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Abstract—Multi-Input Multi-Output (MIMO) wireless com- fading channel [4], [5]. Whereas, it is desirable to come up
munication systems commonly employ beamforming techniques with a system that achieves both maximum diversity order and
with Singular Value Decomposition (SVD). In such systems, maximum spatial multiplexing provided by the channel.

if no channel encoding is employed, the full diversity order ) . .
provided by the channel is achieved when a single symbol is An SVD subchannel with larger singular value provides

transmitted over multiple channels; however, this property is larger diversity gain [5]. Similarly, when symbols are simul-
lost whenever multiple symbols are simultaneously transmitted. taneously transmitted in parallel on the diagonalized subchan-
The full diversity order can be restored when channel coding nels, the performance at high Signal-to-Noise Ratio (SNR)
is added to such a system. For example, when Bit-Interleaved ; ; ; ;
Coded Modulation (BICM) is combined with this technique, the '~ AoMinated by the subchannel with the smallest singular
full diversity order of NM in an M x N MIMO channel, vaIut_a. To overcome thls.degradauon of the dlver§|ty order in
transmitting S parallel streams is possible; providedSR. < 1 Multiple beamforming, Bit-Interleaved Coded Multiple Beam-
where R¢ is the BICM convolutional code rate. In this paper, forming (BICMB) was proposed [6], [7]. BICMB interleaves
we present multiple beamforming with constellation precoding the codewords through the multiple subchannels with different
which can achieve the full diversity order with both uncoded and diversity order, resulting in a better diversity order overall.

BICM-coded SVD systems. An analytical proof of this property A - .
is provided. In addition, to reduce the computational complexity Although it is a form of multiple beamforming, BICMB can

of Maximum Likelihood (ML) decoding, we introduce a Sphere achieve the full diversity order offered by the channel as long
Decoding (SD) technique. This technique achieves several ordersas the code rat®. and the number of employed subchannels
of magnitude reduction in computational complexity not only g satisfy the conditionk?.S < 1 [8].
with respect to conventional ML decoding, but also, with respect |, this paper, we present a multiple beamforming technique
to conventional SD. : that achieves the full diversity order in both of the coded and
Index Terms—MIMO systems, SVD, BICMB, constellation . - .
precoding, sphere decoding. the uncoded systems. This technique employs the constellation
precoding scheme [9], [10], [11], [12], [13], which is used
for space-time or space-frequency block codes to increase
the system data rate without losing the full diversity order.
Beamforming is used to achieve spatial multiplexing andle show via Pairwise Error Probability (PEP) analysis that
thereby increase the data rate, or to enhance the performalRally Precoded Multiple Beamforming (FPMB) with Maxi-
of a Multiple-Input Multiple-Output (MIMO) system when mum Likelihood (ML) detection achieves the full diversity
perfect channel state information is available at the transrder even in the absence of any channel coding. We also
mitter [1]. For various design criteria, beamforming vectorgresent the diversity analysis of Bit-Interleaved Coded Multi-
are designed in [2], [3]. These vectors can be obtained pie Beamforming with Constellation Precoding (BICMB-CP),
Singular Value Decomposition (SVD), leading to a channelvhich adds the constellation precoding stage to BICMB. We
diagonalizing structure optimum in the sense of minimizinghow that the addition of the constellation precoder to BICMB
the average Bit Error Rate (BER) [3]. It was shown that Urremoves the requirement for BICMB th#&t.S < 1 for full
coded Single Beamforming (SB), which carries only one syngiversity, when the subchannels for the precoded symbols are
bol at a time, achieves the full diversity order 5tAMf where properly chosen. Simulation results are provided to verify the
N and M are the number of transmit and receive antennaalysis.
respectively [4], [5]. However, uncoded multiple beamforming, Multiple beamforming without constellation precoding sep-
which increases the throughput by sending multiple symbdsates the MIMO channel into independent parallel subchan-
at a time, has the diversity order GV — S+ 1)(M — S+1) nels, enabling symbol-by-symbol detection on each subchan-
where the symbols are transmitted on the subchannels with tied. However, when a precoder is employed, this property is
largestS singular values. Although it increases the throughpust and the the parallel independent detection of the symbols
this system cannot achieve the full diversity order over a flan each subchannel is no longer possible. As a result, one
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needs to resort to ML detection for precoded symbols. On Il. SYSTEM MODEL

the other_ hand., the complexity of ML detection INCréases  Uncoded Multiple Beamforming with Constellation Pre-
exponentially with the number of possible constellation pomﬁ)ding

of the modulation scheme and the dimension of the constel- ~ ) ) )

lation precoder. This complexity increase makes the receiver'Vé introduce Uncoded Multiple Beamforming with Con-
with ML detection unsuitable for practical purposes [14]. It i§tellation Precoding (UMB-CP) as a system that transforms
known that employing Sphere Decoding (SD) as an alternatit?dulated symbols to precoded symbols via a precoding

for ML detection provides optimal performance with reducefi@trix. In this system, thes x 1 symbol vectorx, where
computational complexity [15]. S < min(N, M), is precoded by a square matr@. The

Furth ber of lexi ducti hni elements ofk belong to a signal set C C of size|x| = 2™,
urthermore, a number of complexity reduction techniqueg, -\, ax™-QAM, wherem is the number of input bits to the

for SD hgve been propo.sgq. For.example,_ in [16] and [_1 ray encoder. We specify the precoder as
attention is drawn to the initial radius selection strategy, since

an inappropriate initial radius can result in either a large - © o 1)
number of lattice points to be searched, or a number of 0 Is_p
restarted searches with increased initial radius. In [18] ancL

