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Abstract— Reducing the number of users serviced by congested
cellular towers given an offered load and a minimum level of
acceptable user quality is a major challenge in the operation
of LTE networks. In this paper, we utilize a supervised Deep
Learning (DL) technique to predict the LTE and LTE-A loading
of connected users and then dynamically predict the congestion
threshold of each cellular tower under offered load. We then
use the predicted congestion thresholds together with quality
constraints to fine-tune cellular network operating parameters
leading to minimizing overall network congestion. We propose
two sets of optimization algorithms to solve our formulated
congestion optimization problem. Those are, namely, a variant
of Simulated Annealing (SA) algorithm to which we refer as
Block Coordinated Descent Simulated Annealing (BCDSA) and
Genetic Algorithm (GA). We first compare the performance of
integrated DL-BCDSA and DL-GA algorithms and then show
that our integrated DL-BCDSA can outperform existing state-
of-the-art commercial self organizing tool already deployed in
actual cellular networks.

Index Terms— LTE network congestion, LTE-A network con-
gestion, deep learning, block coordinated descent, simulated
annealing, genetic algorithm.

I. INTRODUCTION

DUE to exponential growth of LTE and LTE-A traffic,
mobile operators are spending a significant percentage of

their operating budget on augmenting their cellular infrastruc-
ture. Different approaches include spending major capital
to acquire new spectrum, building new macro sites to add
bandwidth, and building small cells as well as in-building
solutions. These approaches have proven effective in certain
cases but are expensive and not always practical when facing
challenges associated with dynamic mitigation of congestion.
In the context of 3GPP standards including Release 9 [1],
joint implementation of Mobility Load Balancing (MLB) and
Mobility Robustness Optimization (MRO) have been pro-
posed. MLB is defined as a function in which congested
cells can offload their excess users to other cells with spare
resources. MLB includes load reporting between eNodeBs to
exchange information about load level and available capacity.
MRO is a solution for automatic detection and correction of
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errors in mobility configuration. In Release 9, the focus is on
errors causing Radio Link Failures (RLFs) due to late or early
handover, or handover to an incorrect cell.

This paper focuses on systematic minimization of the con-
gestion of LTE and LTE-A networks. The subject material of
this paper is considered to be a more powerful alternative to
MLB in which a dataset associated with multiple eNodeBs
within a cluster of interest, as opposed to limited neighboring
eNodeB sets, are processed together in order to offer load
balancing results that are optimized for the overall cluster
of interest. Just like standard MLB, the use of MRO is
complimentary to the proposed scheme of this paper.

The challenge associated with congestion minimization in
LTE/LTE-A networks is better understood by explaining how
resources are allocated to users. Under LTE standard and
LTE-A extensions, each cellular tower has a fixed number
of Physical Resource Blocks (PRBs) defined in time and
frequency. When a user requests a certain type of service
or Enhanced Radio Access Bearer (ERAB), the LTE sched-
uler at a cell-site will allocate a certain number of PRBs
depending on the request. The throughput associated with each
PRB mainly depends on the maximum allowable modulation
order ranging from QPSK to 16QAM, 64QAM, and up to
256QAM. The maximum allowable modulation order depends
on a number of factors related to channel conditions and
correlation experienced by a given user for that PRB. Among
such factors, Signal to Interference and Noise Ratio (SINR),
the number of multiplexing channels also known as rank,
and transmission mode can be mentioned. In one operating
scenario, a user requesting video streaming while experienc-
ing excellent channel conditions will be able to use high
modulation schemes such as 64QAM per each PRB assigned
and will hence require a small number of PRBs to satisfy
its requested ERAB. In another operating scenario, another
user experiencing sub-par channel conditions will only be able
to utilize QPSK modulation scheme hence requiring a larger
number of PRBs in order to satisfy a similar video streaming
quality [2]. Noting that SINR versus CQI mapping depends on
modem manufacturer and transmission modes [3]–[5], Table I
shows the specifications of the indices of LTE/LTE-A Channel
Quality Indicator (CQI).

Although Multi Input Multi Output (MIMO) and Inter-Cell
Interference Coordination (ICIC) techniques such as [2] are
utilized to mitigate sub-par RF conditions, cell breathing
techniques such as [6], [7] are used to alleviate cell loads,
and load balancing techniques [8], [9] are utilized to balance
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TABLE I

SPECIFICATIONS OF LTE/LTE-A CHANNEL QUALITY
INDICATOR (CQI) INDICES [3]–[5]

cell loads, the physical limitation on the number of available
PRBs still presents a challenge that has to be addressed in
heavily loaded scenarios of operations. Depending on the
bandwidth of an LTE channel, each cell offers a fixed number
of PRBs. For example, a 5MHz and a 10MHz LTE channel
offer no more than 25 and 50 PRBs per slot. When the
demand for PRBs is higher than what a cell can offer, adverse
impacts on User Equipment (UEs) connected to the cell may
be imposed. The impacts range from degrading the speed
of existing connections, denying incoming handover requests,
or even dropping calls. Since LTE systems only support hard
handovers in which a UE is only connected to only one cell
tower at a time, a UE remains connected to its original cellular
tower if denied a handover request. As such, it can experience
severe quality degradation and eventually a call drop [2]. In
order to mitigate the issue, most mobile operators attempt at
keeping per cell PRB utilization under a congestion threshold
set to 80% industry wide. Cells exceeding their congestion
threshold usually trigger augmentation mechanisms such as
carrier additions or bandwidth expansions.

