The Edge --- Randomized
Algorithms for Network Monitoring

George Varghese
November 13 2008

) UCSDCSE \Cn

Computer Science and Engineering center for networked systems

Research motivation

The Internet in 1969 The Internet today

Problems

Measurement
& control

e

. . . G ORI
This talk: using randomized algorithms in network chips

for monitoring performance and security in routers

Focus on 3 Monitoring Problems

e Pro
e Pro

e Pro

attac

D
D

D

em 1: Finding heavy-bandwidth flows
em 2: Measuring usec network latencies
em 3. Logging all infected nodes during an

K with limited memory

In each case, a simple "sampling” scheme works

But in each case, if the router can add some
memory and processing, we can get an edge . . .

Get edge subject to constraints

o Low memory: On-chip SRAM limited to around 32
Mbits. Not constant but is not scaling with number of
concurrent conversations/packets

o Small processing: For wire-speed at 40 Gbps, using
40 byte packets, have 8 nsec. Using 1 nsec SRAM, 8
memory accesses. Factor of 30 in parallelism buys
240 accesses.

Problem 1: Heavy-bandwidth usersy

Heavy-hitters: In a measurement interval, (e.g., 1
minute) measure the flows (e.g., sources) on a link that
send more than a threshold T (say 1% of the traffic) on a
link using memory M < < F, the number of flows

S2 || S6 S2 S5 S1 S2

T~

Source S2 is 30 percent of traffic sequence

Estan,Varghese, ACM TOCS 2003

Getting an Edge for heavy-hitt

Sample: Keep

a M size sample of packets.

Estimate heavy-hitter traffic from sample
Sample and Hold: Sampled sources held in a

CAM of size M.

Edge: Standarc
O(1/M) for S&H

All later packets counted

error of bandwidth estimate is
instead of O(1/sqrt(M))

Improvement: (

Prabhakar et al): Periodically

remove “mice” from “elephant trap”

Problem 2: Fine-Grain Loss and Latency
Measurement

(with Kompella, Levchenko, Snoeren)
SIGCOMM 2009, to appear

Fine-grained measurement critica

o Delay and loss requirements have intensified:
+ VoIP, IPTV, Gaming
» <200 msec latency, small loss

+ Automated financial programs
» < 100 usec latency, very small (1 in 100,000) loss?

+ High-performance computing
» <10 usec, very small loss
o New end-to-end metrics of interest
+ Average delay (accurate to < msec, possibly microsecs)
+ Jitter (delay variance helps)
+ Loss distribution (random vs microbursts, TCP timeouts)

Existing router infrastructure

« SNMP (simple aggregate packet counters)
+ Coarse throughput estimates not latency

o NetFlow (packet samples)
+ Need to coordinate samples for latency. Coarse

77

Applying existing techniques tﬁ’

« Standard approach is active probes and tomography
+ Join results from many paths to infer per-link properties
+ Can be applied to measuring all the metrics of interest

o Limitations

+ Overheads for sending probes limits granularity
» Cannot be used to measure latencies in 100’s of ysecs)

+ Tomography inaccurate due to under-constrained formulation

No guarantee that metrics measured by probes are representative

of those experienced by any particular traffic flow

Our approach tﬁ’

o Add hardware to monitor each segment in path
+ Use a low-cost primitive for monitoring individual segments
+ Compute path properties through segment composition
+ ldeally, segment monitoring uses few resources
» Maybe even cheap enough for ubiquitous deployment!
o This talk shows our first steps
+ Introduce a data structure called an LDA as key primitive
+ WEe'll use a only small set of registers and hashing
+ Compute loss, delay average and variance, loss distribution

We measure real traffic as opposed to injected probes

Outline

o Model
o Why simple data structures do not work

o LDA for average delay and variance

73

—
Abstract segment model ﬁ:ﬂ

e 8 v

Ds Dr

o Packets always travel from S to R
+ R 1o S is considered separately

o Divide time into equal bins (measurement intervals)

+ Interval depends on granularity required (typically sub-second)
« Both S and R maintain some state D about packets

+ State is updated upon packet departure

o S transmits Dgto R
+ R computes the required metric as f(Dg, Dg)

7
Assumptions X
=

o Assumption 1: FIFO link between sender and receiver

o Assumption 2: Fine-grained per-segment time synchronization
+ Using IEEE 1588 protocol, for example

o Assumption 3: Link susceptible to loss as well as variable delay
o Assumption 4: A little bit of hardware can be put in the routers

e You may have objections, we will address common ones later

7
Constraints Z
=

o Constraint 1: Very little high-speed memory
o Constraint 2: Limited measurement communication budget
o Constraint 3: Constrained processing capacity

o Consider a run-of-the-mill OC-192 (10-Gbps) link

+ 250-byte packets implies 5 million packets per second
+ At most 1 control packet every msec, more likely once per sec

