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Research motivationResearch motivation

The Internet in 1969 The Internet today

Fl ibilit d O l d tt kProblems Flexibility, speed, 
scalability

Overloads, attacks, 
failures

Measurement 
& control

Ad-hoc solutions 
suffice

Engineered solutions  
needed

This talk: using randomized algorithms in network chips 
for monitoring performance and security in routers



Focus on 3 Monitoring ProblemsFocus on 3 Monitoring Problems

Problem 1: Finding heavy-bandwidth flows 
Problem 2: Measuring usec network latenciesProblem 2: Measuring usec network latencies
Problem 3:  Logging all infected nodes during an 
attack with limited memoryy

In each case, a simple “sampling” scheme worksIn each case, a simple sampling  scheme works
But in each case, if the router can add some 
memory and processing, we can get an edge . . .y p g, g g



Get edge subject to constraintsGet edge subject to constraints
Low memory: On-chip SRAM limited to around 32 y p
Mbits.  Not constant but is not scaling with number of 
concurrent conversations/packets

Small processing: For wire-speed at 40 Gbps, using 
40 b t k t h 8 U i 1 SRAM 840 byte packets, have 8 nsec.  Using 1 nsec SRAM, 8 
memory accesses.  Factor of 30 in parallelism buys 
240 accesses.240 accesses. 



Problem 1: Heavy-bandwidth usersProblem 1: Heavy bandwidth users

Heavy hitters: In a measurement interval (e g 1Heavy-hitters: In a measurement interval, (e.g., 1 
minute) measure the flows (e.g., sources) on a link that 
send more than a threshold T (say 1% of the traffic) on a ( y )
link  using memory M < < F, the number of flows

S1S6 S2 S5S2 S2

Source S2 is 30 percent of traffic sequencep q

Estan,Varghese, ACM TOCS 2003



Getting an Edge for heavy-hittersGetting an Edge for heavy-hitters
Sample: Keep a M size sample of packets.Sample:  Keep a M size sample of packets.  
Estimate heavy-hitter traffic from sample
Sample and Hold:  Sampled sources held in a p p
CAM of size M.  All later packets counted
Edge: Standard error of bandwidth estimate is g
O(1/M) for S&H instead of O(1/sqrt(M)) 
Improvement: (Prabhakar et al): Periodically 
remove “mice” from “elephant trap”



Problem 2: Fine-Grain Loss and Latency 
Measurement 

(with Kompella, Levchenko, Snoeren)
SIGCOMM 2009, to appear



FineFine grained measurement criticalgrained measurement criticalFineFine--grained measurement criticalgrained measurement critical
Delay and loss requirements have intensified:y q

VoIP, IPTV, Gaming
» < 200 msec latency, small loss

Automated financial programsAutomated financial programs 
» < 100 usec latency, very small (1 in 100,000) loss?

High-performance computing
< 10 ll l» < 10 usec, very small loss

New end-to-end metrics of interest
Average delay (accurate to < msec, possibly microsecs)g y ( y )
Jitter (delay variance helps)
Loss distribution (random vs microbursts, TCP timeouts)



Existing router infrastructureExisting router infrastructureExisting router infrastructureExisting router infrastructure
SNMP (simple aggregate packet counters)SNMP (simple aggregate packet counters)

Coarse throughput estimates not latency

NetFlow (packet samples)
Need to coordinate samples for latency.  Coarse



Applying existing techniquesApplying existing techniquesApplying existing techniquesApplying existing techniques
Standard approach is active probes and tomographypp p g p y

Join results from many paths to infer per-link properties 
Can be applied to measuring all the metrics of interest

Limitations
Overheads for sending probes limits granularityOverheads for sending probes limits granularity

» Cannot be used to  measure latencies in 100’s of μsecs)
Tomography inaccurate due to under-constrained formulation

No guarantee that metrics measured by probes are representative 
of those experienced by any particular traffic flowof those experienced by any particular traffic flow 



Our approachOur approach
Add hardware to monitor each segment in path

Our approachOur approach
g p

Use a low-cost primitive for monitoring individual segments
Compute path properties through segment composition
Ideally segment monitoring uses few resourcesIdeally, segment monitoring uses few resources

» Maybe even cheap enough for ubiquitous deployment!

