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Abstract

In Multiple-Input Multiple-Output (MIMO) systems, SpheBecoding (SD) can achieve performance equivalent
to full search Maximum Likelihood (ML) decoding with reduteomplexity. Several researchers reported techniques
that reduce the complexity of SD further. In this paper, a rteshnique is introduced which decreases the
computational complexity of SD substantially, without sficing performance. The reduction is accomplished
by deconstructing the decoding metric to decrease the nuofbeomputations and exploiting the structure of a
lattice representation. Furthermore, an application ofédploying a proposed smart implementation with very
low computational complexity for calculating the soft bietrics of a bit-interleaved convolutional-coded MIMO
system is presented. Based on the reduced complexity Sprtp@sed smart implementation employs the initial
radius acquired by Zero-Forcing Decision Feedback Eqatitia (ZF-DFE) which ensures no empty spheres, and
is incorporated with a technique efficiently reducing thenber of executions carried out by SD. Simulation results
show that these approaches achieve substantial gainsniis t&frthe computational complexity for both uncoded

and coded MIMO systems.
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I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have drawsubstantial research and development
because they offer high spectral efficiency and performamee given bandwidth. In such systems, the
goal is to minimize the Bit Error Rate (BER) for a given Sigt@Noise Ratio (SNR). A number of
different MIMO systems exist. Most of these systems resuloptimum decoding techniques that are
complicated. Therefore a number of decoding algorithmk wifferent complexity-performance tradeoffs
have been introduced. Linear detection methods such asFEeoing (ZF) or Minimum Mean Squared
Error (MMSE) provide linear complexity, however their pgrhance are suboptimal. Ordered successive
interference cancellation decoders such as Vertical Babotatories Layered Space-Time (V-BLAST)
algorithm, show slightly better performance compared t@a& MMSE, but suffer from error propagation
and are still suboptimal [1]. It is well-known that Maximumkelihood (ML) detection is the optimum
method. However, the complexity of the ML algorithm in MIM@stems increases exponentially with
the number of possible constellation points for the moduaascheme, making the algorithm unsuitable
for practical purposes [2]. Sphere Decoding (SD), on theroftand, is proposed as an alternative for ML
that provides optimal or near-optimal performance withucstl complexity [3].

Although the complexity of SD is much smaller than ML decayfithere is room for complexity
reduction in conventional SD. To that end, several compfteseduction techniques for SD have been
proposed. In [4] and [5], attention is drawn to initial rasligelection strategy, since an inappropriate
initial radius can result in either a large number of lattm@nts to be searched or a large number of
restart actions. In [6] and [7], this complexity is attack®dmaking a proper choice to update the sphere
radius. In [8], the Schnorr-Euchner (SE) strategy is appieeSD, which executes intelligent enumeration
of candidate symbols at each level to reduce the number d@edisodes when the system dimension
is small [9]. Channel reordering techniques can also beiegpb reduce the number of visited nodes
[9], [10], [11]. Other methods, such as the K-best latticeader [12], [13], can significantly reduce the
complexity at low SNR, but with the tradeoff of BER perforncandegradation.

In this paper, the complexity of SD is efficiently improvedtagucing the number of operations required
at each node to obtain the ML solution for flat fading chann&rgs complexity reduction is achieved
by deconstructing the decoding metric in order to reducentiraber of computations and exploiting the
structure of a lattice representation of SD [10], [11]. Imslations,2 x 2 and4 x 4 MIMO systems

with 4-QAM and 64-QAM have been studied. In these systems, the reduction @nntimber of real



additions is in the range of0% — 75%, and the reduction in the number of real multiplicationsnighie
range of70% — 90%, without any change in performance. The complexity gaicsease with the MIMO
system dimension and the modulation alphabet size. Morganepplication of SD employing a proposed
smart implementation with very low computational compieXor calculating the soft bit metrics of a
bit-interleaved convolutional-coded MIMO system is alatraduced. Other than the operation reduction
at each node achieved by the reduced complexity SD, thalinmaidius of SD is acquired by Zero-
Forcing Decision Feedback Equalization (ZF-DFE) [5], whiensures no empty spheres. A technique
is also applied to efficiently reduced the number of exeawstioarried out by SD. Simulation results
show that conventional SD substantially reduces the caoxitplen terms of the average number of real
multiplications needed to acquire one soft bit metric, caneg with exhaustive search. With the proposed
smart implementation, further reductions of orders of nitagie are achieved. The reduction also becomes
larger as the MIMO system dimension and the constellatine Bicrease.

