
CADENCE CONFIDENTIAL

An Introduction to System Design with SystemC

November 2002
Stuart Swan, stuart@cadence.com

2

Why do we need a new design language?!
• Verilog and VHDL work very well for HW implementation flows,

but…

• Systems are becoming more complex, pushing us to design and
verify at higher levels of abstraction

Enables early exploration of system level design tradeoffs

Enables early verification of the entire system, reducing risk

Enables much higher speed verification

• Software is playing an increasing role in system design
Essential that new design flows support early software
development, integration with existing C/C++ code, and HW/SW co-
design

• New system level flows require a design language that supports
system level IP delivery and integration

3

What are the requirements for the new language?
• Don’t invent a new language! Build on C/C++ so that:

– Extensive C/C++ infrastructure (compilers, debuggers, language
standards, books, etc.) can be re-used.

– Users’ existing knowledge of C/C++ can be leveraged

– Integration with existing C/C++ code is easy

• The language must have best-in-class performance.

• It must provide a very general set of modeling constructs to
cleanly support the wide range of abstraction levels and models
of computation used in system design.

• It must support specification and refinement to detailed
implementation of both software and hardware.

• It must support verification through all stages of the design
process

4

So what is SystemC?
• The “de facto” industry standard language (implemented as a C++

class library) providing both system level and HDL modeling
capabilities.

• SystemC is controlled by a board & steering group that includes 10
companies: ARM, Cadence, CoWare, Fujitsu, Mentor, Motorola, NEC,
Sony, ST, Synopsys,...

• The SystemC reference simulator can be downloaded free from
www.systemc.org.

• Many EDA companies are starting to offer tools and libraries that
support the SystemC standard.

• Major electronics companies are using SystemC now and are also
planning to extend their use.

5

SystemC History & Organization
• SystemC History

– Early development done at Synopsys, CoWare/IMEC, UC Irvine
– Open SystemC Initiative (OSCI) formed in 2000, many new members

joined.
– OSCI LWG developed SystemC 2.0 specification and implementation in

2000-2001, greatly extending the language capabilities
• SystemC Organization Today

– Open SystemC Initiative (OSCI) is incorporated as a California non-profit
organization with formal bylaws, a significant budget, etc.

– Licensing model is Open Community Licensing. (Unlike GNU, it is OK to
build proprietary products from SystemC code.)

– Well-organized public relations efforts for SystemC are on-going (e.g.
SystemC Tech Forum at DAC 2002).

– Website and source code maintenance for reference implementations are
located on SourceForge, and key developers from different companies
can access/modify code.

6

Alternative Languages to SystemC
• Raw C/C++

– In wide use, but it’s very difficult to build everything yourself.
– IP exchange is difficult.

• SpecC
– Not much activity apparent in organization. No RTL modeling. Is neither C

nor C++.
• Superlog, SystemVerilog

– A wide range of extensions to Verilog; many focused on improving RTL
designer productivity, some focused on system design & verification. A
large amount of work remains for language definition & standardization.
For SW design and verification, it is becoming more like C/C++, but it is
still not C/C++.

• Accelera System Level Languages Group
– Not much apparent progress.

• Possibly others: UML, SDL, Vera, Verisity’s ‘e’, etc.

7

What does SystemC actually provide?
• SystemC 1.0 provided RTL and behavioral HDL modeling

capabilities. HW is modeled using zero-delay semantics for
combinational logic. Signals are modeled using 01XZ, “C” data
types and complex data types can also be used within signals.

• SystemC 1.0 includes good support for fixed point modeling.

• SystemC 1.1 beta and 1.2 beta provided some limited
communication refinement capabilities.

• SystemC 2.0 has more general system level modeling
capabilities with channels, interfaces, and events.

• SystemC 3.0 will focus on software and scheduler modeling
(more later).

8

C/C++ Isn't a Magic Bullet for HW Design
• Switching to C/C++ does not necessarily change design flows.

Changing the design language does not by itself mean that designers
can change the required modeling levels.

• Finding a good hardware or system architecture is just as difficult in
C++ as in other languages.

• Behavioral synthesis tools have not eliminated the need for engineers
to carefully design hardware architectures.

• At best, simulation performance in C/C++ will be on par with HDL at
equivalent levels of abstraction

• For HW RTL design, HDLs are easier to use, more stable, faster,
have more mature tools and libraries, better debuggers, etc.

9

System Level Modeling in SystemC 2.0
• Real potential for SystemC is to be the industry standard language for

system level design, verification and IP delivery for both HW and SW.

• Towards this goal, SystemC 2.0 supports generalized modeling for
communication and synchronization with channels, interfaces, and
events. Hardware signals are now modeled as a specialization of
channels.