- : - © is a P x P constellation precoding matrix that
[19], the complexity is reduced by making a proper choice fyhere i
update the sphere radius. Other methods, such a&thest precodes the firsP modulated symbols of the vectar When

lattice decoder [20], [21], and a combination of SD akid all of the S modulated symbols are precoddd £ S), we call

- : e resulting system Fully Precoded Multiple Beamforming
best decoder [22], can significantly reduce the complexity . . . .
low SNR at the cost of BER performance. PMB), otherwise, we call it Partially Precoded Multiple

Beamforming (PPMB). The permutation matfikreorders the

In this paper, we introduce an SD algorithm which efprecodedP symbols and non-precodeti— P symbols to be
ficiently improves the complexity of constellation precodegtansmitted on the predefined subchannels created by the SVD
multiple beamforming over the flat fading channel by reducingt the MIMO channels. We defing = [, - - - np] as a vector
the average number of multiplications required to obtain thgngse elemeny,, is the index of the subchannel on which the
optimal solution. This complexity reduction is accomplishefrecoded symbols are transmitted, and ordered increasingly
by precalculating the multiplications at the beginning ofch thaty, < 7, for p < ¢. The vectorw = [w; - wis_p)]
decoding, and recycling them later for the repetitive calCys defined in the same way as an increasingly ordered vector

lations. Further reduction is achieved by using the lattiGhhose elements are the indices of the subchannels which carry
representation of our previous work presented in [23]. Thifie non-precoded symbols.

representation introduces orthogonality between the real andrhe MIMO channelH € CM*N s assumed to be quasi-

imaginary parts of every detected symbol. Furthermore, Weatic, Rayleigh, and flat fading, and perfectly known to both
employ Zero-Forcing Decision Feedback Equalization (Zfne transmitter and the receiver. The beamforming matrices
DFE), to determine the initial radius. This new techniqug.e determined by the SVD of the MIMO channel, iH =
reduces the average number of real multiplications needed(io, vE where U and V are unitary matrices, and is a
acquire one precoded bit metric for BICMB-CP. We illustratgjagonal matrix whose!” diagonal element), € R*, is a

by means of simulations that conventional SD reduces tB@\gular value offI in decreasing order. Whe$i symbols are
complexity substantially compared with the exhaustive seargfhnsmitted at the same time, then the fifsivectors of U

and the complexity can be further reduced effectively byngv are chosen to be used as beamforming matrices at the
our proposed SD. The complexity reduction increases as {@eiver and the transmitter, respectively. Fig. 1(a) displays
constellation precoder dimension and the constellation sigg structure of UMB-CP. In this figurdJ and V denote the

become larger. beamforming matrices picked frofd and V.

Notation: Bold lower (upper) case letters denote vectors The serial-to-parallel converter organizes the symbol vector
(matrices). The set of symbols di@y,--- ,Bp] stands for _ o _ riomr _ o o, . L, T
a block diagonal matrix with matrice®,,--- ,Bp, and [y %] [, e vl

where x,, and x,, consist of the modulated entries to be

diagbs,--- ,bp| is a diagonal matrix with diagonal entriestransmitted on the subchannels specifiechiand w, respec-
b1,---,bp. The symbolsk(-) and (:) denote the real and P & w, fesp

imaginary part of a complex number, respectively. The supdicely. The S x 1 detected symbol vectoy = [y? iy~

scripts(-)#, ()T, (-)*, (-) stand for conjugate transpose, trans%

]Ti

: T . .
! ) . : at the receiver is
pose, complex conjugate, binary complement, respective 1 yp- Ypil s

and the symbol denotes “for all.” The function[-] is the y=I'Ox+n 2
ceiling function that maps a real number to the next Iarges?1 r
integer. The symbol®* and C stand for the set of positive where
real numbers and the complex numbers, respectively. Finalfy
the symbold,.;, represents the minimum Euclidean distancE,, = diag.,, ---, A ], adn = [n] :n”|T is an

between two points in a constellation. additive white Gaussian noise vector with zero mean and

is a block diagonal matrixI' = diagI',, IT',,],
ith diagonal matrices defined &%, = diag\,,, ---, A\, ],



AL © in (1). When all of theS modulated entries are precoded
E ~n | ST (P = S), we call the resulting system Bit-Interleaved Coded
AL v Multiple Beamforming with Full Precoding (BICMB-FP),
otherwise, we call it Bit-Interleaved Coded Multiple Beam-
(a) Uncoded Multiple Beamforming with Constellation Precoding.  forming with Partial Precoding (BICMB-PP). The precoded
symbol vector is transmitted on the MIMO channel described

precoder

(S-P)

. in Section II-A.

etric R . .

gh p o & | As in UMB-CP, the spatial interleaver arranges the
1terbi
dec. .
“ symbol vectorx;, as x, =[x}, :x[ )" = [t&n,

(b) Bit-Interleaved Coded Multiple Beamforming with Constellation Pre- - - - @k yp : T, - QTk,w(SiP)]T. The S x 1 detected
coding. .
symbol vector ry, = [())T:@)T)T = [rga -
Fig. 1. Structure of Constellation Precoded Multiple Beamforming. . . ) )
TeP Tk P+1 - - Trs|L at thek! time instant is
. . . . r, =T'Ox; +n 7
varianceNy, = N/SN R. The matrixH is complex Gaussian F ¥ F "
with zero mean and unit variance. To make the received signalF1 T . . . .
: . : : wher = :(m?)T)T is an itive whi ian
to-noise ratioSN R, the total transmitted power is scaled as ereny, = [(my)": (n)"]" is an additive te Gaussia

