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Diversity Coding for Transparent Self-Healing and 
Fault-Tolerant Communication Networks 
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Abstruct- In this paper, a channel coding approach called 
diversity coding is introduced for self-healing and fault-tolerance 
in digital communication networks for nearly instantaneous re- 
covery from link failures. To achieve this goal, the problem of link 
failures is treated as an erasure channel problem. Implementation 
details of this technique in existing and future communication 
networks are discussed. 

I. INTRODUCTION 
HE need for rapid self-healing communication networks T is increasing in importance as the backbone network 

becomes concentrated into fewer high-capacity links. For 
example, failure of an high capacity, such as 1.7 Gbps, link 
must be rapidly restored in order to minimize the disruption to 
tens of thousands of customers. The current approach to self- 
healing networks is to provide redundant network facilities 
for traffic rerouting. This class of self-healing networks is 
generally not capable of providing transparent recovery. 

In this paper we present an error control based approach, 
called diversity coding, so that if M diverse links are available, 
then as long as any combination of N 2 M information 
bearing and coded links survive, the network is transparently 
self-healing. The availability of diverse channels is not re- 
stricted to point-to-point configurations, but is implicit in most 
network topologies in existence today. The concept can also 
be applied to related applications in a single physical link: 
consider a wavelength-division multiplexed system where a 
small number of extra wavelengths are dedicated to coded 
information. If a transceiver fails, or if impairments (such 
as polarization dispersion) render a link inoperative, then 
because of the diversity coding, reliable non-stop transmission 
is possible. Further extensions are possible to systems that 
use error-detecting codes in the link, but which use diversity 
coding for error correction. 

A. Existing Approaches to Self-Healing Networks 

Most of the existing approaches for network self-healing 
or fault-tolerance fall within one or more of the following 
categories [l], [2 ] .  

1) Protection switching for transmitter and receiver failures. 
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Dual-feeding, Le., using 100% active extra capacity, all 
the time. 
Restoration via an intelligent switch, using either dedi- 
cated restoration capacity or preemption of lower priority 
traffic. 
Use of a central system, to detect failures, determine 
spare capacity, calculate new routes, and transmit cross- 
connect messages. 
Use of distributed algorithms, such as precalculated 
routes for potential failures. 
Traffic restoration by rerouting to unaffected trunks. This 
requires recalculating routes for every new call in a 
dynamic fashion. 
comparison with the above approaches, the diversity ._ 

coding scheme proposed in this paper has, among others, the 
advantages of using extra capacity very efficiently, not requir- 
ing rerouting, and being nearly instantaneous. We illustrate the 
basic idea with a simple example in the next subsection. 

B. 1 -for-N Diversity Coding 
Consider N data lines that transmit binary data as in 

Fig. l(a). Let dj be the information-bearing bits transmitted on 
the j th line for 1 5 j 5 N. Assume that an extra physically 
diverse line is available for protection against line failures, say 
due to physical disconnects, fading, polarization dispersion in 
fibers, etc. If we form 

where @ represents logical EXOR operation, Le., modulo 2 
addition, then the checksum c1 can be sent on the N + 1st 
link. In the case of a single line failure, say for the ith link, 
the receiver detects failure by carrier loss, and instantaneously 
generates 

since it has all d j ,  except di ,  available. We used the symbol 
$jN1dj to denote the logical EXOR of the variables d l ,  d2,  ..., 
dN.  By expanding c1 as in (l), we get di = d; ,  since 
d j  $ d j  = 0, and recovery from the failure on the ith channel 
is achieved. 

Note that, in this system, the transmitter always forms c1 

whether a line failure occyrs or not. The receiver can detect 
a line failure and form d; instantaneously. The system is 
optimum in the sense that it requires only one extra line to 

0090-6778/93$03.00 0 1993 IEEE 



1678 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 1 1 ,  NOVEMBER 1993 

protect single line failures, it operates instantaneously in the 
case of a single line failure, the failure detection and recovery 
are accomplished by the receiver alone without communication 
with the transmitter and therefore a feedback channel is not 
needed. 

This idea was proposed by Falconer and Gitlin for seasonal 
fading in microwave line-of-sight communications [3]. In what 
follows, we extend this technique to multiple line failures 
under the same optimality conditions as above. Similar ideas 
were employed in other fields such as magnetic recording or 
burst error correction [4]-[6]. In the context of the erasure 
channel, Wolf et al. used Reed-Solomon codes in an explicit 
construction to achieve channel capacity in their "postal" 
channel [7]. In packet-switched communication networks, the 
technique of dispersity routing introduced by Maxemchuk [8] 
offers the advantages of a significantly smaller average delay 
and variance, less sensitivity to link utilization variations, and 
smaller buffer sizes for a given message loss probability due 
to buffer overflow. A similar idea has been suggested for 
lost packet recovery in high-speed networks [9], [lo]. These 
applications also fall into the category of erasure channel 
coding. 