The remainder of this paper is organized as follows: In $edii, the problem definition is introduced
and a brief review of conventional SD algorithm is presenbe@&ection Ill, a new technique to implement
the SD algorithm with low computational complexity is prged, and the mathematical derivations for
the complexity reduction are carried out. In section IV, apleation of SD employing a proposed
smart implementation with very low complexity for calculhef the soft bit metrics of a bit-interleaved
convolutional-coded MIMO system is presented. In Sectigncdimplexity comparisons with different
number of antennas and modulation schemes of both uncodkdaaled MIMO systems are provided.

Finally, a conclusion is provided in Section VI.

II. CONVENTIONAL SPHEREDECODER

In this paper, MIMO systems using square Quadrature AngeitModulation (QAM) withV; transmit
and N, receive antennas are considered, and the channel is astubetlat fading. Then, the input-output
relation is given by

y = Hx +n, 1)

wherey € C"r is the N, dimensional received vector symbol aBcddenotes the set of complex numbers,
H e CV*M js the channel matrix whose channel coefficients are indégrerand identically distributed
(i.i.d.) zero-mean unit-variance complex Gaussian randamables,x € C is an N, dimensional

transmitted complex vector with each element in square QAkMnat, andn € C" is a zero-mean



complex white Gaussian noise vector with varianéefor each element.
AssumingH is known at the receiver, ML detection is

x = arg min ||y — Hx|? (2)

xexNt

wherey denotes the sample space for QAM modulation scalar symbBoieexampley = {—3, -1, 1, 3}2
for 16-QAM.

Solving (2) is known to be NP-hard, given that a full searckerahe entire lattice space is performed
[14]. SD, on the other hand, solves (2) by searching onlyckfpoints that lie inside a sphere of radius
0 centering around the received vecgar

A frequently used solution for the QAM-modulated signal rabid to decompose th&’,.-dimensional

complex-valued problem (1) into &V, -dimensional real-valued problem, which can be written as

[5)% &Y r{a} —s{n} [5)% {5(}:| N %{ﬁ}} -
3 {3} %{H} %{H} s{xy|  |s(@]|
whereR {r} and< {r} denote the real and imaginary partsrofespectively [3], [14]. Let
y= [y sy @
- [%{I?} -s {m}) -
s{a} »{m
T
x= [R{x)" s{x)"] . (6)
T
n = [gre{ﬁ}T %{ﬁ}ﬂ , (7)
then (3) can be written as
y = Hx 4+ n. (8)

AssumingN; = N, = N in the sequel, and using the QR decompositiorHof= QR, whereR is an

upper triangular matrix, and the maty is unitary, SD solves

X = argmin ||y — Rx||? 9
x€eQ



with y = Qfy, where( denotes a subset ¥ whose elements satisfly — Rx||> < §2, andx denote
the sample space for one dimension of QAM-modulated symledls, x = {—3, —1, 1,3} for 16-QAM.

The SD algorithm can be viewed as a pruning algorithm on a ¢fedepth 2N, whose branches
correspond to elements drawn from the g4fl0], [11], [14]. Conventional SD implements a Depth-First
Search (DFS) strategy in the tree, which can achieve ML padoce.

Conventional SD starts the search process from the rooteotrée, and then searches down along
branches until the total weight of a node exceeds the squiateecsphere radiusi?. At this point, the
corresponding branch is pruned, and any path passing thrthag node is declared as improbable for
a candidate solution. Then the algorithm backtracks andgaas down a different branch. Whenever a
valid lattice point at the bottom level of the tree is foundhin the spherej? is set to the newly-found
point weight, thus reducing the search space for findingrothedidate solutions. In the end, the path
from the root to the leaf that is inside the sphere with thedstweight is chosen to be the estimated

solutionx. If no candidate solutions can be found, the tree is searagath with a larger initial radius.