. L . . noise vector.
N. The input-output relation in (2) is decomposed into . . o
P P 2) P The location of the coded hif,; within the symbol sequence

yp = ,0x, +n, X is known ask’ — (k,l,i), wherek, [, and: are the time
() instant inX, the symbol position i d the bit positi

v = TpXe + 0. instant inX, the symbol position inx,, and the bit position
on the labelzr;;, respectively. Lety; denote a subset of

The ML decoding of the detected symhol= [%7 :%7]T = whose labels have € {0,1} in the_ith bit position. By using
. the location information and the input-output relation in (7),

[y, -+ Byp 12w, - Bus_p]” IS given by the receiver calculates the maximum likelihood bit metrics for
the coded bit, as
X = arg min |ly — rex|’ 4) k
xEex Yoy, ep) = min [ — TOx| (8)

where x° represents the-dimensional product space based XELe
on x. For PPMB, the symbol can be detected in a para”ﬁ)hereg“ is a subset of¢®, defined as
Cp/ 1

fashion as

L, T i

~ |2 Y ={x=[r1 -2 P Tgls—l € Xp, aNdxg.2; € X}

%, = arg min ‘ v, - Fp@XH ) &' ={x=[n s]”  Tgps= € X sl € X}
xEX In particular, based on the decomposition of (7) similar to (5)
for the precoded symbol, and and (6), the bit metrics, equivalent to (8) for partial precoding,

are
& = argmin [y, — Ajz|? (6) _ -
TEX min |eh —T,0x|* f1<I<P

xewck/

for the non-precoded symbol whefeis the corresponding ~'(ry, ci) = i 9 :
index transformed byT. et ey = Ml FP+1<1<S
o
)

B. Bit-Interleaved Coded Multiple Beamforming with Constel-
lation Precoding where," is a subset of”, defined as

Fig. 1(b) represents the structure of Bit—lnterleavedwz,i _
Coded Multiple Beamforming with Constellation Precoding
(BICMB-CP). In this system, first, the convolutional encodeaind! is an entry inw, corresponding to the subchannel mapped
with code rateR. = k./n., possibly combined with a by T. Finally, the ML decoder makes decisions according to
perforation matrix for a high rate punctured code, generatd® rule
the codewordc from the information bits. Then, the spatial
interleaverr, distributes the coded bits int§ streams, each
of which is interleaved by an independent bit-wise interleaver
m:. The interleaved bits are mapped by Gray encoding onto [Il. DIVERSITY ANALYSIS : UMB-CP
the symbol sequenc¥ = [x; - -- x|, wherexy, is anS x 1
symbol vector at thé*” time instant. Each entry of;, belongs
to a signal sely. Based on the ML decoding in (4), the upper bound to the

The symbol vectok,, is multiplied by theS x S precoder instantaneous PEP between the transmitted symbzoid the

{X = [‘rl to 'TP]T P Ts|s=1 € X;;a andxs|s;£l € X}7

A . 1, -
¢ =arg mémz'y (g, Crr). (10)

A. Fully Precoded Multiple Beamforming



detected symbak is calculated as where

. B 9 9 P B S—P
Prx—%x|H)="Pr (Hy —Tex|” > |y —-Tex|” | H) o — Z/\7273|d5|2 n Z N2 |2y, — B, |? (15)
! IO = =
<= —_— . 11 s -~
= &P ( 4Ny (11) andd, is the s'" element of a vectod = O(xy — %y). Let

- us assume that the constellation precoding m&ximeets the
Letd = [dy --- ds]” = ©(x — x). Then, for FPMB, the condition of FPMB to achieve the full diversity order. Since

average PEP becomes the expression (14) with (15) has a closed form expression
S similar to (13) as described in FPMB, thevalue needs to be
> AZ|d|? obtained from a composite vector with the elementsz,c@s2
Pr(x—%)<E 5 exp fszlw . (12) and|z,, —1..|? to observe the diversity behavior of a given

pairwise error. In addition, a different pair can lead to different
diversity behavior. Therefore, we need to get the maxindum
In [8], we showed that equations in the form of (12) haveut of all the possible pairwise errors to decide the diversity
a closed form upper bound expression. We provide a formadder of a given PPMB system.

statement below. All of the distinct pairs ofx and % are divided into three
Theorem 1:Consider theS < min(N, M) ordered eigen- groups in terms ofx,, X,, X., and X,. The first group
valuesp; > --- > pg of the uncorrelated central Wishartincludes the pairs that have, = %,, but x,, # %,,, and the

matrix' [24], and a weight vectop = [¢1 --- ¢s]” with non- second group comprises the pairs satisfying # %, but
negative real elements. In the high signal-to-noise ratio regime, = %,,. Finally, the last group consists of the pairs for
an upper bound for the expressidijexp(—y Zle bsps)]  which x,, # %, and x., # %.,. We will present the method
which is used in the diversity analysis of a number of MIMQo calculate the maximuni for each group, and to find,, ...
systems is from the groups.

s Since the vectod is a zero vector for the first group, the
exp (—VZ%MSN < C(Gminy)” N TOTDMM =341 first summation ofs in (15) is zero, resulting i being equal