11. DIVERSITY CODING 
We assume that the reader is familiar with the theory of 

finite fields. For more information on this subject we refer 
the reader to one of the standard texts on the subject such as 
[ l l ]  or [12], or to [13] for a summary. In Section 11-A we 
present a minimum set of information on linear coding theory 
to introduce notation and nomenclature, and to enable the 
reader to follow the discussion in the rest of the section. Then, 
using this background, we describe two methods of diversity 
coding for failure protection in Section 11-B. 

A. Review of Linear Coding Theory 
Many implementable codes are linear, i.e., operations are 

performed using linear algebra over GF(2") where m 2 1. 
Linearity is desired because it makes the design, analysis, and 
implementation of codes easier, m > 1 is needed because of 
the very limited set of possibilities for encoding that G F ( 2 )  
provides. As m gets larger, the field G F ( a m )  becomes bigger, 
and the code designer has greater degrees of freedom in 
generating the code. Since it is harder to implement a code 
that requires a large m, however, the code designer tries to 
find the smallest m that satisfies the design requirements. 

Channel coding is the controlled addition of redundancy 
into symbols to be transmitted over a noisy channel in order 
to combat noise. In GF(2"),  the encoder of a block channel 
coding system forms the vector d = ( d l ,  d2, . . ., d N )  with N 
consecutive m-bit data symbols d l ,  d 2 , .  . ., d N ,  and generates 
the channel codeword e = ( e l , e z , . . . , e K )  from d,  where 
each ei is an m-bit symbol, K > N. Then, e is transmitted 
over the channel, which is received as E where, due to channel 
noise, 6 may not be equal to ,e. The^decoder performs an 
inverse operation to generate d = ( d l , d 2 , .  3 . , d ~ )  where 
each di is also an m-bit symbol. The encoder-decoder pair 
is designed in such a way that for sufficiently small number 

Of errors in the channel, error correction is accomplished Le., 
d = d even though 6 # e. 

In a linear block code, e is a linear transformation of d:  

e = d G  (3) 

where G is an N x K matrix of rank N whose entries 
are from GF(2"). In (3), and in the sequel, the addition 
and the multiplication operations are performed in G F (  2";). 
G is called the generator matrix of the linear code. Let 
M = K - N. The decoder employs H, an M x K matrix of 
rank M, called the parity check matrix, which has the property 
that 

G H ~  = o .  (4) 

In expanding ( d l ,  d2 . .., d N )  into ( e l ,  e 2 , .  . ., e K ) ,  it is 
often desirable that ei = di for the first N channel symbols. 
Then, when no channel errors are detected, the first N channel 
symbols can be delivered as decoded data symbols without 
extra processing. A code satisfying this property is called a 
systematic code. The generator matrix of a systematic code is 
of the form 

G = L I  : ' ( 5 )  

where P is an N x M matrix, called the parity generator 
matrix. Then, if we have 

H =  [P' i I ]  

(4) will be satisfied, since in GF(2") the additive inverse of 
an element is itself. 

In a systematic code, the channel symbols e N + l ,  eN+z,  

. . -, e K  which we will also denote by c1 , c2, . . ., C M  are called 
the parity symbols, c = (c1,  c2, . . 1, C M )  is given as 

c = d P .  (7) 

Some channels make erasures as well as errors. For exam- 
ple, a receiver may be designed such that a symbol is declared 
as erased when it is received ambiguously. In a received data 
stream, if erasures have occurred, their positions are known, 
whereas if errors have occurred, their positions are not known. 
This makes it simpler to correct erasures as compared to errors. 
In order to correct t errors and s erasures, a code must have 
at least 2t + s parity symbols, i.e., 

2 t + s < M .  (8) 

This standard result of coding theory can be obtained by 
combining the minimum distance bound [ l l ,  p. 111 with the 
Singleton bound [ l l ,  p. 501. Most codes have considerably 
more parity symbols than this bound. Systematic codes that 
satisfy this bound and use 2t + s parity symbols to correct 
t errors and s erasures are known as maximum distance 
separable codes or MDS codes. Channels for which error 
control techniques are applied obviously expect some errors. 
They sometimes also have erasures. Our application is unique 
in that we are only interested in recoveries from erasures, hence 
we treat the channel as a pure erasure channel. This restriction 
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(a) Transmitter (b) Receiver 

Fig. 1. 1-for-N diversity coding system. 
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Fig. 2. M-for-N diversity coding system. 

is imposed since it is assumed that each channel has its own 
error protection mechanism. In the case of channels that make 
errors, a significant part of the decoding effort is spent on 
locating the errors. In the case of the pure erasure channel, the 
error location step is not needed and, the decoding operation 
is simpler. 

