Models for P2P Streaming
- LayerP2P: P2P Live Streaming with Layered Video

Common features of P2P video streaming

- Multiple Channels
 - Channel Churn
- Heterogeneous Streaming Rates
 - HDTV Channels, VCR-quality channels,...
- Heterogeneous Channel Popularities
 - > Very few viewers in less popular channels.
- Isolated Channel Design: ISO
 - Viewer only redistributes channel it is viewing

Problems of Traditional ISO Design

Large Channel Switching Delay

- Existing P2P video systems: 10-60 seconds
- Large Playback Lag
 - Existing P2P video systems: 5-60 seconds

Poor Small-channel Performance

- Inconsistent and poor performance in small channels.
- Root causes: channel churn and resource imbalance

Channel Churn in ISO Design

POLYTECHNIC INSTITUTE OF NYU

Channel Churn in ISO Design

Resource Imbalance in ISO Design

Instantaneous resource index for a channel of rate r with n viewers:

$$\sigma = \frac{u_s + \sum_{i=1}^n u_i}{nr}$$

- Ratio of available upload rate to required download rate
 - Channel in trouble if $\sigma < 1$
- Resource index can be imbalanced across channels

Today's Talk

Overview of P2PVideo Streaming

- View-Upload Decoupling (VUD): A Redesign of P2P
 Video Streaming
- Queuing Models for P2P Streaming
- LayerP2P: P2P Live Streaming with Layered Video

A Redesign of Multi-Channel System: View-Upload Decoupling (VUD)

POLYTECHNIC INSTITUTE OF NY

A Redesign of Multi-Channel System: View-Upload Decoupling (VUD)

Advantages of VUD design

Channel Churn Immunity

Distribution swarms unaffected by channel churn

Cross-Channel Provisioning

 Distribution swarms can be provisioned and adapted to balance resource indexes across channels

Structured Streaming

Scheduling and routing can be optimized within the stable VUD swarms

Key Challenges of VUD design

VUD Overhead

- In ISO, peer only downloads video it is watching.
- In VUD, each peer downloads its assigned substreams as well as the video it is watching.
- Solution: substreaming
- Adaptive Peer Assignment
 - Bandwidth allocation
 - Peer reassignment

Simulation Experiments

Simulated features:

- Channel switching
- Peer churn
- Heterogeneous upload bandwidth
- Packet-level transmission
- End-to-end latency
- Zipf-like channel popularity

Comparison

- ISO: using Push-Pull scheduling
- VUD: using Push-Pull scheduling

Simulation Parameters

50 channels

- Video rate 400 kbps each channel
- Server rate 1 Mbps for each channel

> 2,000 peers

- Peer upload rates 128-768 kbps
- Avg peer system time: 67 minutes
- Channel churn follows IPTV study
- 5 substreams per channel

Channel Switching Delay

Switching delay = time to acquire 5 seconds of new channel

> VUD achieves smaller channel switching delay.

VUD achieves smaller playback lag.

Today's Talk

Overview of P2PVideo Streaming

- View-Upload Decoupling (VUD): A Redesign of P2PVideo Streaming
- Queuing Models for P2P Streaming
- LayerP2P: P2P Live Streaming with Layered Video

Motivation

 Develop an analytical framework for multi-channel P2P live video systems.

- Use model to study how to optimize VUD performance
- PS = probability of universal streaming
 = fraction of time resource index > 1 for ALL channels

Queuing Network Model

- Each channel can be thought of as a queue
- Each viewer as a customer
- When viewer changes channels, routed to new queue
- Customers move about channels independently:
 - infinite server queues
- Let p_{ij} is probability of switching channel i to j. $P = [p_{ij}]$
- Let $1/\mu_i$ average sojourn time in channel j
- Can do all kinds of cool things with this model!
 - Inspiration from the queuing and loss network literature.

Closed Queuing Network Model

- Peers never leave (e.g., set-top box peers)
- Now just apply the standard closed Jackson network theory
- Traffic equation $\lambda = \lambda P$
- Relative channel popularity: $\rho_j = \lambda_j / \mu_j$

$$P(M_1 = m_1, \dots, M_J = m_J) = n! \frac{\rho_1^{m_1}}{m_1!} \cdots \frac{\rho_J^{m_J}}{m_J!}$$

- n is the total number of peers
- $M_j = \#$ of viewers in channel j.

Open Queuing Network Model

- Applicable for systems with Peer Churn
- Peers arrive at constant rate and join channel j with prob p_{0i}
- Peer leaves system with probability P_{i0.}

$$P(M_1 = m_1, \dots, M_J = m_J) = \prod_{j=1}^J \frac{\rho_j^{m_j} e^{-\rho_j}}{m_j!}$$

In this talk, we focus on *Closed Queuing Network Model*.