In an effort to keep that limit, it is critical to manage traffic
amongst various cells where traffic from highly loaded cells
is offloaded to lightly loaded cells serving the same area. This
traffic offload can be achieved in several manners, i.e., by
changing the footprint of cells, shifting cell boundaries, and
changing tilts as well as azimuths of cells. However, imple-
menting physical changes is time consuming and more suited
for static or slowly changing environments as opposed to fast
changing dynamic environments. Alternatively, we propose
changing the power of a cell i referred to as ℘i and handover
margin of a cell i referred to as �i in order to control its serving
area and redistribute traffic as needed. We note that these
parameters can be changed dynamically in the field in response
to shifts in traffic distributions thereby offloading traffic from
congested cells to neighboring cells without congesting the
neighboring cells and without degrading the quality of the
shifted UEs below a threshold of acceptance.

This paper focuses on systematically finding optimal power
and handover settings of a cluster of LTE cell towers min-

imizing overall cluster congestion in the presence of user
quality constraints. First, we propose a deep learning scheme
that identifies the breakpoint of each cell associated with the
average number of connected users at which PRB utilization
will reach a congestion threshold of 80%. Next, we formulate
an optimization problem aiming at minimizing the congestion
of a cluster of cell towers using per cell power and handover
parameters as decision variables. We solve the problem using
two optimization techniques, namely, BCDSA and GA.

The main contributions of this paper are four fold. First,
we introduce a deep learning system and identify the right
network counters as inputs to the system allowing to accu-
rately predict the congestion thresholds of individual LTE
cellular towers. Next, we formulate and efficiently solve an
optimization problem aiming at minimizing the congestion of
a cluster of cells subject to UE quality constraints. Third, we
compare the results of our proposed BCDSA and GA solutions
in order to evaluate performance, utility, runtime, and success
rate of each technique. Finally, we show how the use of our
integrated DL-BCDSA approach can outperform a state-of-
the-art commercial Self Organizing Network (SON) tool [10]
in an actual cellular network.

Table II provides a listing of notations used in this paper.
The rest of the paper is organized as follows. In Section II,

we introduce our learning approach to predict congestion
threshold of LTE cellular towers. In Section III, we describe
the formulation of our optimization problem aiming at traffic
offloading of congested cells along with the solution to the
problem using both BCDSA and GA algorithms. Experimental
results are reported in Section IV. Finally, Section V contains
the conclusion of our work.

II. LEARNING-BASED BREAKPOINT MODELING

In this section, we present our approach to learning the
congestion threshold of each LTE cell i in a cluster of cellular
towers as a function of the average number of user connected
to that cell. Fig. 1 shows sample drawings of actual LTE PRB
utilization as a function of average connected users collected
from a major mobile operator data at a snapshot of time in
downtown Los Angeles. Inspecting the graphs, it is evident
how each cell/sector has its own PRB utilization characteristics
under different loading levels of average connected users.
For example, it is observed that Sector 3 reaches the 80%
congestion threshold of PRB utilization at a much higher
number of average connected users around 150 users, while
Sector 4 reaches the same threshold at around 74 users.
Therefore, we can claim that Sector 3 is able to carry a larger
number of users than Sector 4 before it becomes congested.
The question we are trying to answer next is how to predict
the value of Λi representing the average number of connected
UEs corresponding with the PRB utilization of 80%, for each
cell i based on its unique characteristics.

A. Deep Learning

We use a multi-layer perceptron DL approach [11], [12]
with supervised learning [13], [14] to accurately predict the
congestion threshold of individual LTE cells in a cluster of
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TABLE II

THE TABLE OF NOTATIONS

Fig. 1. Actual sample drawings of LTE PRB utilization as a function of
average connected UEs at a snapshot of time.

cell towers. That is to identifying the value of Λi for each cell
i, i.e., the average number of connected UEs crossing the PRB
congestion threshold of 80%.

Fig. 2. Multi layer perceptron deep learning structure used for learning
congestion thresholds of individual LTE cellular towers.

The fixed, fully connected, feedforward perceptron learning
structure utilized for the task of LTE congestion thresh-
old modeling in our study consists of an input layer with
26 processing elements to accept 26 LTE input counters. We
explain the choices of input counters in the next subsection.
In order to strike a balance between accuracy and complexity,
we experiment with two to four hidden layers each layer
containing ten to twenty processing elements. The structure
has an output layer with one processing element predicting
the value of Λi for cell i. Fig. 2 illustrates the multi-layer
perceptron DL structure.

In each iteration of learning, we propagate all counters
associated with a sample input in the forward direction from
the input through hidden layers to generate an output. The
output value is compared to the measured output from the
counters and an output error is calculated. The output error
is then propagated in the reverse direction to the input layer
in order to adjust weighting functions between every pair of
processing elements in adjacent layers. The process is repeated
until reaching an acceptable threshold of output error. For
evaluating the error, we use Root Mean Square Error (RMSE)
calculated between the measured PRB utilization from the
collected counters and predicted by multi-layer perceptron DL.

With regards to the choice of learning, we tried a num-
ber of algorithms as discussed in [15] namely, a) GDM,
a gradient descent with momentum back-propagation, b)
GDX, a gradient descent with momentum and adaptive
learning rate backpropagation, c) Broyden-Fletcher-Goldfarb-
Shanno (BFGS) quasi-Newton backpropagation [12], [16],
and d) Levenberg-Marquardt (LM) [17] algorithm. Similar
to quasi-Newton methods, the LM algorithm was designed
to approach second-order training speed without having to
compute the Hessian matrix. Having explored the results of
various back propagation techniques, we make use of LM back
propagation learning scheme producing the best results.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. An illustration of minimum RMSE of DL prediction as a function
of number of layers and perceptrons.

We note that the accuracy of learning is traded against
complexity and runtime. It depends, among other factors,
on the complexity of perceptron structure, training, verifica-
tion, and testing algorithms. We use a mix of 70% training,
15% verification, and 15% independent testing. Fig. 3 provides
illustrations of RMSE variations as a function of the number
of processing elements and layers. We utilize 20 multi-layer
perceptron DL runs in each configuration to get average,
maximum, and minimum RMSE for that configuration. Gen-
erally speaking, we note that the minimum and average RMSE
decrease for higher number of layers and processing elements.