In the following section, we describe an extension of 
the 1-for-N coding system of Fig. 1 to M-for-N diversity 
coding systems, shown in Fig. 2 for recoveries from M 
simultaneous line failures. The encoding-decoding operations 
to be introduced require using codes from GF(2"), or the 
processing of m-bit symbols, in order to be optimal in the 
sense of requiring only M parity links, and to take advantage 
of the rich linear algebraic properties that GF(2") offers. 

B. M-for-N Diversity Coding 

Recall that in G F (  2") additions correspond to bit-by-bit 
EXOR operations. Hence, the coding operation in (1) can be 
represented in the format of (5) where P = (1,1, . . ., l )T  is 
an N x 1 column vector of all 1's. This scheme protects a 
single line failure out of N lines using a single parity line. 
Note that failures can occur simultaneously on M lines where 
M > 1, and coding theory suggests that we should be able to 
protect M lines using M parity lines. Our goal in this section 
is to extend the technique of Section I-B to M > 1. 

Let d l ,  d 2 , -  . -, d N  represent m-bit blocks from the lines 
1,2,  . + -, N,  respectively. We would like to protect A 4  simul- 
taneous line failures by providing M m-bit parity symbols 
c1, cp, . ., C M ,  1 5 M 5 N where we restrict M 5 N for 

practical reasons. This encoding is carried out linearly as 
N 

c j  = p i j d i  1 5 j 5 M (9) 
i = l  

where multiplication and summation are performed in 
GF(2"). In the notation of (9, P = [ & I N x M .  The parity 
symbols c j  are then transmitted to the receiver along with the 
data symbols. Consider first the case when n of the N data 
lines fail (1 5 n 5 M ) .  At the receiver their carrier signals 
drop, and the receiver detects the failures. Let k l ,  k2, . . ., I C ,  
be the indices of the links that failed; we generate signals Ej  

as 

E .  - - c .  + 5 P i j d i  15 j 5 n .  (10) 
i = l  

i # k i , k z , . . . , k n  

This can easily be done since pij are fixed and known at the 
receiver, and d i  for 1 5 i 5 N ,  i # k l ,  k 2 ,  . . a ,  I C ,  are available. 
Note from (9) and (10) that 

(11) 2 .  3 -  - &di  1 5 j L n .  
i=k l  , k z ; . . , k ,  

The n erased data symbols d k l , d k z , .  . . , d k ,  can be 
recovered from 2.1, E2,  . ., 2, via an inverse linear transform, 
provided p i j  are chosen such that the column vectors 

I C ,  5 N ,  and 1 5 n 5 M 5 N are all linearly independent. 
This can be checked by considering the determinant of the 

( p k l j , p k z j ,  ' * * , p k n j ) T  for 1 5 j 5 n ,  1 5 k l  < k g  < * ' ' < 

matrix B k l , k z , . . . , k  , = [ p k , j ] , , , .  
Let 

(12) p . .  - a ( i - l ) ( j - l )  
23 - 

where a is a primitive element of GF(2"). Let 

(13) m = flog, (N + 1)1 

where rx) is the smallest integer greater than or equal to 5. 
Note that B k ,  , k z  ,..., k ,  is an Vandermonde matrix. By using a 
well-known result from linear algebra, we have [ll, p. 1701 

d e t B k , , k z ,  . . . , k ,  = (akJp1 - akl-') * (14) 
l < i < j < n  

None of the entries in the product in (14) can be zero, since in 
GF(2") the additive inverse of a member, which is unique, 
is itself; in other words, a'?-' = ak%-' if and only if i = j .  
Therefore, 

d e t B k l , k z , . . . , k ,  # 0 (15) 

for 1 5  k1 < ka < . . .  < k,  5 N, 1 5  n _< M 5 N ,  and 
there exists a linear inverse transform B ~ l ~ k z , , , , , k n  to obtain 
d k , ,  d k z ,  * . * , d k ,  as 

(16) 

Matrices of the form of P above are called Fourier matrices 
since P is in the form of the discrete Fourier transform 
matrix. The code we described above can be viewed as taking 
the discrete Fourier transform of the data in GF(2") (also 

( d k l ,  d k Z , .  * * , d k , )  = (El, E a , .  . . , & ) B i l : k 2 ,  . . . ,k , ,  . 
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known as the Fourier-Galois transform), and transmitting 
the transform as parity information. This is an important 
observation, since the discrete Fourier transform operation 
is well-studied and optimized for implementation by means 
of fast Fourier transform algorithms. The conventional fast 
Fourier transform algorithm over the field of complex numbers 
is a signal flow ra h with additions and multiplications by 
a power of e - j f  such that the number of operations in 
the discrete Fourier transform is reduced. When the discrete 
Fourier transform is over GF(2"), the same signal flow graph 
can be used by simply replacing e - j s  by a, to obtain the 
corresponding fast Fourier transform in GF( 2"), minimizing 
the operations in the encoder of the diversity coding system. 

