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= Layering as optimization decomposition

Each layer designed separately and
evolves asynchronously

Each layer optimizes certain
objectives

«——| Minimize response time (web layout)...

application

transport |« Maximize utility (TCP/AQM)

network - Minimize path costs (IP)

link — Reliability, channel access, ...

physical — Minimize SIR, max capacities, ...
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= Layering as optimization decomposition

Each layer is abstracted as an optimization problem
Operation of a layer is a distributed solution
Results of one problem (layer) are parameters of

others

Operate at different timescales

application

transport

network

link

physical

Application: utility

IP: routing

Phy: power

Link: scheduling




E\Q A wireless example

Application objective Network objective

| |
max ZUi(Xi)+ZV|(W|)

x>0

subjto R(G) x<c(w,P)
Xxe C(P)

IP: optimize route
given network graph G

Link: maximize channel

Rate also constrained by interaction | | capacity given link resources
of coding mechanism & ARQ w and desired error probability P
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\\§ Layering as optimization decomposition

[1 Each layer iIs abstracted as an optimization problem
[1 Operation of a layer is a distributed solution

[ Results of one problem (layer) are parameters of
others

[1 Operate at different timescales

1) Understand each layer in isolation, assuming

application other layers are designed nearly optimally
transport 2) Understand interactions across layers
network 3) Incorporate additional layers
link 4) Ultimate goal: entire protocol stack as
. solving one giant optimization problem, where
physical individual layers are solving parts of it
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1 Network
[l Layers

L1 Layering
L1 Interface

= Layering as optimization decompaosition

generalized NUM

subproblems

decomposition methods
functions of primal or dual vars

application

transport

network

link

physical

1) Understand each layer in isolation, assuming
other layers are designed nearly optimally

2) Understand interactions across layers
3) Incorporate additional layers

4) Ultimate goal: entire protocol stack as
solving one giant optimization problem, where
Individual layers are solving parts of it




E\Q Examples

application

transport

network

link

Optimal web layer: Zhu, Yu, Doyle 01

HTTP/TCP: Chang, Liu '04

/

"~ TCP/IP: Wang et al 05, ......

TCP: Kelly, Maulloo, Tan '98, ......

physical

A

\ TCP/MAC: Chen et al 05, ......

A

TCP/power control: Xiao et al '01,
Chiang '04, ......

Rate control/routing/scheduling: Eryilmax et al '05, Lin et al
'05, Neely, et al '05, Stolyar 05, Chen, et al 05

Survey in Proc. of IEEE, 2006
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‘& Network model: general

TCP Network

RT |

R, =1 1f source 1uses link | -

x(t+1) = F (R p(t), x(t))

G,
AQM
G,
P
IP routing

Reno, Vegas, FAST

p(t+1) = G(p(t), Rx(1))

DropTail, RED, ...




E\Q Network model: example

: for every RTT Al
leg)gsgr; { w+=1 3} (AD
1989 Ior \;v:e:ryW/lgss , (MD)
Al
b
Xi
X (t+1) = 2 ZRlipl(t): MD
T, 2 5
p,(t+1) =G, (Z R;ix; (), p, (t)j : TailDrop




E\Q Network model: example

eriodicall
FAST: p Y
. _ ~ baseRTT
Jin, Wei, Low W = — W + «
2004 }

X;(t+1) = x;(t) + ?(ai — X (t)z Ri P, (t)j

p,(t+1)=p,(t) +— (Z Rnxu(t)_clj



B How to characterize equilibrium of TCP

x = F(R'p, X)

*

pr = G(p, RX)

R, =1 if source iuses link | - IP routing

x(t+1) = F(R'p(t), x(t)) Reno, Vegas, FAST

p(t+1) = G(p(t), Rx(t)) - DropTail, RED, ...




@ Duality model of TCP

TCP x = F(R'p, X)

p- = G(p, Rx)
Equilibrium (x*,p*) primal-dual optimal:
max » U;(x) subjectto Rx<c

x>0

B F determines utility function U
B G guarantees complementary slackness

B p* are Lagrange multipliers Kelly, Maloo, Tan 1998
Low, Lapsley 1999

Uniqueness of equilibrium
B x* is unique when U s strictly concave
B p* is unique when R has full row rank




@ Duality model of TCP

TCP x = F(R'p, X)

p- = G(p, Rx)
Equilibrium (x*,p*) primal-dual optimal:
max » U;(x) subjectto Rx<c

x>0

B F determines utility function U

B G guarantees complementary slackness

B p* are Lagrange multipliers Kelly, Maloo, Tan 1998
Low, Lapsley 1999

The underlying concave program also
leads to simple dynamic behavior




@ Duality model of TCP

Equilibrium (x*,p*) primal-dual optimal:

max » U;(x) subjectto Rx<c

x>0

Mo & Walrand 2000:
'log x if a=1

U.(X) =+
(%) AL-a)'x “  if azl

B o=/ . Vegas, FAST, STCP
B o=/2 HSTCP

B aoa=2 : Reno

B o =00 - XCP (single link only)