Additionally, the runtime of each experiment is a function
of the number of layers and perceptrons. While most con-
figurations run in the order of few hundred seconds in our
experiments, those with more than three hidden layers and
more than thirty perceptrons could very well take more than
a thousand seconds using our computing platform consisting
of a Virtual Machine to which an i7 processor with 2 Cores,
4 Threads, 8GB of RAM, and 256GB of SSD were allocated.

Fig. 4 reports measurements of average runtimes as a
function of the number of layers and perceptrons. Looking
at addressing the trade off between runtime and RMSE,
we choose to use a DL structure containing two hidden layers
with twenty perceptrons per hidden layer offering an average
RMSE of approximately 0.34% and an average runtime of
about 352 seconds to complete 10 runs. The latter ensures
finding a good solution with a low value of RMSE.

B. Input Counters to Learning

One of the critical factors in generating accurately predicted
results is the choice of input parameters, i.e., LTE counters.
We explore the impact on modeling from a group of available
LTE counters. The goal is to utilize inputs that are most closely
related to PRB utilization of cells.

In order to identify the best input counters, we conducted
experiments in multiple phases with various counters and
KPIs from the real network of a major US carrier collected
in 15 minute intervals over one week. In the first phase,
we used average active UEs, average connected UEs, and peak
connected UEs of a single cell to predict PRB utilization of

Fig. 4. Measurements of average runtime as a function of number of layers
and perceptrons.

TABLE III

QCI AND RELATED SERVICES

that cell subsequently introducing an RMSE of 34%. Next,
we used data collected from all cells to predict PRB utilization
of the collection of cells. In subsequent phases, we added call
attempts, average and peak number of ERABs, total Voice
over LTE (VoLTE), traffic measures of VoLTE in Erlangs and
data volume in Megabytes, QCI as presented in Table III
[18], modulation type, average cell throughput, peak cell
throughput, average UE throughput, and average cell spectral
efficiency. Conducting learning with the collection of KPIs
above, resulted in reducing the RMSE to less than 0.5%.

III. CONGESTION MINIMIZATION

In the previous section, we predicted the congestion thresh-
old Λi representing 80% PRB utilization for each cell i within
a cluster of cell towers. In this section, we utilize those
predicted congestion thresholds in the formulation of an opti-
mization problem aiming to minimize the overall congestion
of a cluster of cellular towers by means of shifting traffic from
congested cells to their non-congested neighboring cells.
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We note that shifting LTE traffic can be done in two
ways. First, reducing LTE cell power ℘i of a cell i results
in shrinking the footprint of the cell hence shifting UEs
on its border to the neighboring cells. Second, artificially
increasing the handover margin �j of a neighboring LTE cell j
results in making it look stronger thereby triggering an earlier
handover. The latter also effectively shrinks the footprint of
cell i and shifts border UEs from cell i to cell j. However,
traffic offloading has to be controlled to assure the volume of
shifted traffic to a neighboring cell keeps the overall load of
that neighboring cell below its threshold of congestion.

Hence, our problem aims at identifying the optimal set-
tings of the operating parameters of each cell power ℘i and
handover margin �i in order to minimize the congestion of
the cluster of cell towers as the result of shifting traffic
from congested cells to their non congested neighbors. This
is achieved subject to satisfying two constraints associated
with the minimum acceptable quality experienced by a UE
connected to a cell tower and the maximum allowed PRB
utilization of each individual cell tower.

A. Problem Description
We are trying to minimize congestion measured by the

number of total UEs serviced by cell towers operating beyond
their 80% PRB utilization. While our algorithm can operate
with any choice of congestion threshold, a value of 80%
utilization is the typical choice of mobile operators preventing
various performance issues such as handover failures and call
drops.

In LTE networks, cell power ℘i is a key factor in deter-
mining the cell footprint. Decreasing cell power reduces
the footprint of a cell while increasing it has the opposite
effect. Additionally, the handover margin �i determines a cell
boundary in comparison to its neighboring cells. The latter
can also be used to decrease or increase the serving area of a
cell. Hence, changing the setting of both of these parameters
results in decreasing or increasing the serving area and hence
the number of UEs connected to an LTE cell.

Our approach calls for a) reducing ℘i power of a congested
cell i in order to shrink its footprint and hence shift traffic to
its neighbors, and b) increasing the handover margin �j of a
neighboring cell j in order to increase the footprint of cell j.
We note that both changes result in shifting existing connected
UEs on the edges of cell i to be served by its neighboring cells
at a slightly lower quality than the quality experienced when
connected to the original cell i. The quality experienced by
a UE connected to cell i is typically represented by SINR
denoted as qi.

Fig. 5 illustrates the received signal strength at a UE as
it moves from the vicinity of cell tower A to that of tower
B. The x-axis is the distance of the UE from cell tower A
to which the UE is initially connected, while the y-axis is the
UE’s received power. In Fig. 5a, the blue line labeled A shows
that the UE’s received signal strength from cell A decreases as
the distance increases, i.e., as the UE travels away from cell
A. The green line labeled B shows the UE’s received signal
strength from cell B increases as the distance increases, i.e., as
the UE travels toward cell B. The intersection point of blue

Fig. 5. The impact of changing a) cell power ℘A of cell A and b) handover
margin �B of cell B on reducing cell A footprint.

and green lines represents the initial boundary distance point
at which the UE is handed over from cell A to cell B. The
red line labeled A’ shows reducing the value of cell power ℘A

by a sample value of 3dB shrinks the footprint of cell A from
rA to rA� . The reduction in cell power shifts the intersection
point to the left causing the handover to occur at a shorter
distance from cell A where red line and green line cross. This
means that the cell radius of cell A and hence footprint has
shrunk and UEs have been shifted to cell B.