[1l. PROPOSEDSPHEREDECODING

The complexity of SD is measured by the number of operatieqsired per visited node multiplied
by the number of visited nodes throughout the search proeefd4]. The complexity can be reduced
by either reducing the number of visited nodes or the numibeperations to be carried out at each
node, or both. Making a judicious choice of initial radiusstart the algorithm with [4], [5], executing a
proper sphere radius update strategy [6], applying an ivgot@earch strategy [8], and exploiting channel
reordering [9], [10], [11] can all reduce the number of \gsiinodes. In this paper, our focus is on reducing
the average number of operations required at each node for SD

The node weight is given by [10], [11],
w(x(“)) = w(x(“+1)) + wpw(x(“)), (20)

for u = 2N, --- 1, with w(x®V*D) = 0 and w,,,(x?¥+Y) = 0, wherex® denotes the partial vector

symbol at layer:. The partial weight corresponding $d® is written as

2N
wPW(X(u)> = ‘Zju - Z ruwxv‘Qa (11)

wherer, , denotes théu, v)™" element ofR, andz, denotes the element ofx.



A. Check-Table T

Note that for one channel realization, bdhand y are independent of time. In other words, to decode
different received symbols for one channel realizatioe, ¢mly term in (11) which depends on time is
7. Consequently, a check-tableis constructed to store all terms of ,x, wherer, , # 0 andz € y,
before starting the tree search procedure. Equations (D)) imply that only one real multiplication
is needed instead &N — u + 2 for each node to calculate the node weight by udihghs a result, the
number of real multiplications can be significantly reduced

Taking the square QAM lattice structure into considergtiprcan be divided into two smaller sets
with negative elements angh with positive elements. Take 16-QAM for example= {—3,—1,1, 3},
theny; = {—3,—1} and x, = {1, 3}. Any negative element iry; has a positive element with the same
absolute value ing,. Consequently, in order to buil@, only terms in the form of-, ,x, wherer, , # 0
andz € x;, need to be calculated and stored. Hence, the siZ@ isf

NR|X|

T = =2

(12)

where Ni denotes the number of non-zero elements in ma®jxand|y| denotes the size of.

In order to buildT, both the number of terms that need to be stored and the nwhtesal multiplications
required argdT|. Since the channel is assumed to be flat fading Brahly depends o matrix andy,
only oneT needs to be built in one burst. If the burst length is very |atggcomputational complexity

can be neglected.

B. Intermediate Node Weights

Define

2N
M(X(U)) = gu - Z Tuwlo, (13)

v=u+1

with M (x®N)) = 0, then (11) can be rewritten as
wpw(x(“)) = |M(x™) — TuuZul . (14)

Equation (13) shows that/(x®)) is independent ofz,, which means for any node not in the last
level of the search tree, all children nodes share the shifie™). In other words, for these nodes, their

M (x™)) values need to be calculated only once to get the whole seefhis for their children nodes.
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Consequently, the number of operations will be reduced (k) values are stored at each node, except
nodes of the last level, until the whole set of their childeeg visited. Based on (10), (13), and (14), by
storing theM (x) values, the number of real additions needed to get all paveayhts of the children
nodes at layer, for a parent node of layer + 1, reduces t@N — u + |x| from (2N —u + 1)|x|. Note
that after implementing the check-talile storing M (x+1)) values does not affect the number of real

multiplications.

C. New Lattice Representation

In our previous work [10], [11], a new lattice representatwas proposed for (8) that enables decoding
the real and imaginary parts of each complex symbol indegthd Also, a near ML decoding algorithm,
which combines DFS, K-best decoding, and quantization, im&®duced. In this work, a different
application of the lattice representation, which achievegerformance degradation, is employed.

For the new lattice representation, (4)-(7) become

=R} S() - Rl S} (15)
() <) - R{a) o (A
%{H“} m{H“} %{HLN} %{HLN}
H=— : . : : ) (16)
%{:Nl} —%{Nﬁj\m} %R{:NN} —%{NFINN}
_%{HNl} %{H]m} %{ N,N} gce{HN,N}_
X = [8%{:%1} S{#} - R{Zn} %{aéN}]T, (17)
n=|R{n} S{m} - R{an) %{ﬁN}}T. (18)

Define each pair of column in (16) as one set starting from #ficnand side. Then, it is obvious that
the columns in each set are orthogonal, and this propertyalgagstantial effect on the structure of the
problem. Using this channel representation changes ther ofdhe detection of the transmitted symbols.
For example, the first and second levels of the search treespund to the real and imaginary parts of
Zn, unlike the conventional SD, where these levels corresgorttie imaginary parts of y andzy_1,

respectively. The structure of the new lattice represemtdfl5)-(18) becomes advantageous after applying



the QR decomposition tbl, which is formalized in the following theorem.