From (10) to (16) we have assumed that all the failures 
occur in the data lines. This system may be used to recover 
from n 5 M simultaneous line failures out of dl , d 2 ,  . . . , d N  in 
an environment where the M parity lines never fail. However, 
we can solve the more general problem where failures are 
allowed in both data and parity lines by using the P matrix, 
and by appropriately choosing the finite field. Let c 1 ,  c 2 ,  ..., C M  

be generated as in (9) where Pi j  = a ( i - l ) ( j - l )  as in P 
above. We now assume that any n 5 M lines out of 
d l ,  d 2 ,  . . ., d N  and c 1 ,  c g ,  . , C M  can fail. Assume that, due to 
line failures, d k l  , d k 2 ,  . . . , d k ,  are not available at the receiver, 
but C ~ ~ , C ~ ~ , . . . , C ~ ,  are active where 1 5 n 5 M ,  1 5 IC1 < 
IC2 < . . . < IC, 5 N ,  and 1 5 11 < 12 < ...  < 1, 5 M. 
Similarly to (lo), generate signals 2 ;  

8 P  

N 

2 j  = ~ 1 ,  + P i l , d i  
i = l  

i#kl  , k z , . . . , kn  

= , & , d i l < j < n .  (17) 
i=kl  , k z , . . . , k ,  

In this case for the n erased data symbols d k l , d k z , - . - ,  

d k ,  to be recoverable from 2 1 ,  E2,  . . . , E, ,  the matrix 
B k l  , k z , . . . , kn ; l l  , I2  ,"., 1 ,  = [ a ( w ( k ,  - 1 )  l n x n  should be 
invertible. In other words, we would like any n x n square 
submatrix of P to be invertible where 1 5 n 5 M [12, 
p. 3211. 

B k , , k  z , . . . ,  k , , ; l1 , l  2 r . . . ,  1 ,  is not a Vandermonde matrix in gen- 
eral. Therefore, it cannot be verified nonsingular with the 
method we used for B k l , k z ,  . . . , le,.  However if the field GF(2") 
is chosen large enough, then B k l , k z  ,..., k n ; l l , l  2 , . . . ,  1, must be 
nonsingular. In [13], we proved that if 

m >  max degdet B k l , k z  ,..., k,;11,12,., . ,1, 
k l , k z , . . . , k n ;  1 1  ,12, . . . ,1n 

M - 1  

= ( M  - i ) ( N  - i), (18) 
i = l  

then 

det Bkl,kz,...,k,;11,12,...,1 , # 0 (19) 
for 1 5  kl < IC2 < ...  < I C ,  5 N , l  5 11 < 12 < ... < 1, 5 
M, and one can always recover the data in the case of a failure 
in any (n 5 M) lines out of N + M data and parity lines via 

( d k 1  > d k z ,  * ' '  7 d k , )  = ( E l ,  E27 ' '  * ? 2 n > B G t k  2 r . . . ,  k n ; i l , i  z r . . . ,  1, - 
(20) 

Note that the codes defined above correct M erasures with M 
parity symbols, and are in systematic form, therefore they are 
MDS codes. 

The bound in (18) is usually very pessimistic. For 
a specific M, one can find a lower value for m 
that will satisfy the requirement. By carefully looking 
at some specific values of M, and comparing the re- 
quired m and the one given by (18) we find [13] 

M Actual Required m Bound Given by (18) 

2 Flog, ( N  + 111 N 
3 N - 3  
6 N - 7  

3 rlog, y + 111 
4 

By an inequality in [12, p. 3211, the smallest m possible when 
M = 2 or 3 is achieved by the method above. For M = 2 
and M = 3, these codes are equal to extended Reed-Solomon 
codes [ 12, p. 3261, in shortened form when log, ( N  + 1) is not 
an integer. However, in M = 4, we have lost the logarithmic 
dependency of m on N .  This logarithmic dependency can be 
recaptured with the techniques to be described next. 