Similarly, Fig. 5b shows the increase in the footprint of cell
B from rB to rB� as the result of increasing the value of
handover margin �B . Increasing �B by a sample value of 3dB
shifts the original intersection point of the blue line labeled A
and the green line labeled B to the left and causes the handover
point to occur at a shorter distance from cell A where the blue
line labeled A and the red line labeled B’ cross. Again, this
means that the radius of cell A and hence its footprint have
shrunk and UEs have been shifted to cell B.

B. Problem Formulation

We can now formulate our optimization problem as shown
below in which [x]+ = max(x, 0).

min
∀ ℘i,�i

ΛΥ =
�

i∈I

��
λi − λ℘

i −
�
j∈I
i�=j

λ�

i,j

� − Λi

�+
(1)

S.T.
�

i∈I

�
λi − λ℘

i −
�
j∈I
i�=j

λ�

i,j

�
= ΛL (2)

qi ≥ Q, ∀i ∈ I (3)
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The formulation attempts at minimizing ΛΥ the total cluster
congestion by changing power ℘i and handover threshold �i

on a cell-by-cell basis. The optimization cost function is
subject to two constraints. First, the total number of UEs
connected to all cells has to sum up to the total load of the
cluster, ΛL. This constraint guarantees the preservation of load
within the cluster. Second, the quality experienced by a UE
connected to cell i denoted by qi has to meet a minimum
acceptable quality threshold of Q explained shortly.

The total traffic congestion ΛΥ in Eq. (1) is the summation
of expressions taken over all cells. For each cell, the expression
consists of the difference of three terms and predicted conges-
tion threshold of that cell. These terms for cell i are the current
UEs λi connected to cell i, the change in connected UEs
associated with changing power λ℘

i , and the sum of changes in
connected UEs associated with offloading users from cell i to
neighboring cells j after changing handover threshold values
of cell j, λ�

i,j . Finally, Λi represents the predicted congestion
threshold of cell i.

The optimization problem formulated above represents a
nonlinear programming problem with a total of 2N decision
variables ℘i and �i where i ∈ {1, · · · , N} and decision
variables assume values from discrete sets. Hence, the solution
cannot be a trivial utility value of ΛΥ =

�
i Λi due to discrete

values of decision variables and constraint (3).
The change in connected UEs associated with λ℘

i represents
traffic offload to the neighboring cells as the result of shrinking
the footprint of cell i after changing ℘i. The value of λ℘

i

is derived utilizing Hata propagation model [2], [19] and
assuming traffic is homogeneously distributed in the serving
area [20].

λ℘
i = λi

�
1 −

	
10

−Δ℘i
H


2�
(4)

In the equation above, H is a constant with typical values of
−40, −30, and −20 dB/decade for urban, suburban, and rural
environments, respectively.

Similarly, λ�
i,j is expressed as a function of the traffic offload

of cell i to its neighbor j and the area overlap percentage ηi,j

between cells i and j.

λ�

i,j = ηi,j λi

�
1 −

	
10

−Δ�j
H


2�
(5)

While the overlap percentage can be calculated from handover
statistics on a cell pair basis, ηi,j is set separately for front
facing and co-site neighbors described in Section IV.

Next, we discuss quality constraints. We note that the
average quality qi of cell i after applying new settings is
presented as shown below.

qi = min
j

qi,j (6)

The impact to quality is mainly associated with the shift of cell
boundaries due to Δ℘i, Δ�j , or the sum of them combined.
The combined effect results in shifting users at the edge of cell
i to a neighboring cell j where they are served by a weaker
signal and with a degraded quality. This shift is calculated for
each serving cell i and each of its neighbors j. We choose
the worst quality value qi,j that presents the quality of cell i

guaranteed not to be lower than a minimum allowed quality
level of Q.

In order to express qi,j as a function of Δ℘i and Δ�j , we
choose SINR of a UE connected to cell i and denoted by γi as
the quality metric presented in [2], [21]. When reducing the
serving cell i power ℘i, say by 3 dB, the boundary of cell i
shrinks forcing the UEs at rA� to be served at a lower quality
by a neighboring cell. In the environment of our study, the
UEs at the boundary of the serving cell typically experience
a reduction of qi equivalent to the reduction in power ℘i and
handover margin �j . Hence, the variations in quality of a UE
shifted from cell i to a neighboring cell j is expressed as
shown below.

Δγi,j = Δ℘i + Δ�j (7)

Consequently, the quality impact is captured as shown below.

qi,j = γi,j − Δγi,j (8)

At the end of this subsection, we note that certain reference
values have to be selected since we are looking at calculating
function variations. In a typical LTE environment of our study,
UEs at a cell boundary experience a reference SINR value of
zero dB. Further, a minimum SINR value of −3dB is needed
in order to support a minimum modulation scheme of QPSK
for covered UEs [2], [22]. Therefore, Q is set to −3dB.

C. Solutions Description

In this subsection, we propose two optimization algorithms
to solve the problem of the previous section. First and in order
to enforce quality constraints, we add a set of penalty terms
Ui one per cell i and δ to the objective function [23]–[25].
Then, we use BCDSA and GA to solve the problem. The
penalty-augmented objective function is defined below.