Theorem. Applying QR decomposition to the real representation of the channel matrix H, which has the
aforementioned orthogonal property between the two columns in one set, produces an upper triangular

matrix R whose elements r,, ., are all zero for v =1,3,...,2N — 1.

Proof: Let h, denote theu!” column of H for « = 1,...,2N. Then definef;, = h;, andf, =
h, — 3“1 ¢, (h,) for u = 2,...,2N, based on the Gram-Schmidt algorithm, whese(h,) is the

projection of vectoth, onto f, defined by

(hy, f,)
h,) = f,. 1
¢fv< U) <fv7fv> v ( 9)
Also definee, = Hﬁ—Z” for u = 1,...,2N, then the column vectors of the channel matHx can be

rewritten in the equations form as
h, = e1||f1||,

hy = ¢, (hy) + es|f2],

hs = ¢¢, (hs) + ¢, (hs) + es||fs]|,

h, = Y207) ér, (hy) + eu|full.

Then, defineQ = [e; - - - esn], and these equations can be written in the matrix form as

I£i]| (e1,hy) (er,hs) ...

Q 0 ||f2|| <e2,h3> . (20)
0 0 £l

Obviously, the matrix? is unitary, and the matrix on the right is the upper triangutamatrix of the
QR decomposition.

Now the goal is to show that the terms,, h, ;) are zero foru = 1,3,...,2N — 1. Three observations
conclude the proof.

First, sinceh, andh,, are orthogonal forx = 1,3,...,2N — 1, then¢g, (h,41) = ¢¢,,, (h,) = 0 for
the sameu.

Second, the inner products ff for v = 1,3, ..., u — 2 with the columnsh,, andh,,,; are equal to the



inner products of,,; with the columnsh,.; and —h, respectively, which are formalized as

<fU7 hu> - <fv+17 hu+1>7

<fU7 hu+1> - _<fv+17 hu>7

foru=1,3,...,2N —1 andv = 1,3,...,u — 2. These properties become obvious by using the first

observation and revisiting the special structure of (16).

Third, making use of the first two observations, and notirag ffh,,|| = ||h,4.|| foru=1,3,...,2N -1,
it can be easily shown thaf,| = ||f..:|| for the sameu.
Then,
(e ) =(r )
wy Hu+1/ — Hf ||7 u+1
¢fv u
Hf H Z =
1 (hy, f1) (f1, o)
~Te 1 hu7 hu - -
e e T
<hu7 f2><f27 hu+1> .
<f27 f2>
<hu7 fu—2> <fu—27 hu+1> i <hu7 fu—1> <fu—17 hu+1> )
<fu727 fu72> <fuf17 fu71>

Now, applying the above observations, then

1 (hy, fi)(f1, hyyq)
<eu7hu >:—( - -
IR [Esul

—(f b (b f)
[1£1]1?

<hu7fu72><fu727hu+l> i _<fu727hu+1><hmfuf2>>
[[£u—2]|? [£.—2]|?

=0

This concludes the proof. O

The locations of these zeros introduce orthogonality betwihe real and imaginary parts of every
detected symbol, which can be taken advantage of to red@cedimputational complexity of SD. The
following example is provided to explain this.

Example:Consider a MIMO system havingy, = N, = N = 2, and employingi-QAM. Then, SD

constructs a tree witBN = 4 levels, where the branches coming out from each node regrédse real
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values in the set = {—1, 1}. This tree is shown in Fig. 1. Now using the real-valued ¢attiepresentation

(15)-(18), and applying the QR decomposition to the chammatix, the input-output relation is given by

n rip 0 73 g T ny
Yo 0 2,2 T23 T24 ) U
= + ; (21)
?j3 0 0 33 0 T3 ﬁg
?j4 0 0 0 T4.4 T4 ﬁ4

where [ 719 713 114]7 = 1 = Qn.