1 to the minimum ofw. By considering all of the possible
where ~ is signal-to-noise ratio{ is a constantg,;, = P3S: We easily see thai; < J < w(s_p). Therefore, the
min{éy, -+, ¢s}, and § is the index indicating the first MaXimum value isj; = w(s_p) which corresponds to the

nonzero element in the weight vector. pair satisfyingz, = i, for all s excepts =ws_p). For
Proof: See [8] any pair in the second group, the term with the first singular

i lue survives ins, according to the inherited property of the
:Splymg Theorem 1 to (12), we get the upper bound to PE\gnstellation orecoding matrix, L6, = 0. However, the
NS (M 51 second summation ir disappears since,, = x,. Therefore,
b ( i )( AR the maximum value of this group & = 7:. Now, for the

E

dw im
Pr(x — %) <(¢ 4;\1,LSNR (13)  third group, both summations in exist. Then,s is chosen
to be the smaller value between the minimumuofand 7.

where( is a constantd,n;, = min{|d,[?, ---, |dg|?}, andé In the same manner as was already given in the analysis of
is an index indicating the first nonzero element of the vect#te first group, the maximum of the minimum ef is found
[|[d1]? -+ |ds|?]. Therefore, FPMB achieves the full diversityto be w(s_p). Therefore, the maximuna for this group is
order if § from any distinct pair is equal td, which implies 93 = max{n:, ws_p)}. Finally, §,,q. is decided as
that |d;|? = |07 (x — %)|?> > 0 for any distinct pair, where

. ) . Omaz = 01, 02, 03} = , _ . 16
67 is the first row vector 0. Several methods to build the max{dy, b, 03} = max (m, ws—p) (16)

precoding matrix are described in [25] and [26]. Example: In Table I, we summarize the diversity order for all
of the possible combinations of tHex 4 PPMB systenmS = 4
B. Part|a||y Precoded Mu|t|p|e Beamforming andP =2. We will prOVide Simulation I’esultS that Vel’ify thIS

o analysis in Section VI, specifically in Fig.4.
Generalizing (11) for PPMB, we get an upper bound to PEP

as IV. DIVERSITY ANALYSIS : BICMB-CP
. 1 K
Prx—%)<F [2 exp <_4No)] (14) A. BICMB with Full Precoding

We assume that théy coded bits are interleaved such that
A central Wishart matrix is the Hermitian matrik A¥ where the entry they are placed in distinct symbols, whedg denotes the
of the matrix A is complex Gaussian with zero mean so ti#gA] = 0. Hamming distance between the transmitted codewoahd
The Wishart matrixA A is called uncorrelated if the common covarianc-:-'t . . .
matrix, defined aC = E[asal’] Vs, wherea; is the st column vector of he decoded codeworél Since the bit metrics in (8) are the
A, satisfiesC = 1. same for the same coded bits between the pairwise errors, the



TABLE | .
DIVERSITY ORDER(O;,) OF 4 X 4, S = 4 PARTIALLY PRECODED replaced by the) function as
MULTIPLE BEAMFORMING SYSTEM
> PO, — %i)|12

’ P ‘ n ‘ w ‘ m ‘ W(s—-pP) ‘ max ‘ Odzv ‘ PI"(C — é|H) < Q it (21)
12 |34 | 1 1 1 1 2No
3] 24 | 1 4 4 1
9 14 23] | 1 3 3 4 The numerator in (21) is rewritten as
23 14 2 4 4 1
o4 (132 3 3 | 4 3 IrO (%), — #)II? = ZVZ disl* (22)
[34] [1 2] 3 2 3 4 k,dg s=1  k,dy
[i ;i] [g] i ;L g 411 wheredy, ; is the s'* entry of the vectoid;, = ©(x; — Xx).
3 134 5 i 5 5 9 Using an upper bound to th€ function, we calculate the
234 [ [0 5 i 5 9 average PEP as
S
ALY ldis|?
Pr(c — &) < E |exp = Z’d]\;:) . (23)

original PEP is replaced by

According to Theorem 1, we can evaluate the diversity order

Pric — &[H) =Pr( ) min ||lry - TOx|* > of a given system by calculating the weight vector whose
kody XSSew s'" element isy_, , |dx|*. In particular, if the constellation
precoder is designed such that
. _ 2 - N
2 min e —TOx|* | (47 P =167 (o = %0 > 0. Y0 %) 24)
AH k!

IWpere@ is the first row vector of the precoding matr&,
we see thad, , |dy, 112 > 0, resulting in the full diversity
order of N M. Therefore, (24) is a sufficient condition for the

where the summation is restricted to the symbols correspo
ing to the differentdy coded bits.

Let us definex; andx;. as full diversity order of BICMB-FP.
%), = arg min |rp — T'Ox|? . _ _
€€, 18 B. BICMB with Partial Precoding
X), = arg min [ — TOx|? (18) The bit metrics in (9) lead to the PEP calculation as
xe&’

o Pr(c — &H) = Pr(n > ) (25)
— =
where ¢/ is the complement oty in binary codes. It is =
easily found thatk;, is different from;, since the sets that where
the I** symbols belong to are disjoint, as can be seen from 2
— I‘ @ — )\~
the definition ofgck/ In the same manner, we see tkatis Z mm ”rk x||” + Z mm 7. x'

X - o N k,d?, *€ s kd; TEXC,,
different fromx,. With x;, andx;, we get, from (17),
Pr(c — &[H) = = min |} ~T0x[*+ Y min |res — Al
o, <€V gy X

D ek ~TORk|* > > |lre —TO%|* | . (19)

and Y, o, > .4 Stand for the summation over thé&,
k,dm k,dm gy yA g

andd}; bit metrics, withd?, andd}, denoting the number of
Based on the fact thdlr, — T'©x;||? > ||ry — TOx;||* and different coded bits between the two pairwise errors residing
the relation in (7), equation (19) is upper-bounded by on the precoded and the non-precoded subchannels specified
by n and w, respectively. By using the appropriate system

