Reverse Engineering TCP/IP

Steven Low EAS, Caltech

Joint work with:

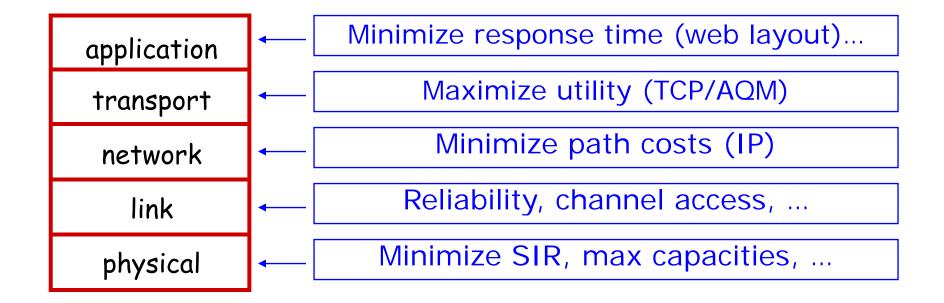
Li, J. Wang, Pongsajapan, Tan, Tang, M. Wang

- Background
 - Layering as optimization decomposition
 - Reverse engineering TCP
- □ Reverse engineering TCP/IP
 - Delay insensitive utility
 - Delay sensitive utility
 - How bad is single-path routing

J. Wang, Li, Low, Doyle. ToN, 2005 Pongsajapan, Low, Infocom 2007 M. Wang, Tan, Tang, Low, pre-print, 2009

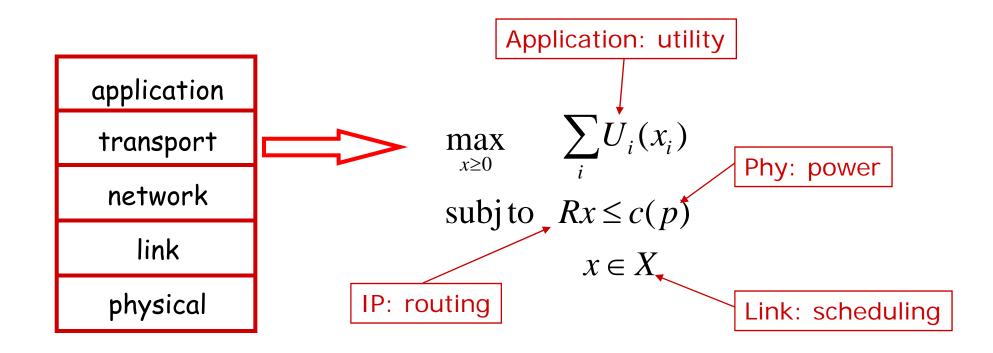
Layering as optimization decomposition

- Each layer designed separately and evolves asynchronously
- Each layer optimizes certain objectives

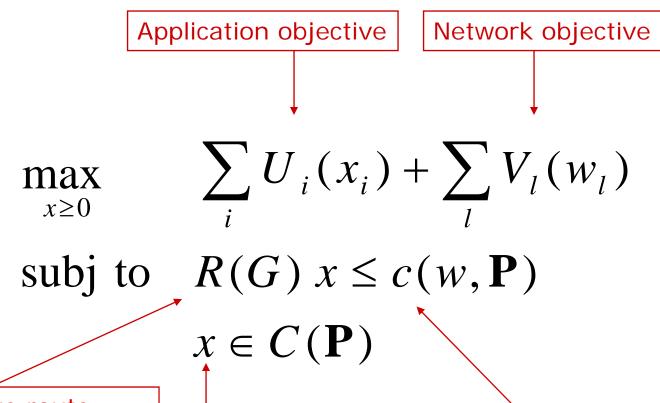


Layering as optimization decomposition

- Each layer is abstracted as an optimization problem
- Operation of a layer is a distributed solution
- Results of one problem (layer) are parameters of others
- Operate at different timescales



A wireless example



IP: optimize route given network graph G

Rate also constrained by interaction of coding mechanism & ARQ

Link: maximize channel capacity given link resources w and desired error probability P

Layering as optimization decomposition

- □ Each layer is abstracted as an optimization problem
- Operation of a layer is a distributed solution
- □ Results of one problem (layer) are parameters of others
- ☐ Operate at different timescales

application

transport

network

link

physical

- 1) Understand each layer in isolation, assuming other layers are designed nearly optimally
- 2) Understand interactions across layers
- 3) Incorporate additional layers
- 4) Ultimate goal: entire protocol stack as solving one giant optimization problem, where individual layers are solving parts of it