Based on (11) and (21), calculating partial node weightstlier first level and the second level are
independent, similar to the third level and the forth lebelcause of the additional zero locations in he
matrix. For instance, the partial weights of nodeand nodeB only depend orx; but z,, and the partial
weights of node”, nodeD, nodeF, and nodeF, depend omny, 3, andz; exceptz,. In other words, the
partial weights of noded and nodeB are equal, and only need to be calculated once. Similariyiapa
weights of node” and nodeD can be used when calculating the partial weights of nBdend nodeF’,
respectively.

SD is then modified because of this feature. Once the treearstsed in layen:, wherewu is an odd
number, partial weights of this node and all of its siblingles are computed, stored, and recycled when
calculating partial node weights with the same grandpamede of layeru + 2 but with different parent
nodes of layemn + 1.

By applying the modification, further complexity reductisnachieved beyond the reduction due to the
check-tableT and intermediaté// (x(“*1) values. For a node of layer+ 2, whereu is an odd number,
let o € [0, |x|] denote the number of non-pruned branches for its childrelesiof layeru + 1. If a =0,
which means all branches of its children nodes of layerl are pruned, the number of operations needed
stay the same. Ift # 0, to get all partial weights of its grandchildren nodes inelialy the number of real
multiplications and real additions reduce further frémi-1)|x| to 2|x|, and(a+1)(2N —u—1+]x|) +«
to 2(2N —u — 1+ |x|), respectively.

IV. SOFT BIT METRIC

In many MIMO systems, channel coding such as convolutiowalirg is employed to provide the

coding gain. In this section, an application of SD employingroposed smart implementation with very
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low complexity for calculating the soft bit metrics of a lnterleaved convolutional-coded MIMO system
is presented.

Definec as the codeword generated by a convolutional encoder wighitafrom the information bits.
The codeword: is first interleaved by an bit-wise interleaver, then thesiil@aved bits are modulated by
Gray mapped square QAM and transmitted throughXh&ansmit antennas. At the” time instant, an
N x 1 complex-valued symbol vectoy; is transmitted at the transmitter and anx 1 complex-valued
symbol vectory, is received at the receiver. The location of the coded:hitvithin the complex-valued
symbol sequencX = [x; - - - Xx] is known ask’ — (k,1,7), wherek, I, andi are the time instant iiX,
the symbol position irx;, and the bit position on the label of the scalar symipl, respectively. At the
receiver, instead of decoding each transmitted symbol®)aghe ML soft bit metrics are calculated for
each coded bits as

7l7i<yk7 Ck’) = };@E Hyk - I:I>~(H27 (22)

X c’k,

wherec! is a subset of¢”, defined as
i e y i i
Sbl = {X = [‘Tl U xN]T C Tylu=l € X;ﬁ and Tyluztl € X}7

andy: denotes a subset gf whose labels have € {0, 1} in the " bit position. Finally, the ML decoder,

which uses Viterbi decoding, makes decisions accordindgpéortile
¢ =argmin y 7" (Jx, cw). (23)
k/

SD can be employed to solve (22). Defipg andx,, as the corresponding real-valued representations
of y. and x;, respectively. For square QAM with sizZ#" wherem is an even integer, the first and
the remainingy bits of labels for the2™-QAM are generally Gray coded separately as tWo-PAM
constellations, and represent the real and the imaginaeg eespectively. Assume that the same Gray
coded mapping scheme is used for the the real and the imggamas. As a result, each elementsqf
belongs to a real-valued signal sgtand one bit in the label af, corresponds te;.. The new position
of ¢ in the label ofx;, needs to be acquired & — (k,[,7), which means, lies in thei®" bit position

of the label for thd™ element of real-valued vector symhe). Let Xf, denote a subset of whose labels
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haveb € {0, 1} in the i bit position. Defineg’? c y*¥ as

C
et = {x =[xy - zon]T : i € x;, and i € XJ-

Then SD solves

V(T hs enr) = min |[yy — Rx|” (24)

with ¥, = Q”y, whereQ C i,f and ||y, — Rx||? < §2. The only different between (24) and (9) is
the search space is nog@}: instead ofy?". In other words, the problem can be viewed as a pruning
algorithm on a tree of dept/NV, whose branches correspond to elements drawn from thg, sstcept

for branches of the layer = /, which correspond to elements drawn from the;S;%t. A proposed smart
implementation of SD can be applied. Other than the comijoutait complexity reduction at each node
achieved by the reduced complexity SD presented in Secliptwio more techniques are employed by

the proposed smart implementation to reduce the compuotdtmmplexity further.

