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Abstract—The technique of diversity coding was introduced to
provide fast restoration against link failures in communication
networks. We have recently devised algorithms to incorporate
diversity coding into networks with arbitrary topology, so that
restoration is achieved very fast, in an almost hitless manner,
while spare capacity requirements are competitive with the alter-
native state-of-the-art restoration techniques. In addition to two
techniques we have recently developed, in this paper we introduce
two new techniques. These two techniques provide optimal pre-
provisioning of aggregate traffic and active provisioning of dy-
namic traffic, respectively. In both cases, diversity coding results
in smaller restoration time, simpler synchronization, and much
reduced signaling complexity than the existing techniques in the
literature. For pre-provisioning, a Mixed Integer Programming
(MIP) formulation is developed. For dynamic provisioning, an
algorithm employing Integer Linear Programming (ILP) searches
for the best coding group to add the new connection demand in
an optimum manner.

I. INTRODUCTION

In communication networks, especially in wide area net-
works carrying telephone and Internet traffic, failures occur
commonly [1]. Among all failures, single link failures are the
most common, consisting of 70% of all the failures [2]. There
are a number of techniques proposed for the purpose of re-
covery, or restoration, after such failures such as special rings,
mesh restoration, or the p-cycle technique [1], [3], [4]. Two
criteria to measure the effectiveness of such techniques are
the restoration time and the required spare capacity, measured
typically in terms of the product of the transmission rate and
the distance. These two measures are typically complementary
and the network designer has a set of different alternatives to
choose from. For the telephone network, the industry goal is to
achieve a restoration time less than 50 ms, according to con-
siderations of human perception. For mission critical Internet
traffic, reduction of the restoration time to much smaller values
is desirable, because of the additional complexities introduced
by different layers of Internet protocols.

The so-called 1:1 and 1+1 Automatic Protection Switching
(APS) techniques employ spare capacity, inactive and active
respectively, to protect against failure for a given connection
[1]. The spare is chosen to be link disjoint with the protected
connection. Although these could be construed to be early
versions of restoration techniques, they are not practical due
to the requirment of an enormous extra capacity if used to
protect all the connections in a network.
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In the 1990s, when high-speed optical transmission stan-
dards for long-haul networks were being developed, restoration
against link failures was taken into consideration and incorpo-
rated into the standard. This standard is known as Synchronous
Optical Network (SONET). Because it was designed mainly
for the telephone network, the restoration time target was taken
as 50 ms. By employing redundant fibers in a ring structure,
SONET switches to extra capacity in the case of a failure.
Different versions of deployment with different configurations
exist but in all of them, the result is more than 100% extra
capacity, measured in terms of the product of the extra fibers
and the distance, or fiber miles.

A number of techniques provide extra capacity in a shared
fashion without imposing an overlay topology in mesh net-
works. Because of the shared nature of extra capacity, these
approaches can reduce spare capacity, but trading off the
restoration time.Some mesh-based techniques try to employ
“hot standby” [5] or “pre cross-connected” [6] configurations.
These approaches reduce the reconfiguration time in switches
without sacrificing capacity, but the delay and complexity due
to signaling still remains.

A technique that combines the speed advantage of SONET
rings and the spare capacity of mesh restoration is known as
the p-cycle protection [7]. Depending on network topology, it
can provide advantages against mesh restoration.

All of the restoration techniques discussed so far, with
the exception of 1+1 APS, employ feedback signaling and
rerouting, which are the causes of large restoration times.
As discussed earlier, 1+1 APS has an enormous capacity
requirement. On the other hand, it is possible to employ
channel coding on extra capacity, thereby providing a sharing
of extra capacity among potential failures and at the same time,
removing the need for feedback signaling, as in 1+1 APS. As
a result, both the restoration time and spare capacity reduction
goals can be achieved, albeit within certain limits. This idea
was introduced in [8], [9] and is called diversity coding. In
a simple scenario, it can be considered as recovering any of
the failed data in N link-disjoint primary paths by means of
the coded data in a link-disjoint parity link. The erasure data
on the single parity link is formed by applying exclusive or
(XOR) operation over the data signals in N primary paths.
In [3], [10], diversity coding was applied to arbitrary network
topologies, using a heuristic algorithm, by the authors of this
paper. The results indicate that diversity coding is much faster
than a typical mesh restoration technique known as source



rerouting, and the p-cycle technique. When the destination
node for the primary paths is common, diversity coding can
provide near-hitless restoration.