■ Network generalized NUM

□ Layers subproblems

■ Layering decomposition methods

□ Interface functions of primal or dual vars

application

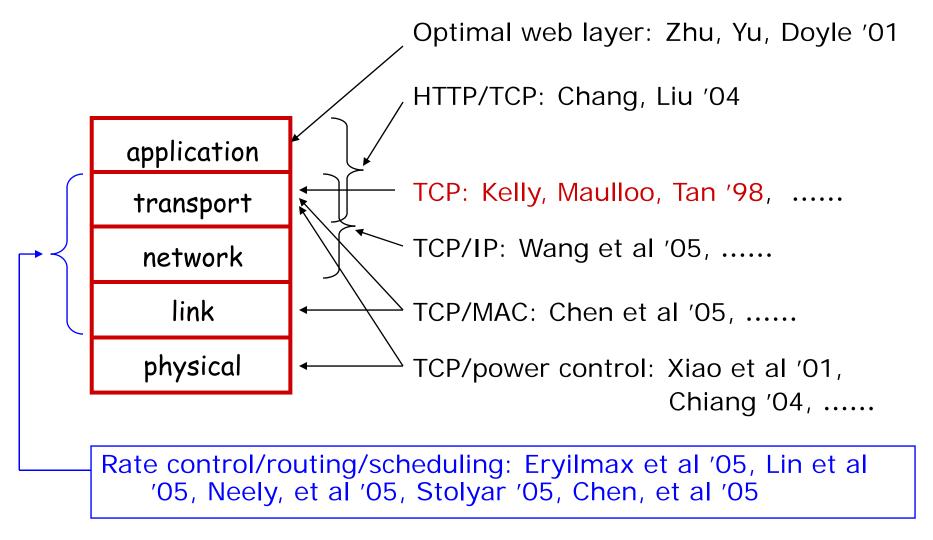
transport

network

link

physical

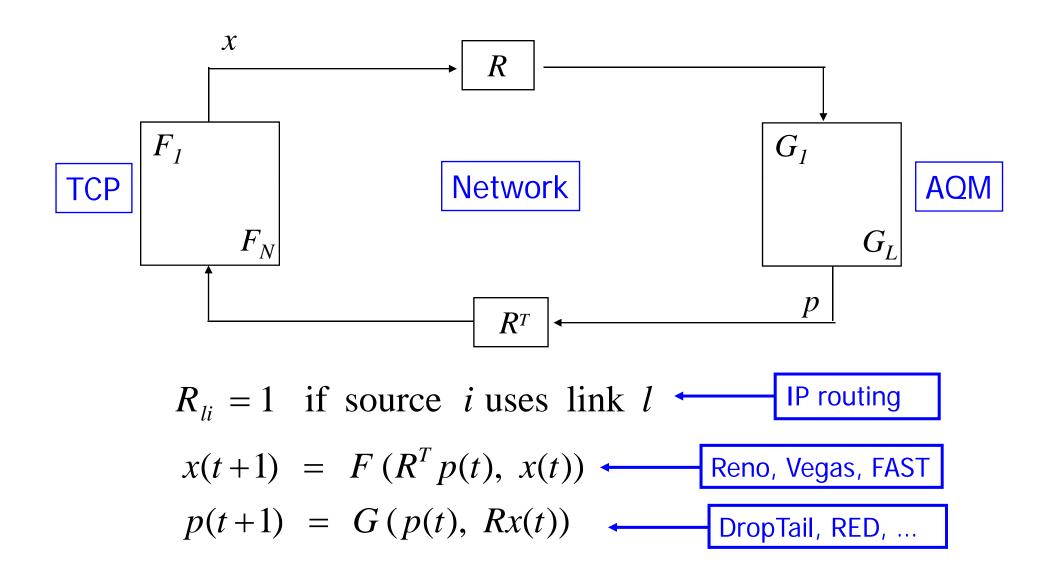
- 1) Understand each layer in isolation, assuming other layers are designed nearly optimally
- 2) Understand interactions across layers
- 3) Incorporate additional layers
- 4) Ultimate goal: entire protocol stack as solving one giant optimization problem, where individual layers are solving parts of it