Λ̃Υ =
�

i∈I

���
λi − λ℘

i −
�
j∈I
i�=j

λ�

i,j

� − Λi

�+ + Φ ∗ Ui



+ Φ ∗ δ (9)

In Eq. (9), Φ is set to 106,

δ =

⎧⎪⎨
⎪⎩

1, if (
�

i∈I

�
λi − λ℘

i − �
j∈I
i�=j

λ�

i,j

� �= ΛL )

0, Otherwise

(10)

and

Ui =

�
1, if (qi < Q)

0, Otherwise
(11)

It has to be noted that δ is a weighted penalty factor applying
a constant large hard penalty Φ, set to 106, for violating
the load preservation constraint in Eq. (2). Numerically, the
load preservation constraint in Eq. (2) is met by balancing
the offloading of connected UEs from a congested cell to its
neighbors. Further, Ui is a weighted penalty factor applying
a constant large hard penalty Φ, set to 106, for violating the
quality constraint in Eq. (3) of cell i.
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1) Block Coordinated Descent Simulated Annealing:
Inspired by the block coordinated descent optimization tech-
niques [26]–[28], our first proposed algorithm modifies the
standard SA algorithm in an attempt to address the tradeoff
between accuracy and complexity. Referred to as BCDSA
algorithm, this algorithmic variation applies the SA algorithm
to a partitioned set of decision variables. That is to say, it opti-
mizes one set of decision variables while keeping the other set
fixed, then optimizes the other set while keeping the first set
fixed, and alternates between the two sets. Alternating between
two sets of decision variables occurs if the cost function does
not change after few iterations of one set measured by a freeze
factor ξ. We have experimentally observed that BCDSA has
a better average time complexity and a much better success
rate in converging to the vicinity of global optimal solutions
compared to other SA alternatives such as standard SA or
SA with hill climbing. In our problem, there are two per
cell decision variables, namely, Δ℘i and Δ�i. Accordingly,
the partitioning strategy splits the decision variables to two sets
of Δ℘i and Δ�i values. The BCDSA algorithm is illustrated
in Algorithm 1.

We conjecture that the BCDSA algorithm converges to
a local optimal point in the vicinity of the global optimal
solution of the problem formulated in Section III-B. To support
our claim, we note that [29] proves the convergence of the SA
algorithm to a local optimal point in the vicinity of the global
optimal point for proper choices of parameters. Further, BCD
algorithms are known to converge to stationary points if the
Lagrangian function formed by the objective and the nonlinear
constraint functions is convex or under milder quasiconvex
and hemivariate conditions [30], [31]. The BCDSA algorithm
is primarily an SA algorithm augmented by BCD techniques
and hence our choices of parameters warrant its convergence
to a local optimal point. The effect of BCD augmentation
is in essence improving its average speed and robustness of
convergence.

The worst case time complexity of the BCDSA algorithm
is in the order of O(σρN) considering its nested while loops.
The number of iterations in the outer loop is set to σ =
(logTf − logTi)/log a where Ti, Tf , and a are the initial
temperature, final temperature, and cooling factor. The number
of iterations in the inner loop is set to ρN where ρ is a fixed
integer multiplier and N is the number of cellular towers.

2) Genetic Algorithm: Depending heavily on randomness
thereby allowing it to explore vast solution spaces, GA is an
evolutionary algorithm widely used in optimization domain,
especially, for solving nonlinear large solution space problems
[32]. It is known to identify near-global optimal points without
getting trapped in local optima. A flowchart of the general
operation of GA is provided in Fig. 6 in which an initial
population solution is iteratively evolved utilizing three types
of operators, namely, Selection, Crossover, and Mutation until
reaching a final population solution.

The GA algorithm as applied to solve our problem is
illustrated in Algorithm 2. In applying GA to our problem,
chromosomes are sets as vectors of genes. The number of
genes is set to 60 presenting power ℘i and handover margin
�i of a total of 30 cells. The range of these parameters is [0, 3]

Algorithm 1 BCDSA(Topology,Thresholds)

Form penalty-augmented objective function Λ̃Υ(x)
where x = (x1, x2....., xN ), xi = (Δ℘i,Δ�i)

Set initial values x[0] and T = Ti

Set K = ρN and final value Tf

Set cooling factor a in interval [0, 1]
Define max freeze factor ξmax

∀ i, Optimize Δ℘i but freeze Δ�i

While (T > Tf ) /* Temperature Bound */
Set k = 0, ξ = 0
While (k ≤ K) /* Iteration Bound */

Choose a random cell i
if Optimizing Δ℘i

xi = (℘i − Δ℘i, �i)
elseif Optimizing Δ�i

xi = (℘i, �i + Δ�i)
end if/else
ΔΛ̃Υ = Λ̃Υ(x[k]) - Λ̃Υ(x[k − 1])
if ΔΛ̃Υ > 0

Accept the new solution: Λ̃∗
Υ = Λ̃Υ, x

∗ = x
elseif ΔΛ̃Υ < 0

Generate a random number R in interval [0, 1]
if exp[ΔΛ̃Υ/T ] > R

Accept the new solution: Λ̃∗
Υ = Λ̃Υ, x

∗ = x
end if/else
if Λ̃Υ[k] = Λ̃Υ[k − 1] / ∗ Λ̃Υ is not changing! */
ξ = ξ + 1

else
ξ = 0

end if/else
k = k + 1
if (ξ > ξmax) /* Switch decision variables */

if Optimizing Δ℘i

∀i, Optimize Δ�i but freeze Δ℘i

elseif Optimizing Δ�i

∀i, Optimize Δ℘i but freeze Δ�i

end if/else
ξ = 0

end
End /* { While (k<K) } */
T=a*T

End /* {While (T > Tf ) } */

in order to enforce allowable degradation bounds of quality
constraints of LTE systems as captured by Eq. 9.

Starting from an initial population, GA operators are applied
to evolve the population. Applying Selection (aka Elite) oper-
ator results in choosing a certain percentage of top ranked
chromosomes with the lowest cost values as chromosomes of
the next generation. In our solution, we set the percentage
value to 2%. As illustrated by Fig. 7, Crossover operator
is used to select a pair of chromosomes in order to create
offsprings. The new population is ranked again in order to
keep its top chromosomes and discard the rest. The last
operator used is Mutation. As illustrated by Fig. 8, a random
chromosome is chosen and the value of a number of its genes
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Fig. 6. A flowchart of GA operation.

Fig. 7. An illustration of Crossover operator in GA.