In [11], we introduced a technique to convert a mesh
restoration technique with Shared Path Protection [12] into one
employing diversity coding. This technique is called Coded
Path Protection (CPP) while we abbreviate the Shared Path
Protection technique as SPP. CPP provides, in addition to
coding inside the network, decoding inside the network as
has been sought for within the context of network coding. In
terms of the analogy given in [13], CPP provides, in addition
to the “poison,” also the “antidote” wherever appropriate. This
approach reduces the restoration time considerably but may
slighlty increase spare capacity requirements as compared to
SPP.

In this paper, we introduce two techniques that employ
diversity coding. The first is an optimum design algorithm
employing Mixed Integer Programming (MIP) for a given
network topology and a corresponding traffic matrix. We call
this approach pre-provisioning. Although based on MIP, this
algorithm is faster than the heuristic algorithms of [3], [10].
We consider primary paths with the same destination node and
design via MIP, a tree structure that serves as the protection
path of the link-disjoint primary paths.

The second technique addresses dynamic provisioning
where traffic changes by a bandwidth-on-demand paradigm.
For this problem, we have developed an Integer Linear Pro-
gramming (ILP) approach. This algorithm has a very low
complexity while being adaptive to changes in traffic demand.

The first technique is described in Section II under the title
“Diversity Coding Tree,” and the second one is described in
Section IIT under the title “Dynamic Provisioning.”

II. DIVERSITY CODING TREE

Previously, we introduced a heuristic algorithm to map the
basic diversity coding structures to networks with arbitrary
topology [3], [10]. It is desirable to replace this heuristic
with one that is based on an optimum formulation. Such
a formulation can be achieved by using a form of Linear
Programming (LP). In this section, we present an optimal
Mixed Integer Programming (MIP) approach. This approach
maps diversity coding to networks with arbitrary topology and
static traffic scenarios. One of the most significant advantage
of this approach, which we call the Diversity Coding Tree
algorithm, is the reduction of complexity.

One drawback of the previous heuristic technique was the
high variance between the restoration times of the coding
group combinations. Depending on the topology used, some
coding groups need multiple times of restoration time of
others. Therefore, we adopted a version of diversity coding in
which connections are coded if they have the same destination
node. This leads decoding operations to be performed at the
common destination node and eliminates the time consuming
decoding and complex synchronization operations at the inter-
mediate nodes.

The optimal diversity coding tree algorithm was inspired by
a p-cycle approach that uses a cycle exclusion technique [14].
It builds trees for generating protection paths for connections
that end on the same destination node. The branches of these

Fig. 1.  An example of the diversity coding tree structure. It employs
COST239 network topology.

trees can merge until they reach the root of the tree, or the des-
tination node. An example is provided in Fig. 1. In this figure,
nodes S1, 52, and S3 transmit their data, given as a, b, and c,
respectively, to the common destination node D. These paths
are shown with solid black lines and arrows. The protection
is disjoint to all these paths and it encodes the data to be
protected on the tree structure, shown in this case with dashed
black lines and arrows. Such a structure has two advantages.
First it reduces the complexity of the LP substantially by de-
composing the problem into smaller subproblems without loss
of optimality. Every subproblem inputs only the connections
with a specific destination node. Therefore, connections are
divided into groups based on their destination nodes and each
group is run independently. Second, it eliminates the feedback
links used in the general diversity coding approach. As a
result, the complexity of the LP formulation, the restoration
time, signaling, and synchronization complexity is reduced.
The solution is applicable to any static traffic requirements.

The formulation is provided below. The input parameters

are provided as

e G(V,E) : Network graph,

e N : Enumerated list of all connections,

e a, : Cost associated with link e,

e T : Maximum number of diversity coding trees allowed,
typically one third of the number of connections in each
subproblem,

e I';(v) : The set of incoming links of each node v,

e I',(v) : The set of outgoing links of node v,

e « : A constant employed in the algorithm, chosen very
small,

e [ : A constant employed in the algorithm, chosen very
large.