An alternative to making the P matrix Fourier is to make 
the parity check matrix of the code equivalent to a Fourier 
matrix fi = [ a ( i - l ) ( j - l ) ]  M x ( M + N ) .  Although an associated 
G matrix can be obtained from (4), it is desirable to have the G 
matrix in systematic form so as not to corrupt dl , d 2 ,  . - , djv . 
This can be easily done by elementary row and column 
operations. In particular, let 

H = [ h ~ . + l  hN+2 . . .  h ~ + ~ ] - l f i  (21) 

where hi is the ith column vector of H for 1 5 i 5 N + M, 
and 

m = [log2 ( N  + M + 1)1 (22) 

and define G via (5) and (6). The inverse in (21) exists, since 
due to (22), the matrix to be inverted is Vandermonde. This 
system enables any N of the N + M codeword symbols 
e l ,  e 2 ,  . . . , e N + M  to determine the remaining M. To see 
this, let v = ( e l , , e l , , . - . , e l , )  be the vector of the N 
known members of e and let u = ( e k l ,  e k z ,  . . . , e k M  ) be the 
remaining M members of e where 1 5 l;,  ICj 5 N + M, 1 5 
i 5 N ,  and 1 5 j 5 M. Some or all members of u are 
unknown, whereas all members of v are known. Let hi be the 
ith column vector of H .  In a linear channel code eHT = 0 .  
Rearranging this equation, we have 

UH:  + V H , T  = o (23) 

where we have defined H ,  = [ h k l  h k z  . . h k M  ] and 
H ,  = [ h i ,  h l ,  1 . .  h l ,  1. H ,  is an M x M matrix that 
can also be expressed, due to (21), as 

Hu = [ h N + 1  h N + 2  " '  h N + M ] - l  

' [ h k ,  h k 2  " '  h k M ] .  (24) 
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From (24) we have, 

det [ h k ,  h k z  * . . h k M ]  

det H, = . (25) 
det [hN+lhN+S * * h N + M ]  

Both of the matrices on the right hand side of (25) are 
nonsingular since they are both Vandermonde with distinct 
elements on the second row, due to (22). Therefore det H ,  
is not zero, H, is invertible and the unknown members of e 
can be obtained from the known ones. 

Since the codes described above can also correct M erasures 
with M parity symbols, and are in systematic form, they 
are also MDS codes, as were those described previously. 
Codes whose panty check matrices are equivalent to a Fourier 
matrix such as the ones described above belong to the class 
of Reed-Solomon codes [12]. There exist fast methods for 
calculating error magnitudes for Reed-Solomon codes, such 
as the Fomey algorithm [ l l ,  p. 1831, or the frequency domain 
techniques [ l l ,  p. 2561. A slight reduction in field size can be 
obtained by using extended Reed-Solomon codes [12, p. 3231, 
making the field size equal to 

m = [log, ( N  + M - 1)1 . (26) 

111. APPLICATIONS AND EXTENSIONS 
In this section, we extend the technique in Section I1 to 

applications in multiterminal topologies. For applications in 
trunk failures, fiber optic networks with wavelength divi- 
sion multiplexing, packet delay and loss in packet-switched 
networks, distributed storage, hitless protection switching, 
fault-tolerant parallel transmission of continuous-amplitude 
discrete-time signals, and implementation via multiplexing and 
demultiplexing, we refer the reader to [13], [14], and [15]. 

A. Multiterminal Topologies 
The discussion in Section I1 assumes a point-to-point topol- 

ogy as shown in Fig. 3(a). Observe that the operation of the 
encoder of such a system does not change whether or not there 
are link failures. Furthermore, the encoding is a multiply-and- 
add operation for the data in each link, and at each step, the 
encoder only needs to know the running sum up to that point, 
and the data for the ith link. This means that the sources of 
different links do not have to be colocated. This enables a 
multipoint-to-point implementation as shown in Fig. 3(b). In 
this scheme, the source of dl sends dip, to the source of 
d2. The encoder at the source of each data link di receives 
a running sum cfl: djp j  from the source of di-1 where 
p j  is the j th row vector of P ,  2 <, i 5 N - 1. It forms 
dipi,  and adds it to CjS: djp j  to form E;,, dip j  which it 
sends to the source of &+I.  After the Nth encoder the parity 
data c = d P  = cy=, d j p j  is formed, which is, after delay 
equalization, transmitted to the destination. 

Another implementation of the multipoint-to-point scheme 
is shown in Fig. 4. In this case, every source also transmits to a 
central processor, perhaps via satellite, which forms c = d P ,  
and sends it to the destination. The importance of this scheme 
is that there is very little processing required in the central 

+ 
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(a) Point-to-point (b) Multipoint-to-point 

Fig. 3. Topologies for diversity coding. 

station, and in the case of link failures, the decoding is done 
at the destination without any involvement of the central 
processor. 