Pric — ¢H) < Pr| 3> Z ITO(x — %) (20) input-output relations, the PEP is written as
Pr(e — 1) = Pr(j > &) (26)
where )
Whereﬂ = Bp + Bn,
f=- Z (x — %) O"T'ny, + nf'TO(x), — Xz). P
k,du Bp =

o . . L . - H ~ .
Sincef is a zero mean Gaussian random variable with variance > (xi.n — %) ©" T,nf + (0])" T,0 (x4 0 — Zi.),
2No 3 p.ay ITO(xk — Rp) od?,




By =— Z AN(@rg — Ta) e + Ak — Tea)ng s coded bit is interleaved into the streaMoq(,—1,18)+1 Where
k,dy 81:"':86:1187:"':812:21813:"':818:
3 andmod is the modulo operation. Each term represents an

and . . .
_ a-vector, and the powers af, b, c in this term indicate the
k= ITp® (Xpmy — Xim) |2 + Z |A\j (zr1 — 2r0)|?. elements of thev-vector corresponding to that term.
'3 k,d"
k,d%, H lfl _ ZS(a2b26+a2602 +a6202)
Sinceg in (26) is a Gaussian random variable with zero mean + Z5(a®b?c + a®b>c + a®bP+

and varianc@ Ny, the PEP can be expressed in a way similar

! ] - ) ‘ b3 2 2b 3 b2 3
to (21) with the@-function. In addition, if we definer as ab’c’+a’be” + ab’c’)

- . p + Z7(2a*V*c + 2a>b*c? + 2a*b3 P+
- 37 3 2;2 3 3.3
o= Z)\zr Z (o2 + d2,, Z AEJTOLUJT 27) 2a°bc® + 2a°bc” + 2ab°c?) (31)
, 8(,573 1 413 374 472 2
r=1  kd?, r=1 + Z°(a’b® 4+ a*b’c + a’b c + 2a b c*+

. R 3,3 2 2,42 |, 4, 3 3;2 3
where dy, is the r* entry of the vectord, = 3a7b°c” +2a7b°c” + a”be” + 3070+

© (Xk.n — Xi.n), anda, is the number of times the'" sub- 3a°0°¢® + ab'e® + b°¢* + a’bet+
channel is used correspondingdf bits under consideration, 2a2b%ct + ab3ct + atd) + -
then we can see that < k. Finally, the average PEP is
calculated as Ty = Z5(a® + a3b? + a2b3+
Pr(c =&)< E [1 exp (_?\7)] . (28) B+ adc? +b3c% + alc® + b3+ 05)
2 4No + Z5(a*b® + 3a%b® + a®b* + a*c? + 3a%b? P+
To determine the diversity order from, we need to find B + 3a3¢3 + 363¢% + a2ct + b2ct) (32)

the index indicating the first nonzero element in an ordered

~ 7 413 314 31,3 312 2
composite vector which consists §F,; ;» |di..|* and a, +27(20°0° + 2070 + a’b e + Ta"b e+

as in Theorem 1. I}, = 0, the first summation part of 7a*b°c? 4 2a*c® + a’bc® + Ta’b* P+

vanishes. In this case, the first index is ab®c® 4+ 268¢3 + 203t 4+ 2634 + - -
d=min{s:a, >0forsec{w, - ,wes_p)}}. (29)  Consider the casey = [12]. We see that all of ther-
vectors of 7; have d, > 0. Sincen; = 1, § equals

In the other case of}, > 0, we see thak;, andxy, are S , :
obviously different for the same reason as in the previo 1Sw:1ertr:ezrsé 5;)('5_;?] chrfnrot. t:1n e]fagiéchg ?DSP not te);:qStWEtor:
section. If the constellation precoder satisfies the sufficie e e a”o”. Theretore, ! syste

conion of (24 he tem wit, aiways ext o By (12 2eeves e Tl vy ot unie O.CHE

idering th dt ts for th f : ' oo
ZS”i' Oenng e second term of we getd for the case o Interleaved Coded Modulation (BICM) loses the full diversity
H

order [25], [26]. ForT;, the a-vector [005] gives d¥, = 0,
(30) resulting ind = 3. Therefore, thel; BICMB-PP system with

n = [1 2] does not achieve the full diversity order.
whered’, if it exists, is obtained in the same way as (29). If, in The same analysis fon = [13] results in the diversity
search of’, no s satisfying the right hand side of (29) existsorder of9, and [23] results in4 for the transfer functiorf; .
we states’ does not exist and sét= 7, as in (30). Similarly, both of [13] and [23] result in the diversity of4
Example: In this example, we employ-state1/2-rate con- for 7;. As a consequence, we find that proper selection of the
volutional code with generator polynomial$,7) in octal subchannels for precoding, as well as the appropriate pattern of
representation, in atv = M = S = 3 system. Two types the spatial interleaver, is important to achieve the full diversity

of spatial interleavers are used to demonstrate the differgpgier of BICMB-PP. We will present simulation results that
results of the diversity order. A generalized transfer function Q&rify this analysis in Section VI, in particular, in Fig. 7.

BICMB with the specific spatial interleaver and convolutional

code provides thex-vectors for all of the pairwise errors, \; RepuCED COMPUTATIONAL COMPLEXITY SPHERE
whose element indicates the number of times the stream is

5— min(n,0") if 6" exists,
T lm otherwise.