Fig. 8. An illustration of the Mutation operator of genetic algorithm.

are changed to new values. This operator allows the GA
algorithm to jump to unexplored areas of the solution space
that may have never been explored by other operators or would
have taken a much longer time to converge to. Hence, it could
help the algorithm escape local optima. Similar to the case
of other operators, chromosomes with lowest cost values are
kept in the population count and the rest are discarded after
applying Mutation operator.

The worst case time complexity of the GA algorithm is
in the order of O(nχN) where n is the GA initial population
count, χ is a fixed integer multiplier depending on the number
of decision variables and their ranges, and N is the number
of cellular towers.

Algorithm 2 GA(Topology,Thresholds)
Set real number multiplier χ
Set population size κ = χ * N
Set chromosomes xj = (Δ℘1,Δ�1, · · ·,Δ℘N ,Δ�N)j

with j ∈ {1, · · · , κ} and genes (Δ℘i)j , (Δ�i)j

Set initial population matrix P [1] = (x1, · · · , xκ)T

Form penalty-augmented objective function Λ̃Υ(xj)
with j∈ {1, · · · , κ}

Set g = 1, ξ = 0, and ξmax = 10
While (g < MaxGen) { /* Gen. # Bound */

/* Form elite, crossover, mutation pools */
For (j = 1 to κ) {

Rank chromosomes in population P [g]
according to values of Λ̃Υ(xj)
Form Elite Pool (EP) from lowest 2%

of ranked values in P [g]
Randomly assign 80% of the remaining

chromosomes in P [g] to Crossover Pool (CP)
Assign the remaining 18% chromosomes

to Mutation Pool (MP)
}
/* Begin creating the new generation P [g + 1] */

Assign all chromosomes in EP to P [g + 1]
While (CP is not empty) {

Randomly select chromosomes C1, C2 from CP
Cross over genes from chromosomes C1 and C2

Save resulting chromosomes into P [g + 1]
Remove C1 and C2 from CP

}
While (MP is not empty) {

Randomly select chromosome C from MP
and a gene ψ from C

Randomly change the value of ψ
Save resulting chromosome into P [g + 1]
Remove C from MP

}
/* End creating the new generation P [g + 1] */

if (min Λ̃Υ in P [g])−(min Λ̃Υ in P [g+1])

min Λ̃Υ in P [g]
< 

/* min Λ̃Υ is not changing! */
ξ = ξ + 1

else
ξ = 0

end if/else
if (ξ > ξmax), then break
g = g + 1
P [g] = P [g + 1]

} /* While (g < MaxGen) */
Report best solution: Λ̃∗

Υ = Λ̃Υ(xj), x
∗ = xj in P [g]

IV. PERFORMANCE EVALUATION

We open this section by making the following statements
about data gathering process.

• The data needed for performing real-time operation is
extracted from eNodeBs in the form of real-time reports.
Each eNodeB report contains multiple cell towers and a
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Fig. 9. A cluster of cellular towers in greater Los Angeles area comprised
of ten sites with each site having three cellular towers.

collection of 80 per cell KPIs. Reports are refreshed and
can be pulled within intervals of 15 minutes.

• The data content included in eNodeB reports is stored for
later processing and analysis in a database tool deployed
by the mobile operator. The typical delay in populating
the database data is 60 minutes.

A typical operating scenario relies on the data gathering
process above. In such scenario, the learning algorithm is run
followed by the optimization algorithm in a repeating cycle.
The frequency of running the learning algorithm followed by
the optimization algorithm is set to once every τ minutes.
The value of τ is typically in the range of 15 to 60 minutes
depending on the operating requirements of a mobile operator.
The first iteration starts by importing the first D measurement
datasets covering a period of the first W weeks. Noting
datasets are collected once every τ minutes, the value of D
is calculated as D = (W × 7 × 24 × 60)/τ . The learning
algorithm is then run using these datasets in order to predict
congestion thresholds. Next, the predicted thresholds are fed
into the optimization algorithm of choice. The next iteration
repeats the steps above after deleting the oldest dataset and
importing dataset D + 1. Experimentally, we set the number
of repeating iterations to Σ.

A. A Comparison of Integrated DL-BCDSA and DL-GA

This subsection compares the performance of integrated DL-
BCDSA and DL-GA algorithms using a first cluster located
in greater Los Angeles area and depicted in Fig. 9. The
cluster has ten sites with each site having three sectors or cells
and each cell presented with an arrow. Red arrows represent
congested cells while black arrows represent non-congested
cells. With the exception of the boundary cells, each cell

has 2 front facing and 2 co-site neighbors. To understand
the definitions of front facing and co-site neighbors, note
that in Fig. 9 cell 1.1 has front facing neighbors 2.2 and
3.3, and co-site neighbors 1.2 and 1.3. As shown, not all
cells are congested and further congested cells have at least a
non-congested neighbor.

1) Experimental Settings: The experimental data is
extracted from the database tool above along with settings
W = 2, τ = 15, and D = 1344 in a typical operating scenario.
We collected a total of 2D = 2688 datasets associated with
the traffic profile of the first cluster of our study over a con-
tinuous period of 2W = 4 weeks between October 2018 and
November 2018.

The cellular network serves an urban environment with
a propagation loss coefficient of H = −40dB/decade. Fur-
thermore, handover percentages from a cell to its facing and
co-site neighbors are averaged at 40% and 10%, respectively.
Handover percentages are calculated as the ratio of the number
of handovers to a particular neighbor over total handovers.

A reduction in ℘i or increase in �j results in a similar
reduction in SINR for border users based on the selected
urban environment. Traffic is assumed to be homogeneously
distributed in the serving area and hence traffic reduction is
at a rate similar to reduction in serving area. The range of
variations of both Δ℘i and Δ�i is [0, 3]dB. Border users are
being served with an SINR value of 0dB and a minimum
acceptable value no smaller than −3dB [2]. The latter is the
minimum value of SINR needed to achieve QPSK coding
and throughput for the the mobile operator environment and
approximating the values presented in Table I.