A natural extension of the scheme in Fig. 3(b) is 
the multipoint-to-multipoint topology shown in Fig. 5. 
Assume there are N links in Fig. 6, and let f :  { 1,2,  . . , S} x 
{ S + l , S + 2 , . . . , S + D }  --f { 1 , 2 , . . . , N }  map every 
source-destination pair to an integer in the range from 1 to 
N. Let P be a parity generator matrix of size N x M chosen 
using the methods of Section I1 and let p j  be its jth row 
vector, 1 5 j 5 N. In this case, every source node i forms 
an outbound checksum 

S+D 

j=S+l 
c:"~ = I d i , j p f ( i , j )  1 5 i 5 S (27) 

and each destination node j forms an inbound checksum 
S 

cy  = d i , j P f ( i , j )  S + l l j < S + D .  (28) 
i=l 

At a location close to all the sources i, the sum of all outbound 
checksums is formed to obtain 

N 

= C d f - l ( k ) p k  = d P  (29) 
k=l 

and transmitted to the central decoder where d = 
( d f - l ( l ) , d f - 1 ( 2 ) ,  e - .  , d f - ~ ( N ) ) .  The central decoder is lo- 
cated physically close to the destination nodes, and it forms 
the sum of all the inbound checksums 

Normally, we have the ''conservation of data" equation 

Ci" + COUt 1 0 . (31) 

Equation (31) expresses the fact that the sum of incoming data 
into a cutset that divides the network vertically in the middle 
is equal to the sum of outgoing data from that cutset; no data 
are generated in the cutset, and normally, no data are lost. And 



in fact, if some are lost, we generally will be able to recover 
by using the “total data” information available to us via cin 
and coUt as will be shown below. 

When n I M link failures occur, the destination nodes with 
failed links inform the central decoder of the indices of the 
failed links, kl , k2,  . . . , k,. The encoder recovers failed links 

tin, k l ,  ka, , k,, and by inverting an appropriate matrix 
with the methods of Section 11. 

Some simplifications exist for M = 1. For the configuration 
in Fig. 5 and for M = 1, there are, in fact, three different 
strategies that the receivers and the central decoder can use in 
the case of link failures as described below. 

In the first method, nothing special is done. The decoder 
always broadcasts cin @ coUt to all receivers. In the case of a 
failure, say d k , l  as above, the lth receiver keeps transmitting 

d k , l ,  the decoder instantly broadcasts d k , l  to all receivers. 
Since the Zth receiver, and no other, is expecting d k , l ,  the 
recovery is complete. This method has the advantage of being 
instantaneous. The disadvantages of this approach are that 
security may be a problem due to broadcasting, and that a 
method needs to be devised for the detection of multiple 
line failures to different receivers since, otherwise, several 
receivers will expect to receive their failed link data, but 
actually receive the sum of the data in all the failed links 
which is useless to their users. 

In the second method, the receiver whose one or several 
input links has failed, say the Zth receiver, stops transmitting its 
inbound checksum. The central decoder forms cin @ coUt which 
now equals cy, and sends it to the lth receiver. If only one link 
to the lth receiver has failed, the lth receiver recovers the data 
in that link by the same principle, using its healthy inbound 
links, its inbound checksum c:”, and the technique in Section I- 
B. If more than one link going into the lth receiver has failed, 
this condition is detected by the lth receiver, and the necessary 
action is taken to inform the end-users. If two or more receivers 
have simultaneous failures in their inbound links, they all stop 
transmitting their inbound checksums; the multiple failure is 
detected by the central decoder, and the necessary action is 
taken to inform the destination nodes, which in turn inform 
their end-users. As the first method above, this method is 
also nearly instantaneous. Further, it requires only one link 
between a receiver and the central decoder (the direction of 
transmission on this link needs to be switched in the case 
of a failure). Moreover, the security problem existent above 
does not exist here. The only disadvantage of this approach 
is the requirement of decoders at the receivers. But, since 
these decoders are extremely simple, this is not a significant 
disadvantage. 

The two methods above do not generalize to protection 
against multiple line failures, since in that case the central 
decoder needs to know the indices of the failed links for matrix 
inversion in decoding. In the third method for M = 1, which 
is a special case of the method for M > 1, the receivers 
continue to send their incomplete inbound checksums to the 
central decoder in the case of failure, also transmitting the 
index of the failed channels via a side channel (the low-rate 

using coUt = d P ,  = Z r = l , k # k l , k 2  ,..., k ,  d f - ’ ( k ) P k  = 

its incomplete inbound checksum, and since cin @ coUt - - 

side channel could be derived from the high-rate data link). 
The central decoder takes the necessary action if there are more 
than one simultaneous link failures. In the case of a single 
failure, it performs the decoding, and sends the recovered data 
only to the pertinent receiver. This solution does not have 
the security problem the first method has, and it automatically 
detects multiple failures. It does not require extra complexity at 
the receivers as in the second method above, and it generalizes 
to the case for M > 1. However, it requires a side channel, 
and may be slower than the first two methods above, but it is 
still faster than a system that requires transmitter and receiver 
switchovers to extra capacity. 