A. Acquiring Initial Radius By ZF-DFE

The initial radiusd should be chosen properly, so that it is not too small or tegelaToo small an
initial radius results in too many unsuccessful searchestlms increases complexity, while too large an
initial radius results in too many lattice points to be shart

In this work, forc,, = b whereb € {0,1}, ZF-DFE is used to acquire a estimated real-valued vector
symbolx?, which is also the Baiba point [15]. Then the square of ihitélius 67, which guarantees no

unsuccessful searches is calculated by
& = [|yr — R || (25)

The estimated real-valued vector symbdl is detected successively starting fror,, until z} ,,

where#} , denotes the. element ofx}. The decision rule o} , is

e 2N y >
arg min Jru — D oy Ru,vxz,v — Ryuz|, u#l,
vb TEX

. v 2N vb 7
ArgMIN [Yru — D ymyyy Bup®i, — Ruwzl, u=1
TEX,

The estimation of the symbols (26) can be carried out reeelssiby rounding (or quantizing) to the

nearest constellation element ynor ;.
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B. Reducing Number of Executions in SD

For the k' time instant, the real-valued vector symbgl carriesm /N bits. Since each bit generates
two bit metrics forc,, = 0 and ¢, = 1, then2m /N bit metrics in total need to be acquired. However,
some bit metrics have the same value, hence SD can be modifieel ¢xecuted less tham N times,
as mentioned in [16].

Definex;, x;*', and~; as

X, = arg min ||y, — Rx||?, (27)
xEx2N
X, = arg min [[yx — Rx|]%, (28)
XEfé}j,
and
Yo = |¥& — R )?, (29)
respectively. Then
V(s ew) = 15k — R, (30)

Note thatfé’% U 5{’% =x* and 55’% N 5{’% = (). Then

Ye = min {’ylﬂl(ylﬁ Cyr = 0)7 7l7i(yk7 Cpr = 1)}7 (31)

which means that, for thee N bits corresponding tay, the smaller bit metric for each bit @f, = 0 and
¢ = 1 have the same valug..

Let bi € {0,1} denotes the value of th&" bit in the label ofz, ;, which is thel" element ofk,. Then
Vi (Fs ewr = b) = A" (32)

First, two bit metricsy(yy, cp» = 0) and~"(y, ¢ = 1) for one of them N bits corresponding tex
and their relateck,* are derived by SD. Then the€*' corresponding to the smaller bit metric is chosen
to bex,, and~, is acquired by (31). For each of the othetNV — 1 bits, v (yy, cp = Bg) is acquired by
(32), andy"(yy, cpr = 5ﬁ) is calculated by SD. Consequently, the execution numberDofds one time

instant is reduced fror@mN to mN + 1.
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V. SIMULATION RESULTS
A. Uncoded Case

To verify the proposed technique, simulations are carrietdfor 2 x 2 and4 x 4 systems usingt-
QAM and 64-QAM. Assuming a sequence of vector symbols are transmitied considering multiple
channel realizations for each simulation, the average meuarob real multiplications and real additions
for decoding one transmitted vector symbol are calculdtethe figures, conventional SD is denoted by
CSD and proposed SD by PSD. In the simulatiafts= 262N is chosen as the square of initial radius.
A lattice point lies inside a sphere of this radius with higlolgability [8].

Fig. 2 and Fig. 3 show comparisons for the number of operatlmtween CSD and PSD farx 2
systems using-QAM and 64-QAM. For 4-QAM, the complexity gains for the average numbers of real
multiplications and real additions are aroufid’% and 45% respectively at high SNR. Corresponding
numbers arg5% and40% respectively at low SNR. For th&l-QAM case, gains increase to aroun(@s
and65% at high SNR respectively, while they are arowids and60% at low SNR respectively.