It is critical to choose BCDSA parameters to control the
time complexity of the solution while achieving good utility
results. In order to identify the best values of the initial
temperature Ti and the cooling factor a, we run a number
of scenarios. Looking at the results, we observe that setting
a = 0.9 along with a value of Ti in the same order as the value
of change in the utility function best addresses utility-runtime
tradeoff. As for ξ, results show that a choice of ξ = 20 best
addresses the tradeoff between success rate and runtimes.

Last but not least, measurements show RMSE errors of DL
prediction are in the range of [0.5%, 1%] for a congestion
threshold of 80% PRB utilization. In consideration of the error,
a safety margin of 3% is applied to the predicted value of Λi

when running optimization. This ensures that non-congested
cells accepting offloaded traffic do not exceed their congestion
threshold as a result of prediction error.

In conducting simulations leading to the results reported by
Fig. 10, Fig. 11, and Fig. 12, we use a subset of collected data
for comparing the performance of BCDSA and GA algorithms.
The initial value of ΛΥ, i.e., total average load of connected
UEs in the cluster, is measured as 2836 users.

We run each GA experiment 10 times for each value of
initial population count starting from 10 and ending at 200
chromosomes. Considering the fact that BCDSA is an order
of magnitude faster than GA, we run each BCDSA experiment
100 times. The purpose of running multiple iterations of each
algorithm is to measure the best and average total traffic values
and also to measure the consistency of algorithms in finding
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Fig. 10. A comparison of (a) average runtimes and (b) success rates for
various GA configurations.

Fig. 11. A comparison of runtimes and success rates for various scenarios
of GA and BCDSA calculated over 10 runs.

good solutions. A solution is considered good if its congestion
value is within 1% of the best congestion solution obtained
using that algorithm.

2) Comparison Results: We compare different aspects of
performance in terms of i) cost measured as the algorithmic
runtime, ii) improvement measured as best and average con-
gestion reduction values, and iii) success rate measured as

Fig. 12. A comparison of average and best congestion reduction in various
scenarios of GA and BCDSA.

the percentage of good solutions, i.e., the number of solutions
within 1% of the best solution.

First, we attempt at identifying the best selection of GA
parameters in our experiments and then compare the results
of BCDSA and GA both fed with the predictions of DL. The
scenarios of interest for GA include the following configura-
tions in which a) all ℘ and � are initialized with a value of 0;
b) all ℘ and � are initialized with values of 1; c) ℘ and � are
initialized with values of 0 and 1 respectively; d) ℘ and � are
initialized with values of 0 and 2 respectively; e) ℘ and � are
initialized with values of 0 and 3 respectively; and f) ℘ and �

are assigned random values in the range of [0,3].
A comparison of average runtimes and success rates for

various GA configurations is presented in Fig. 10. The reported
results reflect averages calculated over 10 runs. As can be seen
in this figure, configurations (a) and (e) do not converge to any
good solutions. We chose configurations (c), (d), and (f) with
an initial population of 100 chromosomes as they offer the
lowest runtimes while achieving near perfect success rates.

Fig. 11 compares the results of GA with BCDSA in terms of
success rate percentage and runtime associated with 10 runs.
It shows that the success rate of most scenarios of GA after
10 runs is nearly 100% guaranteeing to reach a solution that is
within 1% of the best solution in 10 attempts. Reviewing the
results of BCDSA, a 10 run success rate of 63% is observed
implying that the algorithm finds a good solution within 1%
of the best solution 63 times in 100 runs. All GA algorithms
record runtimes in the range of 60 to 70 seconds for 10
runs. Comparing these numbers to the runtimes of BCDSA
averaging to 5.7 seconds for 10 runs, it is concluded that
BCDSA is over one order of magnitude faster than GA. The
excellent runtime efficiency advantage of BCDA over GA is
hence traded off against its relatively lower success rates.

The difference in runtimes and success rates can be intu-
itively explained based on the understanding of how each algo-
rithm works. On one hand, the GA algorithm creates multiple
solutions in the population and attempts at globally optimizing
them using crossover and mutation operators. Hence a higher
success rate is achieved at the cost of longer runtime since
GA approaches the solution from various directions. On the
other hand, BCDSA attempts at navigating its way to the
global optimum using a partitioned SA approach. Hence, it
offers a much lower processing time at the cost of having
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TABLE IV

A COMPARISON OF EFFECTIVE CONVERGENCE TIMES OF BCDSA
AND VARIANTS OF GA USING Σ = 1344 ITERATIONS

a higher chance of missing the global minimum. A good
comparison analogy would be hiring 100 amateur hikers to
find the mountain summit, versus hiring one professional hiker
to navigate around the terrain and find that summit.

Utilizing a cap of 60 seconds on the runtime, Fig. 12 com-
pares average and best congestion cost reduction in various
scenarios of GA and BCDSA from an initial congestion of
506 connected UEs as predicted by DL. It is noted that the
remaining congestion is the difference between the initial value
of 506 and what is shown in the graph. It is seen that the
best and average congestion reduction solutions are similar
comparing most scenarios except scenario (b) in which all
parameters are initialized with values of 1. The average case
of congestion is not shown in the latter case because the
average value increases the initial congestion of 506 instead of
decreasing it. As seen by the results, the total volume of con-
gested traffic is reduced from 506 to 302 representing 40.3%
overall congestion reduction within the cluster. In comparing
the performance of the two algorithms, it is observed that
GA has significantly higher runtimes than BCDSA. Optimal
solutions usually result in �i variations in the range of 1 to
3 dB and ℘i variations close to zero. It is also observed that
initializing the population with random values of ℘ and �

usually results in longer convergence times and lower total
traffic volumes.