This talk shows our first steps
Introduce a data structure called an LDA as key primitive 
We’ll use a only small set of registers and hashing
Compute loss, delay average and variance, loss distributionCompute loss, delay average and variance, loss distribution 

We measure real traffic as opposed to injected probes



OutlineOutlineOutline Outline 

Model

Why simple data structures do not work

fLDA for average delay and variance



Abstract segment modelAbstract segment model
Sender S Receiver R

Abstract segment modelAbstract segment model

Packets always travel from S to R
SDS RDR

Packets always travel from S to R
R to S is considered separately

Divide time into equal bins (measurement intervals)q ( )
Interval depends on granularity required (typically sub-second) 

Both S and R maintain some state D about packets
St t i d t d k t d tState is updated upon packet departure

S transmits DS to R
R computes the required metric as f(DS , DR)R computes the required metric as f(DS , DR)



AssumptionsAssumptions
Sender S Receiver R

AssumptionsAssumptions

Assumption 1: FIFO link between sender and receiverssu pt o O bet ee se de a d ece e
Assumption 2: Fine-grained per-segment time synchronization

Using IEEE 1588 protocol, for example
A ti 3 Li k tibl t l ll i bl d lAssumption 3: Link susceptible to loss as well as variable delay
Assumption 4: A little bit of hardware can be put in the routers

You may have objections, we will address common ones later



ConstraintsConstraints
Sender S Receiver R

ConstraintsConstraints

Constraint 1: Very little high-speed memoryConstraint 1: Very little high speed memory
Constraint 2: Limited measurement communication budget
Constraint 3: Constrained processing capacityg y

Consider a run-of-the-mill OC-192 (10-Gbps) link
250-byte packets implies 5 million packets per second 
At most 1 control packet every msec, more likely once per sec



Computing lossComputing loss
Sender S Receiver R

Computing lossComputing loss
Sender S

counter counter
1 123 2 Loss = 

3 – 2 = 1

Store a packet counter at S and R.
S d h l R i di ll

counter 3

S sends the counter value to R periodically
R computes loss by subtracting its counter value from 
S’s counterS s counter



Computing delay (naïve)Computing delay (naïve)
Sender S Receiver R

Computing delay (naïve)Computing delay (naïve)

10
12
15

23
26
35

13
14
20

A naïve first cut: timestamps
Store timestamps for each packet at sender, receiver

15 35 20

47/3 = 15.7Avg delay

After every cycle, sender sends the packet timestamps to the 
receiver
Receiver computes individual delays, and computes average
5M packets require ~ 25,000 packets (200 labels per packet)

Extremely high communication and storage costsExtremely high communication and storage costs



Computing delay (sampled)Computing delay (sampled)
Sender S Receiver R

Computing delay (sampled)Computing delay (sampled)

10

15

23

35

13

20

(Slightly) better approach: sampling

33/2 = 16.5Avg delay

Store timestamps for only sampled packets at sender, receiver

1 in 100 sampling means ~ 250 packets00 sa p g ea s 50 pac ets

Less expensive, but we can get an edge . . .p g g



Delay with no packet lossDelay with no packet loss
Sender S Receiver R

Delay with no packet lossDelay with no packet loss

84-37/3 = 15.7Avg delay
counter

10+12+15 23+26+35
counter

Observation: Aggregation can reduce cost
Store sum of the timestamps at S & R

84 37/3  15.7g y

After every cycle, S sends its sum CS to R
R computes average delay as (CS – CR) / N
Only one counter and one packet to sendOnly one counter and one packet to send

Works great, if packets were never lost…g p



Delay in the presence of lossDelay in the presence of lossDelay in the presence of lossDelay in the presence of loss

Consider two packets, first sent at T/2 and lost.  Second 
sent at T, received at T.   Receiver gets D = T/4g

Lost packets can cause Error = O(T) where T is the size 
f th t i t lof the measurement interval

Failed quick fix: Bloom filter will not workFailed quick fix: Bloom filter will not work
Always a finite false positive probability



Theory Perspective: StreamingTheory Perspective: Streaming 
Streaming algorithms a massive field of study in g g y
theory, databases, and web analysis