Similarly, Fig. 4 and Fig. 5 show complexity comparisonsgsi-QAM and 64-QAM for 4 x 4 systems.
For 4-QAM, gains for the average number of real multiplicationsl aeal additions are arours®% and
50% respectively at high SNR, while they are aroustes and 45% respectively at low SNR. Fog4-
QAM, gains rise up to aroun80% and 75% respectively at high SNR, while they are aroWy; and
70% respectively at low SNR.

Simulation results show that PSD reduces the complexityifsti@ntly compared to CSD, particularly for
real multiplications, which are the most expensive operatin terms of machine cycles, and the reduction
becomes larger as the system dimension or the modulatibaladp size increases. An important property
of our PSD is that the substantial complexity reduction @odd causes no performance degradation. The
proposed technique can be combined with other techniquéeshwbduce the number of visited nodes

such as SE, and other near-optimal techniques such as K-best

B. Coded Case

In[17], [18], and [19], a novel bit-interleaved convolutial-coded MIMO technique called Bit-Interleaved
Coded Multiple Beamforming with Constellation PrecodirgiGMB-CP) was proposed. BICMB-CP
achieves both full diversity order and full spatial muléging'. In [22], SD employing the proposed smart

In this paper, the term “spatial multiplexing” is used to cfitse the number of spatial subchannels, as in [20]. Note th term is
different from “spatial multiplexing gain” defined in [21].
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implementation was applied to reduce the computationalpbexity of acquiring one soft bit metric.

To verify the proposed smart implementation of SDVadimensional Bit-Interleaved Coded Multiple
Beamforming with Full Precoding (BICMB-FP), which is a BIBACP when all the subchannels ob-
tained by Singular Value Decomposition are precoded, isidened [17], [18], [19], [22]. Exhaustive
Search (EXH), CSD, and Proposed Smart Implementation @8®lapplied. The average number of real
multiplications, the most expensive operations in termsnathine cycles, for acquiring one bit metric
is calculated at different SNR. Since the reductions in demify are substantial, they are expressed as
orders of magnitude (in approximate terms) in the sequel.

Fig. 6 shows comparisons f@rx 2 R, = § BICMB-FP. For4-QAM, the complexity of EXH is reduced
by 0.4 and0.5 orders of magnitude at low and high SNR respectively, by O38l1.yields larger reductions
by 1.1 and1.2 orders of magnitude at low and high SNR respectively. In #ewmf64-QAM, reductions
between CSD and EXH are5 and 2.1 orders of magnitude at low and high SNR respectively, while
larger reductions o2.6 and 3.0 are achieved by PSI.

Similarly, Fig. 7 shows complexity comparisons férx 4 R. = % BICMB-FP. For 4-QAM, the
complexity of EXH decreases by.3 and 1.5 orders of magnitude at low and high SNR respectively.
PSI gives larger reductions 3 orders of magnitude at low SNR, addi orders of magnitude at high
SNR. For the64-QAM case, reductions between EXH and CSD3¥ and4.4 orders of magnitude are
observed at low and high SNR respectively, while larger cadas by4.4 and5.4 are achieved by PSI.

Simulation results show that CSD reduces the complexitystsuitially compared to EXH, and the
complexity can be further reduced significantly by PSI. Thductions become larger as the system
dimension and the modulation alphabet size increase. Opertant property of our decoding technique
needs to be emphasized is that the substantial complexdtyctien achieved causes no performance

degradation.

VI. CONCLUSIONS

A simple and general technique to implement the SD algorithith low computational complexity
is proposed in this paper. The focus of the technique is onciad the average number of operations
required at each node for SD. The BER performance of the pep&D is the same as conventional
SD, and a substantial complexity reduction is achievedthéamore, an application of SD employing
a proposed smart implementation with very low computaliaaenplexity for calculating the soft bit

metrics of a bit-interleaved convolutional-coded MIMO ®yma is presented. Simulation results show that
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these approaches achieve substantial gains in terms ofotheutational complexity for both uncoded

and coded MIMO systems.
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Fig. 1. Tree structure for @ x 2 system employingl-QAM.
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