- Background
 - Layering as optimization decomposition
 - Reverse engineering TCP
- Reverse engineering TCP/IP
 - Delay insensitive utility
 - Delay sensitive utility
 - How bad is single-path routing

J. Wang, Li, Low, Doyle. ToN, 2005 Pongsajapan, Low, Infocom 2007 M. Wang, Tan, Tang, Low, pre-print, 2009

Network model: general



Network model: example

Reno:

Jacobson 1989

```
for every RTT
                  (AI)
   W += 1 
for every loss
                  (MD)
\{ W := W/2 \}
```

$$x_{i}(t+1) = \frac{1}{T_{i}^{2}} - \frac{x_{i}^{2}}{2} \sum_{l} R_{li} p_{l}(t)$$

$$p_{l}(t+1) = G_{l} \left(\sum_{i} R_{li} x_{i}(t), p_{l}(t) \right)$$
TailDrop

Network model: example

FAST:

2004

$$x_{i}(t+1) = x_{i}(t) + \frac{\gamma_{i}}{T_{i}} \left(\alpha_{i} - x_{i}(t) \sum_{l} R_{li} p_{l}(t) \right)$$

$$p_{l}(t+1) = p_{l}(t) + \frac{1}{c_{l}} \left(\sum_{i} R_{li} x_{i}(t) - c_{l} \right)$$

How to characterize equilibrium of TCP

$$x^* = F(R^T p^*, x^*)$$

$$p^* = G(p^*, Rx^*)$$

$$R_{li} = 1$$
 if source i uses link l IP routing
$$x(t+1) = F(R^T p(t), x(t)) \leftarrow \text{Reno, Vegas, FAST}$$

$$p(t+1) = G(p(t), Rx(t)) \leftarrow \text{DropTail, RED, ...}$$

□ TCP

$$x^* = F(R^T p^*, x^*)$$
$$p^* = G(p^*, Rx^*)$$

 \square Equilibrium (x^*,p^*) primal-dual optimal:

$$\max_{x \ge 0} \sum U_i(x_i) \quad \text{subject to} \quad Rx \le c$$

- lacksquare F determines utility function U
- G guarantees complementary slackness
- p^* are Lagrange multipliers

Kelly, Maloo, Tan 1998 Low, Lapsley 1999

Uniqueness of equilibrium

- $\blacksquare x^*$ is unique when U is strictly concave
- $\blacksquare p^*$ is unique when R has full row rank

 $x^* = F(R^T p^*, x^*)$ ☐ TCP $p^* = G(p^*, Rx^*)$

 \square Equilibrium (x^*,p^*) primal-dual optimal:

$$\max_{x \ge 0} \sum U_i(x_i) \quad \text{subject to} \quad Rx \le c$$

- lacksquare F determines utility function U
- G guarantees complementary slackness
- p^* are Lagrange multipliers

Kelly, Maloo, Tan 1998 Low, Lapsley 1999

The underlying concave program also leads to simple dynamic behavior

 \square Equilibrium (x^*,p^*) primal-dual optimal:

$$\max_{x \ge 0} \sum U_i(x_i) \quad \text{subject to} \quad Rx \le c$$

Mo & Walrand 2000:

$$U_{i}(x_{i}) = \begin{cases} \log x_{i} & \text{if } \alpha = 1\\ (1 - \alpha)^{-1} x_{i}^{1 - \alpha} & \text{if } \alpha \neq 1 \end{cases}$$

- $\alpha = 1$: Vegas, FAST, STCP
- $\alpha = 1.2$: HSTCP
- $\alpha = 2$: Reno
 - $\alpha = \infty$: XCP (single link only)

 \square Equilibrium (x^*,p^*) primal-dual optimal:

$$\max_{x \ge 0} \sum U_i(x_i) \quad \text{subject to} \quad Rx \le c$$

Mo & Walrand 2000:

$$U_{i}(x_{i}) = \begin{cases} \log x_{i} & \text{if } \alpha = 1\\ (1 - \alpha)^{-1} x_{i}^{1 - \alpha} & \text{if } \alpha \neq 1 \end{cases}$$

- $\alpha = 0$: maximum throughput
- \blacksquare $\alpha = 1$: proportional fairness
- $\alpha = 2$: min delay fairness
- $\alpha = \infty$: maxmin fairness