@ Duality model of TCP

Equilibrium (x*,p*) primal-dual optimal:
max » U;(x) subjectto Rx<c

x>0

Mo & Walrand 2000:
'log x if a=1

U.(X) =+
(%) AL-a)'x “  if azl

B o =0 maximum throughput
B o =/ proportional fairness
B o =2 min delay fairness

B o =o00:maxmin fairness




@ Some implications
Equilibrium

B Always exists, unique if R is full rank

B Bandwidth allocation independent of AQM or
arrival pattern

B Can predict macroscopic behavior of large scale
networks

Counter-intuitive throughput behavior
B Fair allocation is not always inefficient

B Increasing link capacities do not always raise
aggregate throughput

[Tang, Wang, Low, ToN 2006]

FAST TCP

B Design, analysis, experiments
[Jin, Wei, Low, Hegde, ToN 2007]
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Reverse engineering TCP/IP
B Delay insensitive utility

B Delay sensitive utility

® How bad is single-path routing

For joint congestion control and multipath routing:

Gallager (1977), Golestani & Gallager (1980), Bertsekas, Gafni & Gallager

(1984), Kelly, Maulloo & Tan (1998), Kar, Sarkar & Tassiulas (2001), Lestas
& Vinnicombe (2004), Kelly & Voice (2005), Lin & Shroff (2006), He, Chiang
& Rexford (2006), Paganini (2006)




E\Q Motivation

Primal (x) subjectto Rx<
@OaXZU,(x) subject to Rx<c

Dual mln [Zma{u (X)—X IZRip,j +Zp|‘3|j

i %20



@ Motivation

' (x i <
Primal max rEOaXZU,(x) subject to Rx<c

.
Dual min Zma{UiOﬁ)—& rginZRiﬂj+ZHQJ

\ i

Shortest path
routing!

Can TCP/IP maximize utility?




& Assumptions

Two timescales

B TCP converges instantly
B Route changes slowly

Single-path shortest path routing R(t)

B Link cost: p(t) + b 7 - prop delay

'\

queueing delay

Tcp/aom | P(O) p(1)

IP T\T

R(0) R(1) -+ R(), R(t+1) ;-




& Assumptions

Two timescales

B TCP converges instantly
B Route changes slowly

Single-path shortest path routing R(t)

B Link cost: p(t) + b 7 - prop delay

'\

queueing delay

will only consider b=0 or b=1



E\Q TCP/IP dynamic model

TCP Xx(t) = arg max Zui(xi)
subjectto R(t)x<c
p(t) = arg min i ("Qﬁ)o( Ui(xi)—xizll R (t)p.j
AQM X ZI: -
slow timescale Link cost
IP| R (t+D=arg n?a,iinZR“(b' (t)+b;,)



‘4 Reverse engineering TCP/IP

B Does equilibrium routing R, exist ?

B How to characterize R,?
B |s R, stable ?

B Can It be stabilized?

TCP/AQM

IP

p(0)

T

R(0)

p(1)

N

R(1)

+ R(), R(t+1) ;"



T Delay insensitive utility: b=0

Theorem

If b=0, R, exists & solves NUM iff zero duality gap

B Shortest-path routing is optimal with
congestion prices

B No penalty for not splitting

Kelly’s problem solved by TCP

A
~ N

Primal: Max max ZU (x) subjectto Rx<c

x>0

X: >0

Dual : rpzlgl [Zmax[u (x.)— xmanR,,p,j +Zplcl]



T Delay insensitive utility: b=0

IP || TCP-AQM
v max 2 Ui (x)
P R x20 i
subjectto Rx<c
TCP/IP

B Equilibrium of TCP/IP exists iff zero duality gap
B NP-hard, but subclass with zero duality gap is P
B Equilibrium, if exists, can be unstable
B Can stabilize, but with reduced utility

Nonzero duality gap: complexity, cost of not splitting




T Delay insensitive utility: b=0

IP || TCP-AQM
TCP/ | |
AQM max max ) U;(x)
- R x>0 |
subjectto Rx<c
BUT...

B D is never zero in practice

m If b>0 then there are networks for which
equilibrium routings exist but do not maximize
any delay insensitive utility function
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B Delay sensitive utility
L]

J. Wang, Li, Low, Doyle. ToN, 2005
Pongsajapan, Low, Infocom 2007
M. Wang, Tan, Tang, Low, pre-print, 2009
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S Delay sensitive utility: b=1

Ui(Xi’di):Vi(Xi)_X'd'

Round-trip __, d, :ZRnTl : Link
prop delay | prop delay

B Round trip propagation delay depends on R
B Delay sensitive utility function

m Utility from throughput ... balanced by

B Disutility from delay



R4 pelay sensitive utility: b=1

Theorem

If b=1, R, exists & solves NUM iff zero duality gap

B Shortest-path routing is optimal
M No penalty for not splitting

Primal Max max ZU (x.d.) subjectto Rx<c

x>0

Dual: mln [Zmax(U (x,d)—x manR| (p +7, j +Zp,c,j

X >0




E\Q Counter-intuitive behavior

With delay sensitive utility
B Bottleneck links can be under-utilized

There exist networks such that the TCP/IP
equilibrium (x*, p*, R*) is in the interior:
R*X* < ¢