• System level extensions in SystemC 2.0 support transaction-level
modeling, communication refinement, executable specification modeling,
HW/SW co-design.

• Ability to refine HW portions of design to RTL level within a single
language is a unique strength of SystemC, as is the fixed point modeling
capability, and easy integration of existing C/C++ models.

10

SystemC 2.0 Language Architecture

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Data Types
Logic Type (01XZ)
Logic Vectors
Bits and Bit Vectors
Arbitrary Precision Integers
Fixed Point Numbers
C++ Built-In Types (int, char, double, etc.)
C++ User-Defined Types

Elementary Channels
Signal, Clock, Mutex, Semaphore, Fifo, etc.

Standard Channels for
Various MOCs

Kahn Process Networks
Static Dataflow, etc.

Add-On Libraries
Verification Standard Library

Master/Slave Library
etc.

C++ Language Standard

Upper layers
are built cleanly
on lower layers.

Lower layers
can be used
without upper
layers.

11

Models of Computation in SystemC 2.0
• A model of computation is broadly defined by:

– Model of time (real, integer, untimed) and event ordering constraints
(globally ordered, partially ordered, etc.)

– Methods of communication between processes

– Rules for process activation

• Flexible communication and synchronization capabilities in
SystemC 2.0 enable a wide range of MOCs to be naturally
modeled.

– Examples: RTL, Process Networks, Static Dataflow, Transaction Level
Models, Discrete Event

12

RTL Model of Computation in SystemC
• Models combinational logic and sequential logic triggered by

clocks.

• Very similar to RTL modeling in Verilog & VHDL.

• Signals modeled using sc_signal<>, sc_signal_rv<>

• Ports modeled using sc_in<>, sc_out<>, sc_inout<>
D Q

CLK

D Q

CLKD Q

CLK

A

OUT

B

SEL

13

Kahn Process Network MOC in SystemC
• Very useful for high level system modeling

• Modules communicate via FIFOs (sc_fifo<T>) that suspend
readers and writers as needed to reliably deliver data items.

• Easy to use and guaranteed to be deterministic

• Pure KPN has no concept of time

• With annotated time delays, becomes timed functional model or
performance model.

14

Static Dataflow MOC in SystemC
• A proper subset of the KPN MOC

• Each module reads and writes a fixed number of data items each time it is
activated. Sample delays modeled by writing data items into FIFOs before
simulation starts.

• Simulators and implementation tools can determine static schedule for system
at compile-time, enabling high performance simulation and implementation.

• Commonly used in DSP systems, especially along with SystemC’s fixed point
types (sc_fixed<>, sc_fix).

1 1

1

2
1 1

1

1 10

10

Z(-1)

15

Transaction-Level MOC in SystemC
• Communication & synchronization between modules modeled

using function calls (rather than signals)

• Transactions have a start time, end time, and set of data
attributes (e.g. burst_read(uint addr, char* data, uint n))

• Two-phase synchronization scheme typically used for overall
system synchronization

• Much faster than RTL models (more later…)

CPU / Bus Master DSP / Bus Master Monitor

Bus Arbiter

FastMem / Slave SlowMem / Slave HW Accel / Slave

Communication between modules
is modeled using function calls that
represent transactions. No signals
are used.

Read: Addr: 0xFF12
Data: 0x0123

Read: Addr: 0xFF14
Data: 0xBEEF

16

Modeling Example - Interfaces

class write_if : public sc_interface
{
public:
virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if : public sc_interface
{
public:
virtual void read(char &) = 0;
virtual int num_available() = 0;

};

17

Modeling Example - Channel

class fifo : public sc_channel, public write_if, public read_if
{
public:
fifo() : num_elements(0), first(0) {}

void write(char c) {
if (num_elements == max_elements)

wait(read_event);

data[(first + num_elements) % max_elements] = c;
++ num_elements;
write_event.notify();

}

void read(char& c) {
if (num_elements == 0)

wait(write_event);

c = data[first];
-- num_elements;
first = (first + 1) % max_elements;
read_event.notify();

}

void reset() { num_elements = first = 0; }

int num_available() { return num_elements; }

private:
enum e { max_elements = 10 }; // just a constant
char data[max_elements];
int num_elements, first;
sc_event write_event, read_event;

};

18

Modeling Example - Producer / Consumer

class producer : public sc_module
{
public:
sc_port<write_if> out; // the producer's output port

SC_CTOR(producer) // the module constructor
{
SC_THREAD(main); // start the producer process

}

void main() // the producer process
{

char c;
while (true) {

...
out->write(c); // write c into the fifo
if (...)

out->reset(); // reset the fifo
}

}
};

class consumer : public sc_module
{
public:
sc_port<read_if> in; // the consumer's input port