. . DETECTION
used for the erroneous bits [8]. In particular, due to the fact
thatd, = Zf:l ay,. anddy = Zf;lp oy, Whereq; is the In this section, we will describe the reduced computational

st element of thex-vector, the generalized transfer functiorcomplexity SD for constellation precoded multiple beamform-
approach in [8] is also useful in the analysis of BICMB-PRng employing square QAM. More specifically, we propose the
Hence, we rewrite the transfer functions of the systems fro8D technique to reduce the number of multiplications without
[8], wherea, b, andc are the symbolic representation of théosing the performance. Since detecting the transmitted non-
15,274 374 streams, respectively. The spatial interleaver us@decoded symbols for UMB-CP in (6) and finding the bit
in 77 is a simple rotating switch o8 streams. Fofly, theu!” metrics of non-precoded symbols for BICMB-CP in (9) can



be carried out independently of the symbols on the otheymbol at layer. The partial weights(X(*)) is written as
subchannels, we focus on the precodedymbols. op

Given that a full search over the entire lattice space is Wy (X)) = |7 — ZRu,vﬂ?uF (36)
performed [27], solving (5) for ML detection is well-known —
to be NP-hard. SD, on the other hand, solves (5) by searchin% L n = h
only lattice points that lie inside a sphere of radjusentering WNeré J. is the u™ glementt}?fQ , Ruv is the (u,v)
around the received vectgr,. A frequently used solution for element ofR, andz, is thev™ element ofx.
the QAM-modulated complex signal model is to decompose
the P-dimensional complex-valued problem (5) into2#®- A. Precalculation of Multiplications

dimensional real-valued problem, which is written as Note that for one channel realization, bakh and  are
R{y,} _ independent of time. In other words, to decode different
Y= |gfya| =FX+D ived symbols f hannel realization, the onl
3y, } received symbols for one channel realization, the only term

RIF} —S{F}] [Rix,) Rin,} (33) in (36) which depends on time .. Consequently, a tabl&
= {S{F} R{F} } [%{X"}] {%{np}} can be constructed to store all termsfdf , &, whereR,, ,, # 0
7 P andz € Q, before starting the tree search procedure. Equations
where F = I‘pC:) [15], [27]. The QR decomposition of (35) and (36) imply that only one real multiplication is needed
the 2P x 2P real-valued channel matrix turns (5) into theéby usingT instead of2P —u+2 for each node to calculate the

equivalent expression node weight. As a result, the number of real multiplications
R CNAH- a2 can be significantly reduced.
Xn = argmuy 1Q"y — Rx|| (34) Taking the square QAM structure into consideratifncan

= _ . . . be divided into two smaller setQ; with negative elements
whereQ andR are the unitary matrix and the uppertnangulaénd 0, with positive elements. Take 16-QAM for example
matrix from the QR decomposition df [15], [27]. Let | '

. . ={-3,-1,1,3}, thenQ; = {-3,—1} andQ, = {1,3}.
denote the set of scalar symbols for one dimension of QA . . 2 ’
e.0.0 = {—3,—1,1,3} for 16-QAM, then'¥ denotes a subset ny negative element if2; has a positive element with the

I _ same absolute value ;. Consequently, in order to buil,
of Q2P whose elements satisfyfQ”y — Rx||? < p2. The 2 9 y

o i p - _only terms ofR,, ,Z, whereR,,, # 0 andz € 4, need to be
initial radius p should be chosen prope_rly_ SO the_lt it is ne'the?ralculated and stored. Hence, the sizeldif
too small nor too large. Too small an initial radius can result

in too many unsuccessful searches by restarting the search and IT| = Ng|Q| 37)
thus increasing the complexity, while too large an initial radius 2
can result in too many lattice points to be searched. where Ni denotes the number of nonzero elements in matrix

The SD algorithm can be viewed as a pruning algorithm dR, and |2| denotes the size dd.
a tree of deptr2 P, whose branches correspond to elementsIn order to buildT, both the number of terms that need to
drawn from the sef2 [23], [27]. Conventional SD implements pe stored and the number of real multiplications required are
a Depth-First Search (DFS) strategy in the tree. This seargh). Since the channel is assumed to be flat fading, onlybne
achieves ML performance. The complexity of SD is measuregeds to be built in one burst. If the burst length is very long,
in terms of the number of operations required per visitefie computational complexity of buildin§ can be neglected.
node multiplied by the number of visited nodes throughout
the search algorithm [27]. The complexity can be reducegl podified Depth First Search DFS Algorithm
by either reducing the number of nodes to be visited, or
the number of operations to be carried out at each node, o he representation proposed in [23] replaces the conven-
both. In order to reduce the number of visited nodes, one cégnal representation of (33) with
either make a judicious choice of the initial.radius to start the y=Gx+n (38)
algorithm, or execute a proper sphere radius update strategy.
The former strategy has been studied in [16] and [17], and there
latter one has been discussed in [18] and [19]. In this paper, - T
we propose methods to reduce the average number of real y=[R{m} Sy} - Rye} S{r}]
multiplications, which are the most expensive operations in R{F11} —S{F11} - R{F1p} —{F1p}
terms of machine cycles required at each node for conventional S{Fi1} ®{F:1} - HFA.pr} R{Fpr}
SD. A proper choice of the initial radius for BICMB-CP will o _ . . . .
also be provided.