This method can be generalized to a general topology for 
any M.  Refer to Fig. 6, which shows the node a of a network 
with an arbitrary topology. It is assumed that there is a central 
processor that handles recoveries. The node i talks to the 
central processor via 3M connections. The first M connections 
are used to send the inbound checksum for node i 

ci” = d j , i P f ( j , Z )  7 

j: i receives from 

the second M connections are used to send the outbound 
checksum for node i 

(33) 
j: i transmits to 

and the remaining M lines are used by the central processor 
to send the recovered data to node i in the case of failures in 
its inbound links. The central processor forms the summation 
of all the inbound checksums to obtain c‘“ = xi c?, and the 
summation of all the outbound checksums to obtain coUt = xi c;ut. Then, the operation of the central processor is exactly 
the same as the operation of the system in Fig. 5. Note that 
going from the topology of Fig. 5 to the arbitrary topology of 
Fig. 5 is accomplished by paying a penalty of going from A4 
protection lines to 3M protection lines. 

In the cases with multiple destinations, feedback channels 
are needed from the destination nodes to the central decoder 
only. These feedback channels are not protected by the multi- 
terminal diversity coding system, and should be protected with 
either a conventional technique such as dual feeding, or with 
point-to-point diversity coding . 

The diversity coding system introduced here should be 
compared with a system that switches over transmitters and 
receivers to spare capacity under the management of a protocol 
in the case of line failures. The advantage of the diversity 
coding system is its speed. Since transmitter and receiver 
switchovers are not required and protocol delays are avoided, 
the recovery can take place very fast, in an almost instan- 
taneous manner. If speed is not the only criterion, then in 
order for the diversity system to be preferable, its cost should 
be less than the system with switchovers. Since most of the 
cost in a wide area network is in the physical links, the 
diversity coding system should not introduce a large number 
of extra links over long distances. In that regard, the point- 
to-point system described above is very efficient. It does not 
require any more links than the system with swichovers. The 
multipoint-to-multipoint and the multipoint-to-point systems 
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are efficient as long as the source nodes, as well as the 
destination nodes, are physically located in close proximity 
of the other source or destination nodes, respectively, and the 
source cluster and the destination cluster are distant. In other 
words, these topologies are efficient as long as their physical 
layouts approximate point-to-point topologies. On the other 
hand, the general network topology solution requires three 
times more links than the system with switchovers. It can be 
preferable only if the speed advantages overweigh the extra 
cost due to the extra links. 

IV. IMPLEMENTATION 

In this section, we describe the synchronization require- 
ments caused by length differences among links between 
sources and destinations in the configuration in Fig. 5. The 
technique can be extended to other configurations. 

Since the scheme is based on recovering failed links using 
data sent over physically diverse, and hence of different length 
links, care must be taken to synchronize the coded data. This 
can be accomplished by delay equalization. It is important to 
note that in ordinary operation, the delay on the data links 
is not changed. In the event of a link failure, the restoration 
is accomplished in a time less than the maximum differential 
delay between any source destination pair over the coded and 
uncoded links as quantified below. 

For example, consider Fig. 5 which has been redrawn in 
Fig. 7 in detail to show synchronization for transmission 
between the source node 1 and the destination node S + 1. As 
shown in Fig. 7, let t i j  be the propagation delay between the 
destination node j and the source node i ,  let t i , ,  be the prop- 
agation delay between the source i and the summing junction, 
let t c , d  be the propagation delay between the summing junction 
and decoder, and let t j , d  be the propagation delay between the 
destination node j and central decoder. Then, the source node 
i launches the data di,j and the output parity cPUt at the same 
time t. Normally, the data arrive at the destination node j at 
time t + t ; , j ,  and are delivered to the end-user. Simultaneously, 
at the summing junction, the output parity data from all sources 
are synchronized and their sum is transmitted at time t + 6, 
where 

6, = max ti,,. 
l<i<S 

(34) 

For that purpose, output parity data ~4~~ from source i is 
delayed by Ai,, = 6, - t i , ,  seconds. At the destination node 
j ,  the parity cy is formed at time t + Si, and transmitted to 
the central decoder where 

6.- m a x t i j  S + l < j < S + D .  (35) 
- l < i < S  

To form cy at the destination node j ,  data from source i is 
delayed Ai,j = Sj - ti,j seconds. At the central decoder, the 
decoding is performed at time t + where 

and each input parity line cy is delayed A j 9 d  = 6d  - t j , d  

seconds. The decoded data are delivered to the end-user at time 

t + 6d  + t S + l , d .  In the case of the diversity coding system, the 
maximum delay introduced due to synchronization, as well 
as the maximum required storage per destination node is of 
the order of the differential delay between the source and the 
destination taken by the actual data and the parity data. 