- Equilibrium
 - Always exists, unique if R is full rank
 - Bandwidth allocation independent of AQM or arrival pattern
 - Can predict macroscopic behavior of large scale networks
- Counter-intuitive throughput behavior
 - Fair allocation is not always inefficient
 - Increasing link capacities do not always raise aggregate throughput

[Tang, Wang, Low, ToN 2006]

- ☐ FAST TCP
 - Design, analysis, experiments

- Background
 - Layering as optimization decomposition
 - Reverse engineering TCP
- □ Reverse engineering TCP/IP
 - Delay insensitive utility
 - Delay sensitive utility
 - How bad is single-path routing

For joint congestion control and <u>multipath</u> routing: Gallager (1977), Golestani & Gallager (1980), Bertsekas, Gafni & Gallager (1984), Kelly, Maulloo & Tan (1998), Kar, Sarkar & Tassiulas (2001), Lestas & Vinnicombe (2004), Kelly & Voice (2005), Lin & Shroff (2006), He, Chiang & Rexford (2006), Paganini (2006)

Motivation

Primal
$$\max_{x \ge 0} \sum_{i} U_i(x_i)$$
 subject to $Rx \le c$

Dual
$$\min_{p\geq 0} \left(\sum_{i} \max_{x_i \geq 0} \left(U_i(x_i) - x_i \right) + \sum_{l} P_{li} p_l \right) + \sum_{l} p_l c_l$$

Motivation

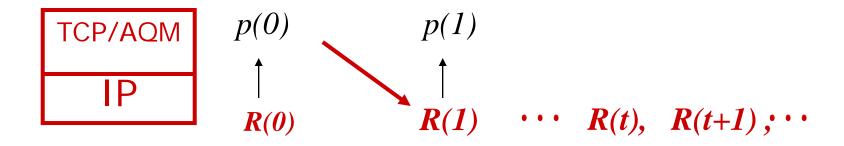
Primal
$$\max_{x \geq 0} \max_{x \geq 0} \sum_{i} U_{i}(x_{i})$$
 subject to $Rx \leq c$

Dual $\min_{p \geq 0} \left(\sum_{i} \max_{x_{i} \geq 0} \left(U_{i}(x_{i}) - x_{i} \prod_{R_{i}} \sum_{l} R_{li} p_{l} \right) + \sum_{l} p_{l} c_{l} \right)$
Shortest path routing!

Can TCP/IP maximize utility?

Assumptions

- Two timescales
 - TCP converges instantly
 - Route changes slowly
- \square Single-path shortest path routing R(t)
 - Link cost: $p_l(t) + b \tau_l$ prop delay queueing delay



- Two timescales
 - TCP converges instantly
 - Route changes slowly
- \square Single-path shortest path routing R(t)
 - Link cost: $p_l(t) + b \tau_l$ prop delay queueing delay

will only consider b=0 or b=1

TCP/IP dynamic model

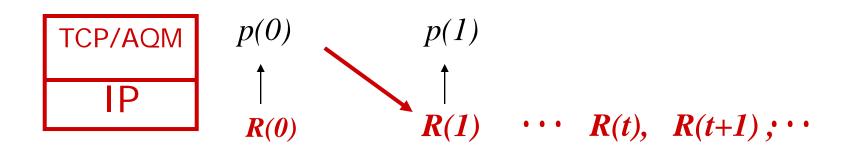
TCP
$$x(t) = \arg\max_{x \ge 0} \sum_{i} U_{i}(x_{i})$$
 subject to
$$R(t)x \le c$$

$$p(t) = \arg\min_{p \ge 0} \sum_{i} \left(\max_{x_{i} \ge 0} U_{i}(x_{i}) - x_{i} \sum_{l} R_{li}(t) p_{l} \right)$$

$$+ \sum_{i} c_{l} p_{l}$$

Reverse engineering TCP/IP

- Does equilibrium routing R_h exist?
- How to characterize R_b ?
- Is R_h stable?
- Can it be stabilized?