)

" - R{Fp1} —S{Fp1} - R{Fpp} —S{Fpr}
We start by writing the node weight as [23 » g ; g
Y J ) J (23] S{Fp1} ®{Fp1} - S{Fpp} R{Fppr}
X = Ty b S, } - Top} SHThp ,
with uw = 2P, 2P — 1,---, 1, w(X®P+)) = 0, and ! ’ ! ’

Wy (XFHY) = 0, where x(*) denotes the partial vector i=[R{n} S{ni} -+ R{np} S{np}}T.



Tree root Layers words, the weights of children nodes belonging to one of the
lovels detection parent nodes are recycled by the childrezosisins

By implementing the modified DFS algorithm, further com-
plexity reduction is achieved beyond the reduction due to
the precalculation tablé€l. We will show how many real
multiplications are reduced to calculate all nodes at layers
3 % u,u + 1 belonging to one grandparent node at layef 2,

wherew is an odd number. Let us definee [0, |Q?]] as the

number of non-pruned branches from the grandparent node,
=2 % after calculating the node weighig(x(**1)) and comparing

them with p?. If v = 0, which means all branches from

. the grandparent node are pruned, the modified algorithm does
not reduce computations from the original DFS algorithm. If
v > 0, to get all of the weights at the layer and u + 1
under the grandparent node, the number of real multiplications
reduces further fronfr + 1)|Q2| to 2|Q|.

Level 1 =4 X,

Level 2

Level 3

Level 4

cC D E F

Fig. 2. Tree structure for @ x 2 FPMB system employing-QAM.

The structure of the lattice representation becomes advap-, .. .
tageous after applying the QR decompositiorGpi.e., G = %1 Initial Radius for BICMB-CP
QR. Due to a special form of orthogonality between each pair

?r]: column?,_all elclementtﬁi?ﬁlgl foru =1, 3’2’3"%_?2]})'71’;_” previous sections can also be applied to BICMB-CP. The
e upper triangular matrik. become zero [23]. The loca I0NS 5 _dimensional complex-valued input-output relation of the

.Of thase zeros introduce orthogonality betwe_en the real Pecoded part in (9) can be transformed int2/adimensional

imaginary parts of every detected sympol, which can be tak [-valued problem, based on the lattice representation in (38).

advantage of to reduc_:e the computatlonal_corn_plexny of S pplying the QR decomposition to tH&P x 2P dimensional

we proylde the following example to explain th.|s. matrix G in (38), the bit metrics of the precoded part in (9)
Consider & x 2 S = 2 FPMB system employing-QAM. ;.o ewritten as

Then, SD constructs a tree with? = 4 levels, where the ‘

branches coming out of each node represent the real values in Y (g, op) = min |#x — Rx||? (40)

the setQ? = {—1,1}. This tree is shown in Fig. 2. Based on X Bews

the representation in (38), the input-output relation is given yhere #;, is the product ofQ” and the transformed vector

. from rZ. Due to the transformation, the position @f in the

The proposed SD algorithm for UMB-CP described in the

U1 Rigp 0 Ris Rig| |21 (51 ) .

. - i label of x needs to be acquired and stored in a new table
92| | 0 Rapo Rag Raoal| [%2 Mg , s X o ek "

= s (39) k" — (k,l,7), which means;. lies in thes*" bit position of

U3 0 0 Rsz O T3 i3 -

- - . label for thel*" element of real-valued symbol vectar Let

Yaq 0 0 0 R474 T4 Ny

" Qi denote a subset d® whose labels have € {0,1} in the
where 4, Z,, 7, are the u'* element of the vectors :th p; e oo
Qfy, x, Qn, respectively, andz,, , is the element oR. . p05|At|Aon. 1t we defines A as
Calculating partial node weights of (39) for the first level ff,l ={x: Tyei € Qi andx
and the second level are independent, same as the third level o
and the fourth level, because of the additional zeros inRhe then,®;, denotes a subset 6f*, whose elements satisfy, —
matrix. For instance, the partial weights of nodeand B in  Rx||? < p}.
Fig. 2 depend on only3, and the partial weights of nodg, Similarly to UMB-CP, the SD algorithm for BICMB-CP
D, E, and F' depend onzy4, 3, andz, excepti,. In other now can be viewed as a pruning algorithm on a tree of depth
words, the partial weights of nodd and B are equal, and 2P. However, its branches of the layer= [ correspond to
need to be calculated once. Similarly, partial weights of nodgements drawn only from the sgtk, C x. To determine the
C and D can be used without an additional computation fapitial radius for BICMB-CP, we use the ZF-DFE algorithm to
the partial weights of nod& and F', respectively. acquire an estimated real-valued vector symbplfor b = 0
Because of this feature, the DFS strategy is modified in toe 1, whoseu'" element:cz . 1S detected successively from
following way: for thewut” layer, whereu is an odd number, xz,zp to 2% | as 7
partial weights of the nodes at the layer(called children ’
node$ belonging to a node at the layer- 1 (calleda parent b
nodg are stored, and are used as partial weights of the nodes Lhu
belonging to the same node at the layer 2 (called a
grandparent nodg but to the different parent nodes. In othefor the element corresponding tandicated by the tablé’ —

s|s;£f € Q}

2P
=arg min [fru — Y Rupah, — Ruuz|  (41)
er}w v=u-+1
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(k,l,7), and (CSD), and the proposed SD (PSD). In these simulations,