Next we provide the variables. With one exception, they are
binary and take the value of O or 1.

e x.(¢) : Equals 1 iff the primary path of connection i
passes through link e,

e n(i,t) : Equals 1 iff connection i is protected by the
diversity coding tree ¢,

e cc(t) : Equals 1 iff the diversity coding tree ¢ passes
through link e,
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A typical link in the diversity tree t.

e py(t) : A continuous variable between 0 and 1, resulting
in an MIP formulation. It keeps the “voltage” value of
node v in tree t. It is possible to set this variable as an
integer larger than O but that makes the simulation slower.

The following inequality builds the primary paths of each

connection

-1 ifv=s,,

Z xe(i) — Z z.(i) =< 1 ifv=d, (1)

e€T;(v) e€lo(v) 0  otherwise,

where s; and d; are the source and destination nodes of
connection ¢, respectively. The following inequalities build a
valid diversity coding tree. If the node v is a destination node,
the tree must terminate at the destination node using one of
the incoming links. The outgoing links of the destination node
must be empty of the tree branches. To ensure these properties,
the required inequalities are

N .
. t
O Zf—lﬁ”(”) Ve € B, t, )
eel;(v)
Y c(t)<0 VeeEt. (3)
e€l,(v)

If it is a source node then there must be one outgoing link
that belongs to the diversity coding tree. It is stated by

n(i,t)
> ety > —5

e€l, (v)

Ve € E,t. 4)

At the intermediate nodes, if at least one branch of diversity
coding tree gets into the node then the tree must use on the
outgoing links to travel to the destination (root) node. The
inequalities needed under this rule are

Z ce(t)
e€l;(v)
> elt) = G —

e€l,(v)

Ve € B, t. (5)

In order to prevent getting cyclic (or loop) structures inside
the diversity coding trees, we choose to assign a “voltage”
value to each node in the tree, as in [14]. We would like to
emphasize that this “voltage” value is only used in the sense
of a resemblance to the familiar Kirchoff’s voltage law. It is
an assigned variable to prevent loops, and has nothing to do
with actual voltages. In this formulation, the voltage value at
the head node should be higher than the voltage value at the
tail node of the links which are part of the diversity coding
tree. Fig. 2 shows a typical link in the network. The voltage
value of node v must be higher than the voltage value of node
u. This voltage relationship prevents the cyclic structure to be
a part of the diversity coding trees such as in Fig. 3.

0.1=10.3 0.3

0.1
Contradiction
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Fig. 3. Voltage value contradiction in a loop structure.
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Fig. 4. A diversity coding example with the MIP variables set. The values
n(i,t) =1fori=1,2,3.

The inequality below expresses what is described in the
previous paragraph mathematically.

Po(t)—pu(t) > a-co(t)— (1—co(t)) Ve=u— v,Vt. (6)

In addition, the program has a set of inequalities to satisfy
the link disjointness property between primary paths and the
diversity coding tree that supports them. This is ensured by
the following constraint

xe(i) +ce(t) <2—n(i,t) Ve€ E,i,t. (7)

The primary paths must also be link disjoint with each other
if they are protected via the same tree. This is formulated as

ze(i) +xc(j) <3 —n(i,t) —n(j,t) Vec E,i,jt. (8)

The final constraint ensures that a connection can be pro-
tected by only one diversity coding tree

> on(it)=1 Vi )

i=1

The objective function is

n T
min (Z > acre(i)+ Y ) aece(t)> . (10)

eckE i=1 ecE t=1

The previous example network is shown in Fig. 4. There
is a traffic pattern that the program finds the tree previously



TABLE 1
SC P WITH DIVERSITY CODING TREE

COST 239 Network, 11 nodes, 26 spans
Dest. Node | Total Capacity [Shortest Capacity |SCP
Node 1 1906 1053 81%
Node 2 2170 1241 74%
Node 3 2235 1321 69%
Node 4 2502 1410 77%
Node 5 2026 1153 75%
Node 6 3408 1887 80%
Node 7 1746 892 95%
Node 8 1745 838 108%
Node 9 1246 662 88%
Node 10 2191 1031 125%
Node 11 1501 798 88%
Overall 22676 12286 84%

Fig. 5.

European COST 239 network.

shown so that the values c.(1) = 1 on the edges e of this tree.
The values n(i,t) identify the connections to be protected.
The values p, (1) are set by the recursive expression (6).