SC_CTOR(consumer) // the module constructor
{
SC_THREAD(main); // start the consumer process

}

void main() // the consumer process
{

char c;
while (true) {
in->read(c); // read c from the fifo
if (in->num_available() > 5)

...; // perhaps speed up processing
}

}
};

19

Modeling Example - Top

class top : sc_module
{

public:
fifo fifo_inst; // a fifo instance
producer *producer_inst; // a producer instance
consumer *consumer_inst; // a consumer instance

SC_CTOR(top) // the module constructor
{

producer_inst = new producer("Producer1");
// bind the fifo to the producer's output port
producer_inst->out(fifo_inst);

consumer_inst = new consumer("Consumer1");
// bind the fifo to the consumer's input port
consumer_inst->in(fifo_inst);

}
};

20

Communication Refinement in SystemC
• Channels may have multiple separate interfaces.

• Ports are bound to a particular interface, not to a channel

• Interfaces can be reused with different channels

• Communication can be refined via channel substitution

• Examples of communication refinement

– Exploration during functional specification

– Retargeting abstract communication and synchronization to RTOS API

– Refining communication to a hardware implementation using adapters
and hierarchical channels, perhaps followed by “protocol inlining”.

21

Transaction-Level Modeling in SystemC

• Why do transaction-level modeling in SystemC?
– Models are relatively easy to develop and use
– HW and SW components of a system can be accurately modeled. Typically bus

is cycle-accurate, and bus masters / slaves may or may not be cycle-accurate.
– Extensive system design exploration and verification can be done early in the

design process, before it’s too late to make changes
– Models are fast – typically about 100K clock cycles per second, making it

possible to execute significant amounts of the system’s software very early in the
design process

• Transaction-level modeling is extensively covered in the System Design
with SystemC book and the code for the simple_bus design is provided

CPU / Bus Master DSP / Bus Master Monitor

Bus Arbiter

FastMem / Slave SlowMem / Slave HW Accel / Slave

Communication between modules
is modeled using function calls that
represent transactions. No signals
are used.

Read: Addr: 0xFF12
Data: 0x0123

Read: Addr: 0xFF14
Data: 0xBEEF

22

Transaction-Based Verification in SystemC

• Why do transaction-based verification in SystemC?
– Ability to have everything (except perhaps RTL HDL) in SystemC/C++ provides

great benefits: easier to learn and understand, easier to debug, higher
performance, easy to integrate C/C++ code & models, open source
implementation, completely based on industry standards

– Allows you to develop smart testbenches early in the design process (before
developing detailed RTL) to find bugs and issues earlier. Enables testbench
reuse throughout the design process.

– Much more efficient use of verification development effort and verification
compute resources

• Transaction-Based Verification in SystemC is described in the SystemC
Verification Standard Specification, and in the documentation and
examples included with the OSCI SCV reference implementation kit.

Constrained
Random

Generation of
Transactions

Golden Model of
Design

(abstract or TLM)

High->Low
Transactor

Design:
SysC TLM

or RTL HDL

Low->High
Transactor

Response
Checker

Black = SystemC

Red = SysC or HDL= Transaction
monitoring /
recording

23

What are Companies Doing Today with SystemC?
• Some companies are using SystemC for RTL modeling, but this is

not where the main interest is.

• Many companies are in the process of replacing in-house C/C++
system level modeling environments with SystemC.

• Many companies view SystemC as both a modeling language and
a modeling “backplane” (e.g. for ISS integration).

• A number of companies have completed TLM & TBV modeling
efforts using SystemC 2.0 and are very enthusiastic. Some of the
results are starting to be made publicly available. Some companies
are about to announce that they will provide system-level IP using
SystemC.

– For example, see on-line ARM presentation with audio:
– www.systemc.org/projects/sitedocs/document/ARM1/

24

What’s Happening in the SystemC Committees?
• Language Working Group

– Working on SystemC 3.0 extensions for software modeling support (e.g.,
modeling schedulers, abstract RTOS, complex hierarchical FSMs). Code
release target Q2/Q3 2003.

• Verification WG
– Version 1.0 of Verification Standard awaiting final OSCI approval. Open

source code should be on OSCI website Nov. or Dec. 2002.
• Mixed Signal WG

– Considering mixed signal integration
• Synthesis WG

– Standardize RTL and behavioral “synthesizable subsets” for SystemC
• Probable Future Efforts:

– IP Integration WG: Develop TLM standards for bus models, various
standards for IP packaging and reuse

25

Learning more about SystemC
• Our new book is available at:

– www.systemc.org
Products & Solutions

Books

System Design with SystemC

• Provides an in-depth discussion
of new SystemC features and
using SystemC for TLM