In particular, for a point-to-point system, assume there 
are N information-bearing links between the source and the 
destination as in Fig. 8, and a single extra link is provided 
for protection, to be used for diversity coding as in Fig. 8(a), 
or for transmitter and receiver switchover as in Fig. 8(b). 
Assume for simplicity that the propagation delay between 
the source and the destination over each of the N links is 
r seconds (in the general scheme, we can consider 7 as the 
maximum propagation delay in the N links). Let, for the 
same source and destination pair, the propagation delay and 
processing delays over the spare capacity sum to pr  seconds, 
where p 2 1. With diversity coding, when the direct link 
fails, the data launched at time t arrives at the destination 
at time t + p r  instead of t + r seconds, thus incurring an 
added delay of ( p  - 1). seconds, and requiring total storage 
of ( p  - 1)' seconds of data at the destination node, i.e., only 
as much as the differential delay. Whereas, in a system that 
switches its transmitters and receivers over to spare capacity, in 
addition to r seconds for a cut to be detected, the time needed 
for the transmitter to be informed and the retransmitted data to 
reach the receiver over the spare capacity lines is 2pr  seconds. 
Hence, the added delay is 2pr seconds, and ( p  + 1)' seconds 
of data needs to be stored at the transmitter node per each 
link, i.e., a total of N ( p  + 1). seconds of data needs to be 
stored. For a differential distance of 500 km and a transmission 
at 1.7 Gbps, this corresponds to a delay of 2.5 ms and total 
storage of 530 kbytes of information for the diversity coding 
system. Note that this is much more manageable than 55 ms 
of delay and 11.13 Mbytes of storage per link that would be 
required if we opted for transmitter and receiver switchover 
to spare capacity, assuming source-to-destination distance of 
5000 km, and no loss of data as in the diversity coding system. 

Synchronization problems are significantly harder in a sys- 
tem that switches transmitters and receivers to spare capacity, 
since in such a system both the transmitter and the receiver 
need to be synchronized after a switchover. This increases 
the switchover delay significantly. For stationary networks, 
synchronization is achieved and maintained with diversity 
coding when the system is first started as opposed to the 
resynchronization necessary in a switchover system after a 
link failure is detected. With nodal clock drifts and time- 
varying link path lengths, synchronization can be maintained 
in a diversity coded network comprised of SONET links by 
using the SONET pointers to track the changes in differential 
delay [16]. Other methods may be appropriate for the existing 
DS-N hierarchy. 

v. SUMMARY AND CONCLUSIONS 

In this paper we introduced a channel coding approach, 
called diversity coding, to self-healing and fault tolerance in 
digital communication networks by treating link failures as an 
erasure channel problem 
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Fig. 5. Diversity coding in a multipoint-to-multipoint environment. 

Fig. 4. Using diversity coding in a multipoint-to-point application via a 
central node. Recovered Data 

Diversity coding achieves nearly instantaneous recovery and 
transparency to the end-user. The recovery is accomplished 
at the receiver end, without informing the transmitter, thus a 
feedback channel to the source nodes is not needed. In configu- 
rations where there is a single destination, no feedback channel 
is needed; in configurations with multiple destinations, only a 
feedback channel to a central decoder is needed. The required 
excess capacity is minimum; to protect failures in up to M 
simultaneous channels, only M more channels are needed with 
protection against failure in all the channels, including excess 
capacity. In the case of a failure, rerouting of traffic is not 
needed, saving the search time for available routes, processing 
delay, and complexity. The synchronization problem is solved 
by delay equalization at the network initialization time, as 
opposed to every time a failure occurs, saving handshaking 
protocol delays. 

We have shown that diversity coding is efficiently appli- 
cable to point-to-point, multipoint-to-point, and multipoint- 
to-multipoint topologies. It can also be used in arbitrary 
topologies if the speed of recovery is the most important 
concern. Encoding-decoding complexity and memory require- 
ments are very small and the system can be implemented with 
off-the-shelf components. Since there is no insertion delay on 
the data links, the technique can be implemented as an add-on 
to an existing network. It can be implemented for transmission 
at arbitrarily high speeds by parallel processing at low speeds 
and demultiplexing and multiplexing of high speed data. In 
conjunction with the existing error detection schemes, it can be 
used for forward error correction for random and burst errors, 
reducing delay since nonselective and selective repeat requests 
of the windowed protocols can be eliminated. It is extended 
to trunked lines where failures occur simultaneously. Finally, 
its applications can be extended to routing in packet-switched 
networks, distributed storage, hitless protection switching, and 
protection of continuous-amplitude discrete-time signals. 
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