A. Pre-Provisioning Results

We have some initial results using this approach. We have
used the pan-European COST239 [15] network depicted at
Fig. 5. We calculated the Spare Capacity Percentage (SCP)
as
Total Capacity — Shortest Working Capacity

SCP =
Shortest Working Capacity

The traffic scenario is taken from [14] and made symmetric
for our simulations. The results are provided in Table I.
Shortest capacity at Table I refers to total capacity when there
is no protection and connections are routed over shortest paths.
Each row of the Table I refers to a different subproblem where
the destination node is fixated from node 1 to node 11 for
each subproblem. The last row is the summation of the results
throughout the whole network. We know from the LP software
that the best results have not been achieved for some nodes due
to computer memory limitations. Therefore, there is still some
space for improvement. Nevertheless, the result for the overall
network in Table I of 84% is 8% better than the result achieved

via the heuristic algorithm given at [3]. For a fair comparison,
common destination diversity coding is also employed in the
heuristic algorithm, which resulted in 92% SCP. We also
note that the nodes at the edges of the network result in
lower SC'P as compared to the nodes inside the network.
This shows that our intuition based on the results of heuristic
algorithm is correct. However, we now have a significantly
better algorithm. In addition, this result was calculated in a
much shorter time. In the diversity coding tree algorithm, the
problem is decomposed into smaller subproblems and each
subproblem can be run in parallel which increases the speed
significantly.

III. DYNAMIC PROVISIONING

In the previous section, we discussed the design of diversity
coding restoration in pre-provisioning of static traffic. In this
problem, the traffic is known a priori. On the other hand,
in a dynamic environment, connections are dynamically set
up under a bandwidth-on-demand paradigm. The dynamic
provisioning of these connections against single link failures
is an important problem. In this section, we will discuss the
design of diversity coding restoration for this problem.

It can be observed that the complexity of the design problem
is substantially simplified if the provisioning of each connec-
tion is carried out one-by-one instead of optimizing the whole
set of connections at once. We realistically assume that due
to preserving the Quality-of-Service (QoS) requirements of
the existing connections, one does not tear down the existing
solution as a new demand arises. The result is a design
algorithm with low complexity. The set of assumptions are
as follows.

1. The existing connections cannot be rearranged due to
QoS requirements.

2. At the beginning, the demand matrix is an empty set.

3. Centralized information about the state of the network
is updated and conveyed to the nodes every time there

is a change.

4. Every node is able to run the algorithm and calculate
the routes.

5. Connections can be set up and terminate after some
duration.

As in the previous section, the structure in this application
is diversity coding with a single destination. In other words,
only the connections with the same destination node are coded
together. This has the advantages of lower complexity, lower
restoration time, lower signaling, and higher coding flexibility.
The fact that all of the decoding operations are carried out at a
single node simplifies the coding-decoding structure. Both the
primary and protection paths are coded together which adds
up to the coding flexibility of diversity coding.

When the algorithm receives a new connection demand, it
detects its destination node. Then it finds the diversity coding
groups which have the same destination node as the new
demand because it will attempt to add the new demand to one
of them. In order to satisfy decodability and save capacity, one
of the paths of the new connection must be link disjoint to the
links used in the coding group whereas the other path must
be combined and coded with one of the paths of the coding



group. As an example, assume that we have an existing coding
structure with four connections. The received matrix is

G11T + a12y + a132 + a14v
212 + a2y + a3z + a24v
a31% + az2y + a3zz + azqv
40T + a42y + a432 + G440
a51% + a52y + as32 + as4v

(1)

where z, y, 2, and v are the coded signals and a;; are the
binary coding parameters. The matrix A = [a;;]5x4 is still
full rank if we delete one of its rows. When a new connection
will be added to the group, one of its paths will be combined
with one of the paths in the coding group. The secondary path
of this connection will be link disjoint with the links in the
coding group. As a result, the received matrix is transformed
to the following format

a1 + a2y + a3z + apv + 0!

a1 + azey + az3z + az4v + 01

a317 + az2y + azzz + azqv + 0!