Delay insensitive utility: b=0

Theorem

If b=0, R_b exists & solves NUM iff zero duality gap

- Shortest-path routing is optimal with congestion prices
- No penalty for not splitting

Kelly's problem solved by TCP

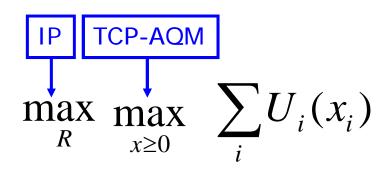
Primal:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_i(x_i)$$
 subject to $Rx \le C$

Dual:
$$\min_{p\geq 0} \left(\sum_{i} \max_{x_i\geq 0} \left(U_i(x_i) - x_i \min_{R_i} \sum_{l} R_{li} p_l \right) + \sum_{l} p_l c_l \right)$$

Delay insensitive utility: b=0

Applications

Link



subject to $Rx \le c$

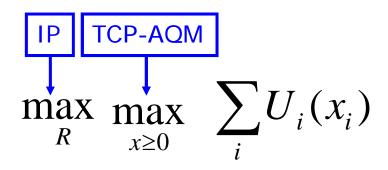
TCP/IP (with fixed c):

- Equilibrium of TCP/IP exists iff zero duality gap
- NP-hard, but subclass with zero duality gap is P
- Equilibrium, if exists, can be unstable
- Can stabilize, but with reduced utility

Nonzero duality gap: complexity, cost of not splitting

Delay insensitive utility: b=0

Link



subject to $Rx \le c$

BUT...

- b is never zero in practice
- If b>0 then there are networks for which equilibrium routings exist but do not maximize any delay insensitive utility function

- Background
 - Layering as optimization decomposition
 - Reverse engineering TCP
- □ Reverse engineering TCP/IP
 - Delay insensitive utility
 - Delay sensitive utility
 - How bad is single-path routing

J. Wang, Li, Low, Doyle. ToN, 2005 Pongsajapan, Low, Infocom 2007 M. Wang, Tan, Tang, Low, pre-print, 2009

Delay sensitive utility: b=1

$$U_i\big(x_i,d_i\big) = V_i\big(x_i\big) - x_id_i$$
 Round-trip prop delay
$$\longrightarrow d_i = \sum_l R_{li}\tau_l \longleftarrow \text{ Link prop delay}$$

- Round trip propagation delay depends on R
- Delay sensitive utility function
 - Utility from throughput ... balanced by
 - Disutility from delay

Delay sensitive utility: b=1

Theorem

If b=1, R_b exists & solves NUM iff zero duality gap

- Shortest-path routing is optimal
- No penalty for not splitting

Primat
$$\max_{R} \max_{x \ge 0} \sum_{i} U_i(\underline{x_i, d_i})$$
 subject to $Rx \le c$

Dual:
$$\min_{p \ge 0} \left(\sum_{i} \max_{x_i \ge 0} \left(U_i(\underline{x_i, d_i}) - \underline{x_i} \min_{R_i} \sum_{l} R_{li}(p_l + \tau_l) \right) + \sum_{l} p_l c_l \right)$$

Counter-intuitive behavior

With delay sensitive utility

Bottleneck links can be under-utilized

There exist networks such that the TCP/IP equilibrium (x^*, p^*, R^*) is in the interior: R*x* < c



Equilibrium rate: $x^* = c < 2c$

$$U(x,d) = V(x) - x\tau$$

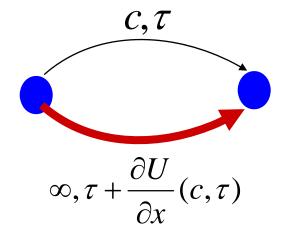
$$\frac{\partial U}{\partial x}(c,\tau) = V'(c) - \tau = 0$$

Counter-intuitive behavior

With delay sensitive utility

Extra paths that will be utilized by delayinsensitive utility functions may not

It is sub-optimal to use the long path, even when traffic is allowed to distribute over multiple paths



$$U(x,d) = V(x) - x\tau$$

Equilibrium routing: use short path only

Any delay sensitive utility that a TCP/IP equilibrium maximizes necessarily possesses one of 3 "strange" properties

- The specific utility $U(x,d)=V(x)-x\tau$ has two of the 3
- In contrast to joint congestion control and multi-path routing

Counter-intuitive behavior

B must have at least one of the following three properties:

- 1) $\exists U(x,d) \in \mathcal{B}, d > 0$ so that U(x,d) is not strictly increasing in x.
- 2) $\forall U_1(x,d) \in \mathcal{B}, \forall \epsilon > 0$, we have $U_2(x,d) := U_1(x+1)$ ϵ, d) is not in \mathcal{B} .
- 3) $\exists U(x,d) \in \mathcal{B}, D > 0$ such that f(d) := M(U,d) is finite and discontinuous for all d > D.