Equilibrium rate: X =C < 2¢

® U(x,d)=V(x)-xz

";_Lx’(c,f):v'(c)_f - 0

2¢c,7=V'(c)




E\Q Counter-intuitive behavior

With delay sensitive utility

B Extra paths that will be utilized by delay-
Insensitive utility functions may not

It Is sub-optimal to use the long path, even
when traffic is allowed to distribute over
multiple paths

/C’T\. U(x.d)=V(x)-xz

Equilibrium routing: use short path only

oo,r+£(c,r)
OX



E\Q Counter-intuitive behavior

Any delay sensitive utility that a TCP/IP
equilibrium maximizes necessarily possesses
one of 3 “strange” properties

B The specific utility U(x,d)=V(x)-xz has
two of the 3

M [n contrast to joint congestion control and
multi-path routing




@ Counter-intuitive behavior

I5 must have at least one of the following three properties:

1) dU(z,d) € B,d > 0 so that U(x,d) 1s not strictly
increasing in .

2) VU(x,d) € B. Ve > 0. we have Us(z,d) := Uy(x +
€,d) 1s not in B5.

3) dU(x,d) € B. D > 0 such that f(d) := M(U.d) is
finite and discontinuous for all d > D.

M((U,d) := lim Ul(ec,d)

C— 00



‘€ Routing stability

Given any network, suppose
m link cost: ap(t) + 4
B 0<a<a, is small enough

If every SD pair has unigue min prop delay path,
then TCP/IP is asymptotically stable




E\Q Routing stability

Given any network, suppose
m link cost: ap(t) + 4
B 0<a<a, is small enough

Otherwise, consider a modified network in which
every SD pair has a unigue min delay path, but

m link cost: Py(t)

Then the two networks have the same equilibrium
and stablility properties




‘€ Routing stability

For any delay sensitive or insensitive utility
function, there exists a network such that

decreasing a can destabilize TCP/IP

m link cost: ap(t) + 4

stable unstable stable
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® How bad is single-path routing

J. Wang, Li, Low, Doyle. ToN, 2005
Pongsajapan, Low, Infocom 2007
M. Wang, Tan, Tang, Low, pre-print, 2009



| & Multi-path routing

B Source can split its total rate into multiple
paths

Total source rate: X, = (X;,..., Xy )

I'srateon path j:  X;

multi -path || x; [l,= D X;
j
single -path : || x; ||,,= max x;
J



E\Q Multi-path routing

Multi - path : Max  max ZU (1l % 1l,)

x>0

subject to Rx<c

Single - path : max  max ZU U 1..)

x>0

subject to Rx<c

Total source rate: X, = (X;,..., Xy )

I'srateon path j:  X;

multi -path : || X, ||,= Zx”

single - path : || x; [|,= max x;
j



| & Multi-path routing

x>0

Multi-path:  max max ZUi(IIXi 1)

subject to Rx<c

Single-path: max max > U;(lxIL.)

x>0

subject to Rx<c

For multi-path routing

B Joint routing and congestion control is a
concave program (polynomial-time solvable)

B Zero duality gap
B Upper bounds max utility of single-path TCP/IP



E\Q Multi-path routing

Multi-path:  max max ZUi(IIXi 1)

x>0

subject to Rx<c

Single-path: max max > U;(lxIL.)

x>0

subject to Rx<c

For single-path TCP/IP:

B No longer concave program; primal is NP-hard
B Non-zero duality gap in general

B Zero gap iff TCP/IP equilibrium exists

B Duality gap = cost of not splitting



| & Multi-path routing

Multi-path:  max max ZUi(IIXi 1)

x>0

subject to Rx<c

x>0

Single-path: max max > U;(lxIL.)

subject to Rx<c

Theorem

B For any multi-path solution (R, x), there is a
multi-path solution (R’, xX’)

B That uses no more than N+L paths
B Achieves the same utility



| & Multi-path routing

Multi-path:  max max ZUi(IIXi 1)

x>0

subject to Rx<c

x>0

Single-path: max max > U;(lxIL.)

subject to Rx<c

Theorem
B Duality gap is upper bounded by

min(L, N) max p,

p= max (Ui(y) - U'(y/K"))

yE[0,M ]



| & Multi-path routing

Multi-path:  max max ZUi(IIXi 1)

x>0

subject to Rx<c

x>0

Single-path: max max > U;(Ix )

subject to Rx<c

Corollary

B For Vegas/FAST U.(x)=« logx. duality gap is
bounded by

min(L, N) maxe; logK.



@ Conclusion & open issues

Summary

B Equilibrium of TCP/IP can be interpreted as
maximizing network utility over rates &
routes

How to reconcile TCP utility maximization
and TCP/IP utility maximization?

B Given routing, TCP utility Is increasing In
throughput

® With TCP/IP, this is no longer the case

In general, can/how we regard layering
as optimization decomposition?