417 + aq2y + a3z + agqv + 0l

as51T + as2y + as3z + asqv + 1
Oz + 0y + 0z 4+ Ov +1

The link disjoint path of the new connection is represented as
the sixth row of the new matrix, as [ is the signal of the new
connection. The other copy of signal [ is coded with other
signals in the coding group as denoted in the fifth row. For
decodability, the new signal should be coded with at most one
path in the coding group. The proof of decodability of the new
coding structure is straightforward. For the no link failure case,
we can derive z, y, z, and v by solving first four rows and we
can derive [ using the last row. If we delete one of the first
four rows, then the received matrix becomes

0z 4+ 0y + 0z + Ov + 0l
a1 + az2y + a23z + az4v + 0l
a317 + az2y + azzz + azqv + 0!
417 + @42y + a432 + agqv + 01
as1® + as2y + as53z + asqv + 1

O0x + 0y + 0z + Ov + 1

We derive [ from the last row and subtract it from the fifth row.
Then the matrix generated from rows 2 to 5 that multiplies the
vector (z,y, z,v)T has full rank. Therefore, all of z, y, z, and
[ can be extracted. If we delete the fifth row, no extra operation
is required to extract all of the signals. If the last row is deleted
as

12)

13)

a1 + a2y + a3z + apv + 0!

217 + ag2y + a3z + azqv + 01

a317 + azzy + azzz + azqv + 01

asnx + aq2Yy + @43z + G440 + 0l

as1T + as2y + as3z + as4v + l
0z + 0y + 0z + Ov + 0l

; (14)

then, the first four rows can be used to extract signals z, vy,
z, and v. These signals can then be used to find the value of
[ from the fifth row.

There is one critical point in order to satisfy the decodability
of the coding structure. None of the paths in the coding
structure must diverge after any intermediate node. Otherwise,
a new connection can be coded in multiple rows in the received
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Group ILP

Fig. 7. Extra spare capacity is calculated for each coding scenario and the
minimum is chosen.

matrix, impairing the full-rank property under some failure
scenarios.

We have developed an integer linear programming (ILP)
based algorithm to protect new demands for connection in
a network. It is optimal under the assumptions previously
stated. This algorithm attempts to provide protection for the
new demand with the lowest extra spare capacity required.
The important observation to make here is the fact that some
capacity can be saved by adding the new connection to one
of the existing coding groups with the same destination node.
The algorithm investigates each coding group and finds out
how much extra spare capacity is required after adding the
new connection in each coding group. Since this extra capacity
changes with respect to each coding group, the total capacity to
route and protect the new connection is calculated after every
addition. The algorithm then chooses the coding group which
incurs the lowest extra spare capacity to route and protect
the new connection. This operation is depicted in Fig. 7.
In this figure, ESC means extra spare capacity required to
add the new connection to each coding group. As will be
described in detail in the sequel, we use an ILP algorithm to
find link disjoint primary and protection paths for every coding
scenario. The cost vector of the links is adjusted for every
coding scenario, depending on the topology of the coding
group. The coding group which requires the least extra spare
capacity is chosen to add the new connection. One of the
coding groups in Fig. 7 is an empty group which lets the new
connection demand to start a new coding group if that solution
requires the lowest ESC. The coding group is updated with
the new connection and the algorithm is ready to incorporate
a new connection demand.

The parameters of the ILP formulation to find a pair of link
disjoint primary and secondary paths are as follows.

o G(V,E) : Network graph,

N : Enumerated list of all connections,

a. : Cost associated with link e,

I';(v) : The set of incoming links of each node v,
I',(v) : The set of outgoing links of node v.

The binary ILP variables which take the value of 0 or 1 are

e z. :Equals 1 iff the primary path of the connection passes
through link e,

e Y. : Equals 1 iff the secondary path of the connection
passes through link e.
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(a) The topology of the network associated with the regular link costs, (b) An existing coding group, (c) The link costs as the primary path of a new

connection is routed, (d) The link costs as the secondary path of a new connection is routed.

The objective function is

min Z(xe + Ye) - Qe

ecE

5)

The origination, flow, and termination of the primary path
(z.) and the secondary path (y.) are determined by

-1 ifv=s,

dowe— Y me=q 1 ifv=d, Yo. (16)
e€T;(v) e€T,(v) 0 otherwise.
-1 ifv=s,
S o= Y we={ 1 ifv=d Vo A7)
0 otherwise.

e€l; (v) e€l,(v)

The link disjointness between the primary and secondary
paths is satisfied by

Tetye <1 Ve (18)

The adjusted coding vector is not only useful in calculating
the extra spare capacity required but also it also helps to route
the primary and secondary paths of the new connection. Each
connection has two paths, one of them is supposed to be coded
with the established coding group and the other must be link-
disjoint to the coding group. Coding a new flow with one of
the links at the coding group incurs zero cost, which means
the cost of that link is set to zero for that path. On the other
hand, that specific link has infinite cost for the other path
which is designed to be link-disjoint to the coding group. For
decodability purposes, once the primary path is coded with one
of the paths in the coding group, it will stay on that path till

the destination node is reached. Otherwise, the primary path
may span multiple paths in the same coding group ,which can
impair the full rank property under some failure scenarios. It
has no effect on the total cost since every link in coding group
has zero cost for the primary path.

