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Communication Loss Models

n Independent Loss: The probability 
of loss for consecutive units 
of information (UOIs) is independent.

n Correlated Loss: The probability         
of loss for consecutive units of 
information (UOIs) is correlated.

n UOIs: Bits, Symbols, Packets



Independent Loss

n Loss is described by the Bernoulli model.
n Probability of loss for each UOI 

is identified by a value   , 
independent of other UOIs.

n Probability of transmitting    UOIs &
receiving   UOIs is
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Correlated Loss
n Loss is described by a 

finite-state Markov 
Chain [8] 

n Special case of interest: 
2-State Gilbert MC

n A UOI is received if the 
systems is in State G 
and lost in State B
n Ext: Gilbert-Elliott Model 

w/ Non-Trivial Loss Prob’s

n Probability of loss for 
each UOI is identified 
by the transition 
probabilities of the MC
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Motivation

n Correlated Loss
n Wired line packet 

loss due to 
implementation of 
drop tail routing

n Wireless fading 
channel bit and 
symbol loss

n Applications
n Channel Coding [4]
n Image/Audio 

Communication [2,10,11]
n Network Loss Analysis [1]
n Analog Channel Modeling 

[12]
n Reliable/Real-Time 

Multicast [5,6,7,9]



Problem Specification

n What is the prob. of receiving exactly           
UOIs from   transmitted UOIs?

n Recursive formula exists  
n May lead to high complexity solutions
n Eliminates the possibility of analytically 

solving any related optimization problem
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Recursive Solution
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Closed-Form Solution (CFS)
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Proof
n Use               and

to prove if CFS holds for v and z=1,
then it holds for v+1 and z=1

n Similarly, prove if CFS holds for v and z=2,
then it holds for v+1 and z=2

n Utilize 2-D Mathematical Induction
n To prove if CFS holds for v and a fixed z   

then it holds for v+1 and the same fixed z
n To prove if CFS holds for z and a fixed v   

then it holds for z+1 and the same fixed v
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Numerical Validation

A comparison plot of                   vs between the packet arrival results of closed-
form and iterative solutions for the choice of parameters       and             .[215]v ∈ , [1 1]z v∈ , −
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Statistical Guarantee Algorithm

Statistical Guarantee for Arrival of Minimum      UOIs
from         transmitted UOIs with probability    or better
Complexity               vs. recursive complexity 
n

n Calculate

n If Break
where 

n Report the number of required packets,
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