7
Computing loss ﬁ:ﬂ

 Em X -

i) P Loss =
counter 3_2-=1

counter

o Store a packet counter at S and R.
o S sends the counter value to R periodically

« R computes loss by subtracting its counter value from
S’s counter

Computing delay (naive)

- e 8 v

{12\ {26\
35

15

« A naive first cut: timestamps Avg delay 47/3=157

+ Store timestamps for each packet at sender, receiver

+ After every cycle, sender sends the packet timestamps to the
receiver

+ Receiver computes individual delays, and computes average
+ 5M packets require ~ 25,000 packets (200 labels per packet)

Extremely high communication and storage costs

P.
Computing delay (sampled) ‘;ﬁ’

TR 8 e
10 5 15
2

15 35 0

o (Slightly) better approach: sampling

+ Store timestamps for only sampled packets at sender, receiver

+ 11in 100 sampling means ~ 250 packets

Less expensive, but we can get an edge . ..

n /“.
Delay with no packet loss S
= =

10+12+15 23+26+35
counter counter
Avg delay 84-37/3 = 15.7

o Observation: Aggregation can reduce cost
+ Store sum of the timestamps at S & R
+ After every cycle, S sends its sum Cgto R
+ R computes average delay as (C5 — Cg) /' N
+ Only one counter and one packet to send

Works great, if packets were never lost...

Delay in the presence of loss

o Consider two packets, first sent at T/2 and lost. Second
sentat T, received at T. Receiver gets D =T/4

o Lost packets can cause Error = O(T) where T is the size
of the measurement interval

o Failed quick fix: Bloom filter will not work
+ Always a finite false positive probability

Theory Perspective: Streamin

o Streaming algorithms a massive field of study in
theory, databases, and web analysis

« However, our problem has two big differences:

+ Coordination: Instead of calculating F(s_i) on one stream s .
we compute F(s_i, r i) on two streams s iandr i

+ Loss: Some of the r_i can be undefined because of loss

o Example: Max is trivial in streaming setting but
provably requires linear memory in coordinated setting

Delay in the presence of loss

[BT D

5 OFF B

2 25 1 23 Q 0 0
2 29 2 65 O 5 | 26
o (Much) better idea:

+ Spread loss across several buckets
+ Discard buckets with lost packets

o Lossy Difference Aggregator (LDA)

+ Hash table with packet count and timestamp sum

Analysis and Refinements

o Packet loss
+ k packet losses can corrupt up to k buckets
+ If k << B, then only a small subset of buckets corrupted

o Problem: High loss implies many bad buckets

Solution: Sampling

+ Control sampling rate such that no more than B/2 buckets
corrupted (based on loss rate)

o Problem: Loss rate is unpredictable

Solution: Run parallel copies for several loss rates
+ Logarithmic copies suffice in theory, smaller in practice

01 F

RELATIVE}

DELAY ERROR
Q.01 3

0.001 ¢

0.0001

Sampling rate chosen statically for 5%
loss to lose B/2 packets

0.1 F

0.01 |

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.001

LOSS

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

LOSS

Sampling rate chosen dynamically for
each loss rate to lose B/2 packets

Computing jitter tﬁ’

o Propose measuring jitter as variance in delay
o Can we adapt LDA to measure variance ?
o Solution idea: inspired by sketching [AMS96]
+ Consider random variable X that takes values +1
and -1 with probability 72
+ At S and R, packet p; has timestamps a, and b,
+ S transmits Ya*X. to R
+ R computes (3b*X. - Ya*X)?/ n - y?to obtain
variance

Why this works (AMS 96)

E[Q b, x X, = > a x X,)?]

= E[(Q_6 x X;)’]

= E[Q. 5" x X +2D_56; x X;X]
=D 8 < E[X’]+2D 60, x E[X;X]

_ Z@Z = =0

Other issues

o Implementation: counters plus increment/decrement.
200 SRAM counters < 1% of 95 nm ASIC

o FIFO model: load balancing breaks model, need to
enforce by doing on each link in hunt group

o Deployment: deploy within single router first using flow
through logic: majority of loss, delay within routers

o Time synchronization: being done within routers, also
across links with IEEE 1588 and GPS (Corvil)

Summary of Problem 2 w

o With rise in modern trading and video applications,
fine grained latency is important. Active probes
cannot provide latencies down to microseconds

o Proposed LDAs for performance monitoring as a new
synopsis data structure

+ Simple to implement and deploy ubiquitously

+ Capable of measuring average delay, variance,
loss and possibly detecting microbursts

+ Edge is N samples (1 million) versus M samples
(1000) for no-error case. Reduces error by 300.