Analysis of VUD Design

Resource Index for substream s of channel j

$$\sigma_j^s(M_j) = \frac{v_j^s + \sum_{i \in \mathcal{N}_j^s} u_i - n_j^s r_j^s}{M_j r_j^s}$$

 $M_j = #$ of viewers in channel j

Probability of system-wide universal streaming

$$PS = P(\sigma_j^s(M_j) \ge 1, \ s = 1, \dots, S_j, \ j = 1, \dots, J)$$

$$PS = P(M_j \le \delta_j, \ j = 1, \dots, J) = \sum_{\mathbf{m} \in \mathcal{M}} n! \frac{\rho_1^{m_1}}{m_1!} \cdots \frac{\rho_J^{m_J}}{m_J!}$$

where
$$\delta_j = \min_{1 \le s \le S_j} \lfloor \frac{v_j^s + \sum_{i \in \mathcal{N}_j^s} u_i - n_j^s r_j^s}{r_j^s} \rfloor$$

and
$$\mathcal{M} = \{(m_1, \dots, m_J) : m_1 + \dots + m_J = n, \ 0 \le m_j \le \delta_j\}$$

Asymptotic Analysis of VUD

- How should the VUD groups be dimensioned for large systems?
- Fix number of channels J.
- Let number of peers $n \to \infty$
- Assume for simplicity no substreaming
- Asymptotic regime: $n_j = K_j n$
- How to dimension K_j for large *n*?

Asymptotic Analysis for VUD

- Initially assume homogenous upload rates: $u_i = u$.
- Critical parameter:

$$\alpha = \sum_{j=1}^{J} \frac{r_j \rho_j}{u - r_j}$$

• Theorem: If $\alpha > 1$, then PS goes to 0 for all choices of K_j . If $\alpha < 1$, then PS goes to 1 if $K_j = r_j \rho_j / \alpha(u - r_j)$

Asymptotic Analysis for VUD

- Heterogeneous peer types: low u^l and high u^h.
- f = fraction of low peers (fixed)
- Can find optimal peer allocations by solving:

Maximize
$$\min_{j} \{\xi_{j} K_{j}^{l} + \zeta_{j} K_{j}^{h} - \eta_{j}\}$$

Subject to:
$$\sum_{j=1}^{J} K_{j}^{l} = f; \sum_{j=1}^{J} K_{j}^{h} = 1 - f$$

If the value < 0, then PS goes to 0.</p>

Analysis of ISO Design

• Let M_j be the random set of nodes viewing channel j.

$$PS = P(v_j + \sum_{i \in \mathcal{M}_j} u_i \ge M_j r_j, \ j = 1, \dots, J)$$

• Once again:

$$P(M_1 = m_1, \dots, M_J = m_J) = n! \frac{\rho_1^{m_1}}{m_1!} \cdots \frac{\rho_J^{m_J}}{m_J!}$$

 Can be solved used Monte Carlo methods and importance sampling.

Asymptotic Analysis of ISO

- Heterogeneous peer types: low u^l and high u^h.
- f = fraction of low peers (fixed)
- Critical Value:

$$\alpha = \frac{\max_{j} r_{j}}{u^{l} f + u^{h} (1 - f)}$$

▶ **PS** goes to 1 if $\alpha \le 1$ and goes to 0 otherwise.

Asymptotic Analysis: Example

- $u^h = 4r$, $u^l = 2r$, $f = \frac{1}{2}$
- $\mathbf{r}_1 = 5\mathbf{r}, \mathbf{r}_2 = \mathbf{r}, \rho_1 = .2, \rho_2 = .8$
- ISO: $\alpha > 1$
 - ▶ PS goes to 0
- VUD:
 - allocate high-bandwidth peers to channel 1; low bandwidth peers to channel 2.
 - PS goes to 1

Numerical results

- Results from analytical equations
- ▶ 1,800 peers
- > 20 channels
- $u_l = .2r$ and $u_h = 3r$
- Use asymptotic heuristic to dimension substream swarms

Numerical Results

- Probability of System-wide Universal Streaming (PS)
- Vary Zipf parameter

Numerical Results of VUD Design

Probability of Universal Streaming in each channel

> VUD achieves higher probability of universal streaming (PU_i) in small channels.

Refined Heuristic for VUD

Basic idea: equalize probability of universal streaming across all substreams:

 $P(\sigma_j^s(M_j) \ge 1) = C_i$

- Assume normal distribution for M_i
 - Use known mean and variance
- Assume all streams of same rate r

Refined Heuristics for VUD

Refined Heuristic for VUD Streaming

Probability of universal steaming in each channel.

> Refined VUD can achieve higher probability of universal streaming in small channels.

Today's Talk

Overview of P2PVideo Streaming

- View-Upload Decoupling (VUD): A Redesign of P2P
 Video Streaming
- Queuing Models for P2P Streaming
- LayerP2P: P2P Live Streaming with Layered Video

A BitTorrent Lesson

BitTorrent is successful

- 50+ client implementations
- Dozen public trackers
- 5-10 million users
- Why BitTorrent?