However, our problem has two big differences:
Coordination: Instead of calculating F(s_i) on one stream s_i. 
we compute F(s_i, r_i) on two streams s_i and r_i p ( _ _ ) _ _
Loss: Some of the r_i can be undefined because of loss

Example: Max is trivial in streaming setting butExample: Max is trivial in streaming setting but 
provably requires linear memory in coordinated setting



Delay in the presence of lossDelay in the presence of loss
Sender S Receiver R

Delay in the presence of lossDelay in the presence of loss
Sender S
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(Much) better idea: 
Spread loss across several buckets

652292 362

36/2= 18

Spread loss across several buckets
Discard buckets with lost packets

Lossy Difference Aggregator (LDA)
Hash table with packet count and timestamp sum



Analysis and RefinementsAnalysis and Refinements
Packet loss

Analysis and RefinementsAnalysis and Refinements

k packet losses can corrupt up to k buckets
If k << B, then only a small subset of buckets corrupted

P bl Hi h l i li b d b k tProblem: High loss implies many bad buckets
Solution: Sampling

Control sampling rate such that no more than B/2 bucketsControl sampling rate such that no more than B/2 buckets 
corrupted (based on loss rate)

Problem: Loss rate is unpredictable
S l ti R ll l i f l l tSolution: Run parallel copies for several loss rates

Logarithmic copies suffice in theory, smaller in practice



Comparison to active probesComparison to active probesComparison to active probesComparison to active probes

RELATIVE
DELAY ERROR

Sampling rate chosen statically for 5% 
loss to lose B/2 packets 

Sampling rate chosen dynamically for 
each loss rate to lose B/2 packets 

LOSS LOSS



Computing jitterComputing jitter
Propose measuring jitter as variance in delay 

Computing jitterComputing jitter
p g j y

Can we adapt LDA to measure variance ? 
Solution idea: inspired by sketching [AMS96]

Consider random variable Xi that takes values +1 
and -1 with probability ½
At S and R packet p has timestamps a and bAt S and R, packet pi  has timestamps ai and bi

S transmits ∑ai*Xi to R
R computes (∑bi*Xi - ∑ai*Xi)2 / n - µ2 to obtainR computes (∑bi Xi ∑ai Xi) / n µ to obtain 
variance



Why this works (AMS 96)Why this works (AMS 96)

E[( b∑ × X a∑ × X )2]

Why this works (AMS 96)Why this works (AMS 96)

E[( bi∑ × Xi − ai∑ × Xi) ]

= E[( δi∑ × Xi)
2]E[( δi∑ Xi) ]

= E[ δi
2 × Xi

2∑ + 2 δiδ j × XiX j∑ ]j j

= δi
2 × E[Xi

2]∑ + 2 δiδ j × E[XiX j ]∑
= δi

2∑ =1 =0



Other issuesOther issues
Implementation: counters plus increment/decrement.  

Other issuesOther issues
p p

200 SRAM counters < 1% of 95 nm ASIC
FIFO model: load balancing breaks model, need to 

f b d i h li k i h tenforce by doing on each link in hunt group
Deployment: deploy within single router first using flow 
through logic: majority of loss, delay within routersthrough logic: majority of loss, delay within routers
Time synchronization: being done within routers, also 
across links with IEEE 1588 and GPS (Corvil)



Summary of Problem 2Summary of Problem 2
With rise in modern trading and video applications, 

Summary of Problem 2Summary of Problem 2
g pp ,

fine grained latency is important.  Active probes 
cannot provide latencies down to microseconds
P d LDA f f it iProposed LDAs for performance monitoring as a new 
synopsis data structure

Simple to implement and deploy ubiquitouslySimple to implement and deploy ubiquitously
Capable of measuring average delay, variance, 
loss and possibly detecting microbursts
Edge is N samples (1 million) versus  M samples 
(1000) for no-error case.  Reduces error by 300.