$$M(U,d) := \lim_{c \to \infty} U(c,d)$$

Routing stability

Given any network, suppose

- link cost: $ap_l(t) + \tau_l$
- $\blacksquare 0 < a < a_{\#}$ is small enough

If every SD pair has unique min prop delay path, then TCP/IP is asymptotically stable

Routing stability

Given any network, suppose

- link cost: $ap_l(t) + \tau_l$
- $\blacksquare 0 < a < a_{\#}$ is small enough

Otherwise, consider a <u>modified</u> network in which every SD pair has a unique min delay path, but

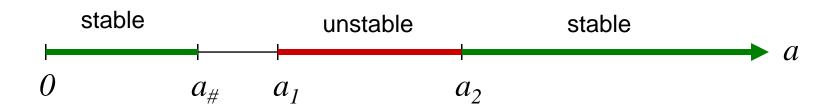
lacksquare link cost: $p_l(t)$

Then the two networks have the same equilibrium and stability properties

Routing stability

For <u>any</u> delay sensitive or insensitive utility function, there exists a network such that decreasing a can destabilize TCP/IP

■ link cost: $ap_l(t) + \tau_l$



- Background
 - Layering as optimization decomposition
 - Reverse engineering TCP
- □ Reverse engineering TCP/IP
 - Delay insensitive utility
 - Delay sensitive utility
 - How bad is single-path routing

J. Wang, Li, Low, Doyle. ToN, 2005 Pongsajapan, Low, Infocom 2007 M. Wang, Tan, Tang, Low, pre-print, 2009

Source can split its total rate into multiple paths

```
Total source rate: x_i = (x_{i1}, ..., x_{ik_i})

i's rate on path j: x_{ij}

multi - path: ||x_i||_1 = \sum_j x_{ij}

single - path: ||x_i||_{\infty} = \max_i x_{ij}
```

Multi-path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{1})$$
 subject to $Rx \le c$

Single - path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{\infty})$$
 subject to $Rx \le c$

Total source rate:
$$x_i = (x_{i1}, ..., x_{ik_i})$$

 i 's rate on path j : x_{ij}
multi - path: $||x_i||_1 = \sum_j x_{ij}$

single - path :
$$||x_i||_{\infty} = \max_i x_{ij}$$

Multi-path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{1})$$
 subject to $Rx \le c$

Single - path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{\infty})$$
 subject to $Rx \le c$

For multi-path routing

- Joint routing and congestion control is a concave program (polynomial-time solvable)
- Zero duality gap
- Upper bounds max utility of single-path TCP/IP

Multi-path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{1})$$
 subject to $Rx \le c$

Single - path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{\infty})$$
 subject to $Rx \le c$

For single-path TCP/IP:

- No longer concave program; primal is NP-hard
- Non-zero duality gap in general
- Zero gap iff TCP/IP equilibrium exists
- Duality gap = cost of not splitting

Multi-path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{1})$$
 subject to $Rx \le c$

Single - path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{\infty})$$
 subject to $Rx \le c$

Theorem

- For any multi-path solution (R, x), there is a multi-path solution (R', x')
 - That uses no more than *N*+*L* paths
 - Achieves the same utility

Multi-path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{1})$$
 subject to $Rx \le c$

Single - path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{\infty})$$
 subject to $Rx \le c$

Theorem

Duality gap is upper bounded by

$$\min(L, N) \max_{i} \rho_{i}$$

$$\rho_{i} = \max_{y \in [0, M^{i}]} (U^{i}(y) - U^{i}(y/K^{i}))$$

Multi-path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{1})$$
 subject to $Rx \le c$

Single - path:
$$\max_{R} \max_{x \ge 0} \sum_{i} U_{i}(||x_{i}||_{\infty})$$
 subject to $Rx \le c$

Corollary

■ For Vegas/FAST $U_i(x_i) = \alpha_i \log x_i$ duality gap is bounded by

 $\min(L, N) \max_{i} \alpha_{i} \log K_{i}$

- Summary
 - Equilibrium of TCP/IP can be interpreted as maximizing network utility over rates & routes
- □ How to reconcile TCP utility maximization and TCP/IP utility maximization?
 - Given routing, TCP utility is increasing in throughput
 - With TCP/IP, this is no longer the case
- In general, can/how we regard layering as optimization decomposition?