2P the initial radius is chosen to be? = 2N, P, inside which
ab = arg min |, — Z Ru,uxz o — Ruux|  (42) at least one lattice point lies with a high probability [18].
’ Eeh v=ut1 ’ ’ The average number of real multiplications for decoding one
q}ansmitted vector symbol is calculated at different SNR. Since
the reductions in complexity are substantial, we will express
them as orders of magnitude (in approximate terms) in the
pi = ||#r — Rx} || (43) sequel. In Fig. 5 we present the simulation results of the
4 x4 S = 4 FPMB system. Ford-QAM, the number of
FBHItipIications of CSD is reduced by.4 and 2.1 orders of
magnitude at low and high SNR, respectively. PSD reduces the

for the rest of the elements. Then, the initial radius is calc
lated by

With the initial radius acquired by the ZF-DFE algorithm
the SD guarantees no unsuccessful search for both of the

metrics. complexity by2.1 orders of magnitude at low SNR, agd! at
VI. SIMULATION RESULTS high SNR. The reduction becomes larger as the constellation
A. UMB-CP size increases in thex 4 S = 4 FPMB system. Fo64-QAM,

the number of multiplications of CSD decreases 3y and

We will now verif_y the _diversity order_analysis in Section6.4 orders of magnitude at low and high SNR, respectively.
i b_y means of s!mulanon results using different syste SD gives a larger reduction By3 orders of magnitude at low
configurations. In Fig. 3, we present BER performance resu R, and7.0 at high SNR. Simulation results clearly show

for SB and FPMB. The_ curves_with the legend FPMB afhat CSD reduces the complexity substantially compared with
generated by the precoding matrices that outperform the othg H, and the complexity can be further reduced effectively
in [25], [26]. All of the FPMB systems employ-QAM b

dulati d th d tor SB and FP ﬁl our PSD. The complexity reduction becomes larger as
modulation, and the system data rate for an M e constellation precoder dimension or the constellation size

Is set tod, 8 b|_ts/channel use for 2 x 2 and a4 x 4 pecomes larger. For comparison, simulation results fo2 th
system, respectively. All of the FPMB systems achieve the _ 2 FPMB system are available in [28]

full diversity order because each slope is parallel to that of
the corresponding SB system, which is known to achieve tEe
full diversity order of N M. '
In Fig. 4, we present simulation results that support the We present simulation results f@rx 2, 3 x 3, and4 x 4
diversity analysis of4 x 4 S = 4 PPMB in Table I. The BICMB and BICMB-FP in Fig.6. The convolutional code
theoretical results in Table | are duplicated in the legend of Figmployed is &4-state one punctured from thg2-rate mother
4. It can be observed that the diversity orders in the simulationde with generator polynomia({33, 171) in octal represen-
results are the same as those in the analysis. tation. These results verify the diversity analysis in Section IV.
To verify the computational complexity reduction withPreviously, in [8], we showed the maximum achievable diver-
sphere detection in Section V, we simulated & 4 S = 4 sity order of BICMB with anR.-rate convolutional code is
FPMB system usingl-QAM and 64-QAM with receivers (N — [S - R.] + 1)(M — [S - R.] + 1). As a result, in this
employing the exhaustive search (EXH), the conventional S&xample, the maximum achievable diversity order of the three

BICMB-CP
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10°

R OND of CSD and PSD are determined by the ZF-DFE algorithm.
3/4 BICMB Fig. 8 shows the number of multiplications of CSD fér
ﬁ?; g%g%{g P QAM decreases by.3 and 1.5 orders of magnitude at low
3/4 BICMB-FP|] and high SNR, respectively. PSD gives bigger reductions by
4/5 BICMB-FP 2.1 orders of magnitude at low SNR, a3 at high SNR.
For the 64-QAM case, reductions between EXH and CSD
by 3.2 and 4.4 orders of magnitude are observed at low
and high SNR, respectively, while larger reductions 49
and 5.4 are achieved by PSD. Similar to the uncoded case,
the complexity reduction becomes larger as the constellation
precoder dimension or the constellation size becomes larger.
For comparison, simulation results forax 2 S = 2 64-state
R.=2/3 BICMB-FP system are available in [28].
‘ ‘ ‘ ‘ ‘ One important property of our decoding technique needs to
10 15 20 25 30 35 40 be emphasized: the substantial complexity reduction achieved
SNR in dB causes no performance degradation.
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and 64-state punctured convolutional code. - CONCLUSION

In this paper, we proposed constellation precoded multiple
beamforming. This system achieves the full diversity order in
BICMB systems isl. However, Fig. 6 shows that BICMB-FP poth of the uncoded and coded MIMO multiple beamforming
achieves the full diversity order for any code rate. systems when the channel information is perfectly available
In Fig. 7 we present the simulation results of BICMB-PRt the transmitter as well as the receiver. This is achieved at
given in the example of Section IlI-B. The diversity orderglifferent levels of spatial multiplexing, including the maximum
of the BICMB systems7; and 7, are4 and 1, respectively (min(NN, M)) provided by theV x M channel. By employing
[8]. Comparing the slopes of BICMB-PP with BICMB, wethe calculation of pairwise error probability and a theorem pre-
see that the simulation results match the analysis in Secti@dusly proved by the authors, an analysis of the diversity order
I-B. was given for both of the multiple beamforming schemes. Ex-
To verify the proposed sphere decoding technique in thasnples of calculating the diversity orders of various multiple
case for BICMB-FP, we simulated x 4 S = 4, 64-state beamforming systems and simulation results supporting the
R. = 4/5 BICMB-FP systems using-QAM and 64-QAM  analysis were given. To reduce the computational complexity
modulation with Gray mapping. The average number of reaf decoding, a sphere detection algorithm was proposed and
multiplications for acquiring one bit metric is calculated wittsimulation results were provided. The proposed SD algorithm
receivers employing EXH, CSD, and PSD. Initial radii for botlin this paper can be applied to any MIMO system.
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