Problem 3: Scalable Logging
(with Terry Lam)



Spread of Code RedSpread of Code Red

Source: CAIDA Visualization





Scalable logging problemScalable logging problemScalable logging problemScalable logging problem
Witty S1 S1 infected with Wittyclean S4

IDS
1 Gbps Packet Stream 10 Mbps log bandwidth

Setting: IDS has a list of signatures, manual (Snort) or 
automatically learned.
Function: Each time a packet matches a signature, IDS 
should log the packet source to diskshould log the packet source to disk
Difficulty: Millions of infected sources, small memory 
at IDS, small logging bandwidthat IDS, small logging bandwidth



Scalable logging ModelScalable logging ModelScalable logging ModelScalable logging Model
1 1

Disk

1

B b << B

N Memory M 

B

Challenges:
Small logging bandwidth: b < < arrival rate B
Small memory: M < <  number of sources N
Memory can fill with sources logged to diskMemory can fill with sources logged to disk



Naïve scheme performanceNaïve scheme performanceNaïve scheme performanceNaïve scheme performance
1 1 L LM

D
Disk

1

b << B

D

N
Logged so far L = | L  U  L |

M D

In steady state, every 1/b time, head leaves to disk
Probability replacement is new is (N – L) / Ny p ( )
Expected time L L + 1 is N /(N – L) b
Time to log all sources is (ln N – ln M) N /b

In worst case model, time can be infinite!



Simple techniquesSimple techniquesSimple techniques...Simple techniques...
Naïve scheme is ln N/M worse than optimal even in p
optimistic random model
Keeping a hash table or Bloom filter does not help 
i ifi tl b h l M dsignificantly because we have only M memory and 

so cannot keep track of sources logged to disk.
Clearing hash table or Bloom Filter periodicallyClearing hash table or Bloom Filter periodically 
does not help as same sources may reappear



Congestion Control to the rescue?Congestion Control to the rescue? 
Many packets must complete to obtain value. Random y p p
dropping leads to congestion collapse
Closed loop congestion control (TCP, Ethernet): needs 

ticooperative sources
Classical solution: admission control.  Again requires 
cooperationcooperation
What can a poor resource do to protect itself 
unilaterally without cooperation from senders?



Randomized admission controlRandomized admission controlRandomized admission control Randomized admission control 
Sender S Receiver RSender SSender S

b
Sender S

B

Randomly select as many sources as possible
Select: Only if low order k bits of Hash(S) = V.  Add 
S to Bloom FilterS to Bloom Filter
Adjust: Halve sources (k k+1) if Bloom Filter is 
full
Iterate: V V + 1 after time T to capture all 
sources 

Long term fairness and small memory and processing



Adding RAC to SnortAdding RAC to Snort

Linux PCAP

Snort Detection

Snort Logger



RAC Logging vs Snort LoggingRAC Logging vs Snort LoggingRAC Logging vs Snort LoggingRAC Logging vs Snort Logging

RAC
LOGGED

SOURCES

Snort Logger

SOURCES

Snort Logger

TIME (sec)
Ratio of inbound traffic/logging rate = 10.

RAC logs 96% in 120 second, Snort saturates at 20%

( )



Edge can be an order of magnitudeEdge can be an order of magnitude

RAC is factor of 2 off from optimal to log all sources 
versus ln N/M off for naïve.

For N = 1 million and M small, edge is close to 14, g
for random arrivals; infinite for worst-case

LDA offers N samples versus M samples for naïve ‘LDA offers N samples versus M samples for naïve 
For N = 1 million, M = 10,000, edge is close to 10

Sample and Hold offers O(1/M) standard error versus 
O(1/sqrt(M)) for naïve

For M = 10 000 edge in standard error is 100For M  10,000, edge in standard error is 100



Related WorkRelated Work

LDA:LDA:
Streaming Algorithms: less work on 2-party 
streaming algorithms between a sender and receiverg g
Network tomography: joins the result of black box 
measurements to infer link delays and losses

RAC:
Random partitions a common idea.  We apply to 
admission control and add cycling through partitionsadmission control and add cycling through partitions 
Alto Scavenger “discards information for half the 
files” if disk full



SummarySummary

M it i t k f f bl dMonitoring networks for performance problems and 
security at high speeds is important but hard
Randomized streaming algorithms can offer cheaperRandomized streaming algorithms can offer cheaper 
(in gates) solutions at high speeds.  
Described two simple randomized algorithms

LDA: Aggregate by summing, hash to withstand 
loss
RAC: Randomly partition input into small enoughRAC: Randomly partition input into small enough 
sets.  Cycle through sets for fairness.   



In conclusionIn conclusion . . . 

The Edge