BitTorrent

- First generation P2P applications: Gnutella
 - 70% of users are free-riders
- Second generation P2P applications: BitTorrent

Lack of Incentives in P2P Live Streaming

Some peers contribute much more bandwidth than others

- In PPLive, an institutional peer may upload 30 times more than a residential peer
- But... they all receive the same video quality
 - Why upload more than tit-for-tat?

Our Design Philosophy

- Bandwidth-rich period
 - Average upload bandwidth > full video rate

- Bandwidth-deficient period
 - Average upload bandwidth < full video rate</p>
 - More upload contribution \rightarrow better video quality

POLYTECHNIC INSTITUTE

System Design I: Chunk-Based Mesh-Pull Design

- Adopted by most existing P2P live streaming systems
- Peers are self-organized into a mesh
- Each chunk will be explicitly identified, requested, and scheduled

System Design II: Layered Video

- Use layered video to provide differentiated video quality
- Encode a video into multiple layers with nested dependency
 - Base layer provides basic video quality
 - Enhancement layers provide refined video quality

- Properties
 - Comparable video coding efficiency with single-layer video
 - Has been standardized: H.264 SVC
 - Open source real-time codecs: FFmpeg

System Design III: Tit-for-Tat

Supplier side scheduler

- A tit-for-tat like strategy
 - If Alice receives a higher download rate from her neighbor Bob, she will allocate a large share of upload bandwidth to Bob
 - Pair-wise proportional bandwidth allocation

 Upload more → Larger share of upload bandwidth from neighbors → More layers → Better video quality

System Design IV: Prioritized Random Scheduling

Receiver side scheduler

- How to request these LCs
 - A receiver may have multiple missing LCs to request

System Design V: Partnership Policy

New partnership

- Initiator and receptor: If peer A initiates the neighbor establishment with peer B, then peer A is an initiator of peer B, and peer B is a receptor of peer A.
- Initially, initiator (peer A) allocates a relatively large share of upload bandwidth to receptor (peer B), but receptor (peer B) only allocates a relatively small share of upload bandwidth to initiator (peer A).
- Similar to BitTorrent's optimistic unchoking
- Partner adaptation

Periodically drop the worst partner

Features to Prevent Free-Riding

Pair-wise bandwidth allocation:

- Free-rider can only obtain small shares of bandwidth from its partners
- Partner adaptation
 - Free-rider will be dropped by its partners
- Initiator and receptor
 - Free-rider can actively locate a large number of partners, but since it's an initiator, it can only obtain small shares of bandwidth from its partners

System Implementation

Objectives

- Demonstrate the viability of the schemes
- Evaluate the system performance in the Internet

Approach

- C++ on Linux
- Tracker, source, and peer
- UDP
- Temporal scalable coding and FFmpeg

POLYTECHNIC INSTITUTE OF

PlanetLab Experiment

100+ nodes

- One tracker, one source, and 100 peers
- Three types of peers under two scenarios

Peers	free-rider	residential	institutional
Upload rate (kbps)	0	400	1000
Underloaded&No Free-Riding	0	40%	60%
Overloaded&Free-Riding	15%	43%	42%

H.264/SVC temporal scalable video

"ICE" sequence, 4CIF (704x576), 30 frames/second
290/230/100 kbps

Underloaded System

- Resource index = 1.23
- Trace of received video rate

Overloaded System

Resource index = 0.97

Trace of received video rate

Trace-Driven Simulation

Objectives

Investigate the system performance with real peer dynamics

Approach

> 24 hours/100,000 video sessions/Maximum of more than

9,000 simultaneous peers

Simulation Result

Underloaded system

- No free-rider
- Resource index = 1.26

- Overloaded system
 - 30% free-riders
 - Resource index = 0.73

Summary

- Introduced a new design of P2PVideo systems: View-Upload Decoupling (VUD)
- Developed a tractable analytic theory to study ISO and VUD streaming
- Introduced a new design of P2PVideo systems with built-in incentives: LayerP2P

More Details...

"View-Upload Decoupling: A Redesign of Multi-Channel P2PVideo Systems", Di Wu, Chao Liang, Yong Liu and Keith Ross, IEEE Infocom, Mini-conference, 2009.

"Queuing Network Models for Multi-Channel P2P Live Streaming Systems", Di Wu, Yong Liu and Keith Ross, IEEE Infocom, 2009.

"LayerP2P: P2P Live Streaming with Layered Video", Zhengye Liu, Yanming Shen, Keith Ross, Shivendra S. Panwar and Yao Wang, Submitted to IEEE Trans. on Multimedia, 2009 (and related ICNP paper)

Patent Pending

Thank You !!