Problem 3: Scalable Logging
(with Terry Lam)

Source: CAIDA Visualization

“Worms!? She must have picked them up on the
[nternet.”

Scalable logging problem ti)

S1 infected with

clean S4

IDS

1 Gbps Packet Stream 10 Mbps log bandwidth

o Setting: IDS has a list of signatures, manual (Snort) or
automatically learned.

o Function: Each time a packet matches a signature, IDS
should log the packet source to disk

o Difficulty: Millions of infected sources, small memory
at IDS, small logging bandwidth

Scalable logging Model

> Disk
b<<B

® ®© o |

Memory M

+ Challenges:
+« Small logging bandwidth: b < < arrival rate B
+ Small memory: M << number of sources N

+ Memory can fill with sources logged to disk

S)

mn /
Naive scheme performance ‘;ﬁ’

L L

D
> Disk
b<<B

® ®© o |

LoggedsofarL=|L U L|
M D

+ In steady state, every 1/b time, head leaves to disk
+ Probability replacementis newis (N—-L)/N

o ExpectedtimeL > L+1isN/(N-L)Db

o« Time to log all sourcesis (InN—-InM)N /b

In worst case model, time can be infinite!

Simple techniques... ﬁ:ﬂ

« Naive scheme is In N/M worse than optimal even in
optimistic random model

« Keeping a hash table or Bloom filter does not help
significantly because we have only M memory and
so cannot keep track of sources logged to disk.

o Clearing hash table or Bloom Filter periodically
does not help as same sources may reappear

Congestion Control to the rescue?

o Many packets must complete to obtain value. Random
dropping leads to congestion collapse

o Closed loop congestion control (TCP, Ethernet): needs
cooperative sources

o Classical solution: admission control. Again requires
cooperation

o What can a poor resource do to protect itself
unilaterally without cooperation from senders?

/"‘“’s.
Randomized admission control)

I

b
B

Randomly select as many sources as possible

+ Select: Only if low order k bits of Hash(S) = V. Add
S to Bloom Filter

+ Adjust: Halve sources (k=> k+1) if Bloom Filter is
full

s lterate: V>V + 1 after time T to capture all
sources

Long term fairness and small memory and processing

l

Linux PCAP

A

Snort Detection

Adding RAC to Snort (@,

Snort Logger

Sampling value W += 1
Reset Timer T
Reset Bloom Filter B

of sampling bils += 1
Sampling value V += 1
Reset Timer T
Feset Bloom Filler

A

RAC Logging vs Snort Logging

10000 -
9000 —

8000 -

LOGGED ;4 -
SOURCES ®*°7

5000 —
4000
3000 -
2000

1000

- RAC

‘Snort Logger

0

I |
20 40

I I I I I I I]

60 80 100 120 140 160 180 200

TIME (sec)

+ Ratio of inbound traffic/logging rate = 10.
+ RAC logs 96% in 120 second, Snort saturates at 20%

Edge can be an order of magnitude

« RAC is factor of 2 off from optimal to log all sources
versus In N/M off for naive.

o For N =1 million and M small, edge is close to 14
for random arrivals; infinite for worst-case

o LDA offers N samples versus M samples for naive °
o For N =1 million, M = 10,000, edge is close to 10

« Sample and Hold offers O(1/M) standard error versus
O(1/sqrt(M)) for naive
o For M =10,000, edge in standard error is 100

Related Work w

o LDA:

+ Streaming Algorithms: less work on 2-party
streaming algorithms between a sender and receiver

+ Network tomography: joins the result of black box
measurements to infer link delays and losses

e RAC:

+ Random partitions a common idea. We apply to
admission control and add cycling through partitions

+ Alto Scavenger “discards information for half the
files” if disk full

Summary w

o Monitoring networks for performance problems and
security at high speeds is important but hard

« Randomized streaming algorithms can offer cheaper
(in gates) solutions at high speeds.

o Described two simple randomized algorithms

o« LDA: Aggregate by summing, hash to withstand
loss

+ RAC: Randomly partition input into small enough
sets. Cycle through sets for fairness.

In conclusion . . .