A. Cost Adjustment Example

In Fig. 6(a), there are two unidirectional links between each
node and the numbers next to them are their costs. As an
example, we have a coding group that is shown in Fig. 6(b).
There are two source nodes S1 and S2 and one destination
node D. The signals transmitted from S1 and S2 are a and
b respectively. The third path also carries the coded version
of these signals to the destination node. The dashed lines
show links that are incorporated in the coding group. Assume
that we have a new connection request from any arbitrary
node (except node 3) to node 3. We want to calculate the
required spare capacity to add this connection to the coding
group. When we run the ILP formulation, there will be two
different topologies in terms of the costs of the links. The
topology for the primary path differs from the topology for
the secondary path depending on the existing coding group.
This fact is visualized in Fig. 6(c) and Fig. 6(d) for the primary
and secondary paths, respectively. In Fig. 6(c), the cost of links
shown by dashed lines have zero cost for the primary path. On
the other hand, the cost of the solid black lines is infinite for
the same path. In Fig. 6(d), the solid black lines have infinite
cost when the secondary path is routed. The links which are
not associated with the coding group have the same regular
cost for both of the paths as shown in Fig. 6(c) and 6(d).



B. Limited Capacity Case

All of the discussion about the dynamic provisioning algo-
rithm so far was based on the assumption that there is enough
capacity on each link to place the primary and secondary
paths. Otherwise, some of the new connection demands may
be blocked due to insufficient capacity over the trail of the
candidate paths. When the link capacities are limited, the cost
vector of the links is adjusted within the consideration of both
free capacity of each link and the topologies of the suitable
coding groups. In addition to the adjustments of the example
at Section III-A, the cost of a link is set to infinite for both of
the paths if there is no available capacity on it. At the end, a
new demand is blocked if it can not be routed and protected
with a finite cost.

C. Connection Teardown

We need to update the algorithm when a connection leaves
the demand matrix after a duration. The teardown operation
consists of three steps.

« First, the connection is dropped from its coding group and
the topology of that coding group is updated. It is done
by subtracting the links which purely carry the signal
of interest from that coding group topology. The links
that carry the coded version of this signal are kept in
the coding group topology. Referring to the example at
Fig. 6(b), if the connection S2 — D leaves the network
then the links 4-5 and 5-3 are subtracted from the coding
group topology. However, the link 4-3 stays in the coding
group since it continues to carry the signal a.

o In the second step, the received matrix of the coding
group is updated by excluding the signal associated with
the leaving connection.

o In the last step, the capacity of the links that are sub-
tracted from the respective coding group are increased
by 1. It should be noted that the last step is required only
if the capacity of the links are limited.

IV. CONCLUSION

In this paper, we introduced two algorithms that offer near-
hitless recovery against link failures for static and dynamic
traffic. In both cases, we used the basic technique of diversity
coding. However, unlike the original work introducing this
technique, we used diversity coding in networks with arbitrary
topology.

The first algorithm is an optimal MIP formulation to protect
a given set of connections by jointly optimizing the primary
paths and the coded restoration paths. We call the graph that
defines the optimum protection path the diversity coding tree.
This tree is used to protect primary paths whose destination
is the same node. This choice is made so as to minimize
the restoration time. In addition to the restoration time, the
choice of a common destination significantly decreases the
number of variables and inequalities in the MIP formulation.
As a result, this formulation runs faster, and results in better
restoration times, than our previous formulation based on a
heuristic algorithm.

The second algorithm is for traffic demand that arrives dy-
namically. This algorithm employs an ILP-based formulation
for diversity coding for dynamic connections in a dynamic

fashion. It identifies a number of “coding groups” which have a
common destination node, and picks the one with the smallest
cost, or lowest spare capacity. If no coding group is available,
then the connection initiates a new group by itself.
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