Next, we define the Effective Convergence Time (ECT)
of an algorithm as the ratio of its average runtime over
its success rate. Hence, ECT measures the robustness of
convergence performance of an algorithm by factoring in the
effect of its success rate into its runtime. Noting that smaller
ECT values reflect better results, we measure and report the
ECT of different algorithmic flavors utilizing the full set of
2D = 2688 datasets described above. Table IV reports the
results associated with running a total of Σ = 1344 iterations.
As shown in the table, BCDSA algorithm has the best results.
Alternatives f, d, and c of the GA algorithm report the next
best results although the closest associated ECT is over 6 times
higher than that of BCDSA. The results imply that the use of
BCDSA is preferred over GA because it can be run more times
to effectively compensate against its lower success rate.

B. A Real-Time Comparison of DL-BCDSA
and a Baseline SON

This subsection compares the real-time performance of inte-
grated DL-BCDSA and a commercial SON tool in a second
cluster of cell towers located within greater Los Angeles area.
The target cluster includes 84 cell towers with a mix of 75
macro cells and 9 small cells. Instead of using averages of
40% and 10%, the percentages of handover values to front

facing and co-site neighbors are calculated from the actual
reported KPIs.

1) Experimental Settings: Setting W = 2, τ = 60, D =
336, and Σ = 45 in a typical operating scenario, we collected
a total of 504 datasets associated with the traffic profile of
the second cluster of our study over a continuous period of
three weeks in May 2019. While the data needed for initial
learning is extracted from the database tool using the data
within the first two weeks, the data needed for optimization
is extracted from real-time eNodeB reports during the third
week.

The experiment was conducted during weekdays of those
three weeks, starting Monday the 6-th of May of 2019 and
ending on Friday the 24-th of May 2019. The selected dates
represent a period during which network traffic load was
consistently comparable and no seasonality of traffic change
were reported. During weekdays, the experiments were started
at 9:00am and concluded at 5:00pm. One set of changes were
applied per hour utilizing a real-time dataset collected from the
cell towers at the time of change. No changes were applied
outside the hours of operations or during weekends.

We compare our results against a baseline formed by a state-
of-the-art commercially-available self organizing network tool
from Ericsson [10]. Referred to as SON, the tool offers an
Automated Mobility Optimization (AMO) capability among
its optimization features. AMO addresses issues with early
handovers, late handovers, handovers to wrong cells, and
handover oscillations. The baseline SON tool was deployed
within the target cluster of our experiments with AMO feature
turned on. We chose BCDSA as the choice of our optimization
algorithm considering its convergence and speed character-
istics as reported in the previous subsection. Accordingly,
we label our results as DL-BCDSA. We use the best parameter
settings of DL-BCDSA as reported in the Section IV-A.

We left the SON tool on during the first two weeks of
our experimentation period, i.e., Monday the 6-th through
Friday the 17-th. However, we turned it off when applying
DL-BCDSA in the third week. At 9:00am of every weekday of
the third week, we fed the DL with the latest D = 336 datasets
associated with the most recent past 2 weeks. In subsequent
iterations of the day, we added the next dataset to the mix
after deleting the oldest dataset and repeated the same steps.
A total of 9 real-time iterations were applied during the period
of 9:00am to 5:00pm on every weekday of the third week.

2) Comparison Results: In the figures of this subsection,
the labels SON-W1, SON-W2, and DL-BCDSA-W3 are asso-
ciated with the results of SON tool in week 1, SON tool in
week 2, and DL-BCDSA in week 3, respectively. All reported
results are for the period of 9:00m to 5:00pm.

Fig. 13 shows a comparison of cluster excess users. Excess
users are defined as connected UEs served by a cluster
operating over 80% utilization. Note that the UEs served by a
congested cell below the threshold of 80% utilization are not
counted in the measure of excess users. As observed in the
figure, cluster excess users reduced in the range of [17%, 27%]
when applying DL-BCDSA.

Fig. 14 shows a comparison of cluster PRB utilization.
As observed in the figure, PRB utilization of the cluster
reduced in the range of [7%, 10%] when applying DL-BCDSA.
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Fig. 13. A comparison of excess users between a commercial SON tool and
DL-BCDSA over a period of 3 weeks.

Fig. 14. A comparison of PRB utilization between a commercial SON tool
and DL-BCDSA over a period of 3 weeks.

Fig. 15. A comparison of throughput between a commercial SON tool and
DL-BCDSA over a period of 3 weeks.

Similarly, Fig. 15 illustrates a comparison of cluster
throughput. As observed in the figure, cluster throughput
increased in the range of [14%, 21%] when applying DL-
BCDSA.

Finally, Fig. 16 displays a comparison of cluster’s average
RSSI as a good indicator of signal strength. As observed in
the figure, applying DL-BCDSA caused no significant change,
i.e., less than 0.2% in average RSSI.

Fig. 16. A comparison of RSSI between a commercial SON tool and
DL-BCDSA over a period of 3 weeks.

V. CONCLUSION

In this paper, we introduced an integrated Deep Learn-
ing (DL) and optimization approach resulting in minimizing
the congestion of clusters of LTE/LTE-A cellular towers.
The DL algorithm utilized measurements collected from a
cluster of LTE cellular towers to accurately predict congestion
thresholds of those cellular towers within a cluster of interest.
Relying on DL results, our optimization algorithms, namely
Block Coordinated Descent Simulated Annealing (BCDSA)
and Genetic Algorithm (GA), then aimed at minimizing the
congestion of the same cluster. We compared the results of
BCDSA and GA demonstrating that GA offered higher success
rates in finding optimal solutions while BCDSA had an order
of magnitude lower runtimes with reasonable success rates.
We also compared effective convergence times of different
algorithms showing that BCDSA offers the best combined
robustness and runtimes. Utilizing a large hybrid cluster of
macro sites and small cells in greater Los Angeles area,
we then reported the advantages of applying our integrated
DL-BCDSA algorithm in real-time compared to a state-of-
the-art commercial SON tool.
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