Lecture 11: Overview

- Embedded System Design Flow
 - Top-down design methodology
 - Refinement-based design flow
 - Specify
 - Explore
 - Refine

- System-on-Chip Environment (SCE)
 - Application example: GSM Vocoder
 - Interactive demonstration (part 1)
Top-Down Design Methodology

- **Requirements**: Capture
 - Pure functional
 - Transaction level
 - Bus functional
 - RTL / IS

- **Product Specification**
 - Specification model
 - Architecture refinement
 - Communication refinement
 - Implementation model

- **Constraints**
 - Untimed
 - Estimated timing
 - Timing accurate
 - Cycle accurate

Specify, Explore, Refine - Methodology

- **System Design**
 - Capture
 - Specification model
 - Architecture refinement
 - Communication refinement
 - Implementation model
 - Hardware synthesis
 - Interface synthesis

- **Validation Flow**
 - Compilation
 - Simulation model
 - Validation analysis estimation
Specify, Explore, Refine - Design Flow

- **Refinement steps**
 - Architecture refinement (Specification -> Architecture)
 - Communication refinement (Architecture -> Communication)
 - Cycle-accurate refinement (Communication -> RTL/IS)
 - HW / SW / interface synthesis

- **Levels of abstraction**
 - Specification model: untimed, functional
 - Architecture model: estimated, structural
 - Communication model: timed, bus-functional
 - Implementation model: cycle-accurate, RTL/IS

- **Component data bases**
 - Algorithms for specification
 - Components for architecture
 - Busses for communication
 - RTOS for SW
 - RTL components for HW

 Specify, Explore, Refine - Design Flow

- **Refinement Step 1: System Architecture**
 - Allocation of Processing Elements (PE)
 - Type and number of processors
 - Type and number of custom hardware blocks
 - Type and number of system memories
 - Mapping to PEs
 - Map each behavior to a PE
 - Map each channel to a PE
 - Map each variable to a PE

 ➢ **Result**
 - System architecture of concurrent PEs
 - with abstract communication via channels
Specify, Explore, Refine - Design Flow

- Refinement Step 2: PE Scheduling
 - For each PE, serialize the execution of behaviors to a single thread of control
 - Option (a): Static scheduling
 - For each set of concurrent behaviors, determine fixed order of execution
 - Option (b): Dynamic RTOS scheduling
 - Choose scheduling policy, e.g. round-robin or priority-based
 - For each set of concurrent behaviors, determine scheduling priority
 - Result
 - System model with abstract scheduler inserted in each PE

System-on-Chip Environment (SCE)

- Integrated Development Environment (IDE) with support of:
 - Graphical frontend (sce, scchart)
 - SLDL-aware editor (sced)
 - Compiler and simulator (scc)
 - Profiling and analysis (scprof)
 - Architecture refinement (scar)
 - RTOS refinement (scos)
 - Communication refinement (sccr)
 - RTL refinement (scrtl)
 - Software refinement (sc2c)
 - Scripting interface (scsh)
 - Tools and utilities (sir_list, sir_tree, ...)

(c) 2019 R. Doemer
SCE Main Window

SCE Source Editor
SCE Hierarchy Displays

SCE Compiler and Simulator
SCE Profiling and Analysis

SCE Demonstration

- Application Example: GSM Vocoder
 - Enhanced full-rate voice codec
 - GSM standard for mobile telephony (GSM 06.10)
 - Lossy voice encoding/decoding
 - Incoming speech samples @ 104 kbit/s
 - Encoded bit stream @ 12.2 kbit/s
 - Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
 - Real-time constraint:
 - max. 20ms per speech frame
 (max. total of 3.26s for sample speech file)
 - SpecC specification model
 - 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
 - 73 leaf behaviors
 - 9139 formatted lines of SpecC code
 (~13000 lines of original C code, including comments)